Skip to main content

Soil–PCB–PGPR Interactions in Changing Climate Scenarios

  • Chapter
  • First Online:
Xenobiotics in the Soil Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 49))

Abstract

Rhizosphere soil inhabits an immense diversity of microorganisms capable to perform diverse functions. Plant growth-promoting rhizobacteria (PGPR) are one of those and extensively studied to promote plant growth by various direct and indirect mechanisms. Along with growth-promoting characteristics, these ubiquitous microbes have also been well researched to remediate the contaminated environment with persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs). PGPR use PCBs as a carbon source and transform the contaminants through anaerobic reductive dechlorination or aerobic oxidation reactions taking place as a part of their metabolic processes. These bacteria convert PCBs to less chlorinated and mineralized compounds at reduced energy rather than demanding additional source of carbon to facilitate transformation. Changing climate scenarios have drastically affected the soil microbial community including PGPR and altered the soil rhizosphere dynamics. Influenced by these climatic changes, some microbial populations are overgrown, whilst others are reduced to extinction. As a result their ability to remediate the pollutants is changed. This chapter provides an overview of plant growth-promoting rhizobacteria and their involvement to remediate the PCB-contaminated environment in changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Dubey RK (2014) Integrating aboveground–belowground responses to climate change. Curr Sci 106:1637–1638

    Google Scholar 

  • Abhilash PC, Yunus M (2011) Can we use biomass produced from phytoremediation? Biomass Bioenergy 35:1371–1372

    Article  CAS  Google Scholar 

  • Abhilash PC, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh HB (2013) Adaptive soil management. Curr Sci 104:2–3

    Google Scholar 

  • Abhilash PC, Tripathi V, Dubey RK, Edrisi SA (2015) Coping with changes: adaptation of trees in a changing environment. Trends Plant Sci 20:137–138

    Article  CAS  Google Scholar 

  • Alarcon MV, Lloret PG, Iglesias DJ, Talon M, Salguero J (2012) Comparison of growth responses to auxin 1-naphthaleneacetic acid and the ethylene precursor 1-aminocyclopropane-1-carboxilic acid in maize seedling root. Acta Biol Cracov Ser Bot 54:16–23

    Google Scholar 

  • Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis C, Pieterse CM, Bakker PA (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol Control 65:14–23

    Article  Google Scholar 

  • Andersson P (2000) Physico-chemical characteristics and quantitative structure-activity relationships of PCBs. Dissertation, Umea University, Sweden

    Google Scholar 

  • Anyasi RO (2012) Bioremediation of polychlorinated biphenyls (PCBs)-contaminated soil by phytoremediation with chromolaena odorata L. Dissertation, University of South Africa

    Google Scholar 

  • Anyasi RO, Atagana HI (2011) Biological remediation of polychlorinated biphenyl (PCB) in the environment by microorganisms and plants. Afr J Biotechnol 10:18916–18939

    Article  CAS  Google Scholar 

  • Balbus JM, Boxall AB, Fenske RA (2013) Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment. Environ Toxicol Chem 32:62–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbalace RC (2003) The chemistry of polychlorinated biphenyls. http://EnvironmentalChemistry.com. Accessed 21 Sept 2013

  • Barea JM, Richardson AE (2014) Phosphate mobilization by soil microorganisms. In: Lutenberg B (ed) Principles of plant-microbe interactions. Springer, Berlin, pp 225–234

    Google Scholar 

  • Bedard DL (2008) A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenyls-from sediment to defined medium. Annu Rev Microbiol 62:253–270

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Beyer L, Bölter M, Seppelt RD (2000) Nutrient and thermal regime microbial biomass, vegetation of Antarctic soils in the Windmill Islands region of East Antarctica (Wilkes Land). Arct Antarct Alp Res 32:30–39

    Article  Google Scholar 

  • Bhandary A (2007) Remediation technologies for soil and groundwater. US Environmental Council Science, Reston

    Book  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    Article  CAS  Google Scholar 

  • Braddock JF, Ruth ML, Catterall PH, Walworth JL, McCarthy KA (1997) Enhancement and inhibition of microbial activity in hydrocarbon-contaminated Arctic soils: implications for nutrient-amended bioremediation. Environ Sci Technol 31:2078–2084

    Article  CAS  Google Scholar 

  • Bremle G, Larsson P (1998) PCB in the air during land filling of contaminated lake sediment. Atmos Environ 32:1011–1019

    Article  CAS  Google Scholar 

  • Buyer JS, Roberts DP, Russek-Cohen E (1999) Microbial community structure and function in the spermosphere as affected by soil and seed type. Can J Microbiol 45:138–144

    Article  CAS  Google Scholar 

  • Chary LK, Yates L (2000) Technologies for destruction of PCBs: feasible alternatives to incineration and landfilling www.ipen.org/technolo. Accessed 19 June 2011

    Google Scholar 

  • Cork DJ, Krueger JP (1991) Microbial transformation of herbicides and pesticides. Adv Appl Microbiol 36:1–66

    Article  CAS  PubMed  Google Scholar 

  • Cregger MA, Schadt CW, McDowell NG, Pockman WT, Classen AT (2012) Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl Environ Microbiol 78:8587–8594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Vojvodic VM (2000) Decrease in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32:189–196

    Article  CAS  Google Scholar 

  • Eisenreich SJ, Jeremiason JD, Paterson MJ (1999) Biochemical cycling of PCBs in lakes of variable tropical status: a paired-lake experiment. Limnol Oceanogr 44:889–902

    Article  Google Scholar 

  • Fitzgerald ED, Hwang SA, Deres DA, Bush B, Cook K, Worswick P (2001) The association between local fish consumption and DDE, mirex, and HCB concentration in the breast milk of Mohawk women at Akwesasne. J Expos Anal Environ Epid 11:381–388

    Article  CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosci Bioeng 105:433–449

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Suenaga H, Goto M (2004) Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriolog 186:5189–5196

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacterial to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Golubev SN, Muratova AY, Wittenmayer L, Bondarenkova AD, Hirche F, Matora LY, Merbach W, Turkovskaya OV (2011) Rhizosphere indole-3-acetic acid as a mediator in the Sorghum bicolor–phenanthrene–Sinorhizobium meliloti interactions. Plant Physiol Biochem 49:600–608

    Article  CAS  PubMed  Google Scholar 

  • Gomes HI (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445:237–260

    Article  PubMed  Google Scholar 

  • Gordon H, Haygarth PM, Bardgett RD (2008) Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol Biochem 40:302–311

    Article  CAS  Google Scholar 

  • Graham C, Ramsden JJ (2008) Introduction to global warming. In: Proceeding of the NATO advanced research workshop on complexity and security Tbilisi, Georgia. IOS, Amsterdam, pp 147–184

    Google Scholar 

  • Haase S, Neumann G, Kania A, Kuzyakov Y, Romheld V, Kandeler E (2007) Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208–2221

    Article  CAS  Google Scholar 

  • Haney CA, Samuel BS, Bush J, Ausubel FM (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants. doi:10.1038/nplants.2015.51

    PubMed  PubMed Central  Google Scholar 

  • Hansen LG (1999) The ortho side of PCBs: occurrence and disposition. Kluwer Academic, Norwell

    Book  Google Scholar 

  • Hong SH, Ryu H, Kim J, Cho KS (2011) Rhizoremediation of diesel contaminated soil using the plant growth-promoting Rhizobacterium gordonia sp. S2RP-17. Biodegradation 22:593–601

    Article  CAS  PubMed  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  CAS  PubMed  Google Scholar 

  • IARC (1978) IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Lyon. http://monographs.iarc.fr/ENG/Monographs/vol1-42/

  • Jensen S (1966) Report of new chemical hazards. New Sci 32:612

    Google Scholar 

  • Johnson DL, Maguire KL, Anderson DR, McGrath SP (2004) Enhanced dissipation of chrysene in planted soil: the impact of a rhizobial inoculum. Soil Biol Biochem 36:33–38

    Article  CAS  Google Scholar 

  • Johnson SL, Kuske CR, Carney TD, Housman DC, Gallegos-Graves LV, Belnap J (2012) Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dry land ecosystem. Global Change Biol 18:2583–2593

    Article  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kang H (2010) Effects of elevated CO2 and Pb on phytoextraction and enzyme activity. Water Air Soil Pollut 219:365–375

    Article  Google Scholar 

  • Kuiper I, Bloemberg GV, Lutenberg BJ (2001) Selection of a plant–bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon degrading bacteria. Mol Plant Microbe Interact 14:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe 17:6–15

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Hill PW, Jones DL (2007) Root exudates components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 290:293–305

    Article  CAS  Google Scholar 

  • Kvesitadze G, Khatisashvili G, Sadunishvili T (2004) Mechanisms to detoxify selected organic contaminants in higher plants and microbes, and their potential use in landscape management. European Research Office, London, pp. 5–6

    Google Scholar 

  • Larsson P, Andersson A, Broman D, Nordback J, Lundberg E (2000) Persistent organic pollutants (POPs) in pelagic systems. AMBIO 29:202–209

    Article  Google Scholar 

  • Leat EHK, Bourgeon S, Borga K, Strom H, Hanssen SA, Gabrielsen GW, Petersen E, Olafsdottir K, Magnusdottir E, Fisk AT, Ellis S (2011) Effects of environmental exposure and diet on levels of persistent organic pollutants (POPs) in eggs of a top predator in the North Atlantic in 1980 and 2008. Environ Pollut 159:1222–1228

    Article  CAS  PubMed  Google Scholar 

  • Leung M (2004) Bioremediation: techniques for cleaning up. Emess J Biotechnol 2:18–22

    Google Scholar 

  • Li H-Y, Wei D-Q, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Article  Google Scholar 

  • Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Magan NA, Medina A, Aldred D (2011) Possible climate-change effects on mycotoxins contamination of food crops pre- and postharvest. Plant Pathol 60:150–163

    Article  CAS  Google Scholar 

  • McFarland VA, Clarke JU (1989) Environmental occurrence, abundance and potential toxicity of polychlorinated biphenyl congeners: consideration for a congener-specific analysis. Environ Health Perspect 81:225–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, Bruijn ID, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L 33. Microb Ecol 40:43–56

    Article  CAS  PubMed  Google Scholar 

  • Miraglia M, Marvin HJ, Kleter GA, Battilani PA, Brera C, Coni E, Cubadda F, Croci L, De Santis B, Dekkers S, Filippi (2009) Climate change and food safety: an emerging issue with special focus on Europe. Food Chem Toxicol 47: 1009–1021

    Google Scholar 

  • Mohn WW, Stewart GR (2000) Limiting factors for hydrocarbon biodegradation at low temperatures in Arctic soils. Soil Biol Biochem 32:1161–1172

    Article  CAS  Google Scholar 

  • Muratova AL, Turkovskaia OV, Antoniuk LP, Makarov OE, Pozdnyakova LI, Ignatov VV (2005) Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiologiia 74:210–215

    CAS  Google Scholar 

  • Muratova AY, Bondarenkova AD, Panchenko LV, Turkovskaya OV (2010) Use of integrated phytoremediation for cleaning-up of oil-sludge-contaminated soil. Appl Biochem Microbiol 46:789–794

    Article  CAS  Google Scholar 

  • Nabavi BF, Nikaeen M, Amin MM, Hatamzadeh M (2013) Isolation and identification of aerobic polychlorinated biphenyls degrading bacteria. Int J Environ Health Eng 2:47

    Article  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng E-L, Patti AF, Rose MT, Schefe CR, Smernik RJ, Cavagnaro TR (2015) Do organic inputs alter resistance and resilience of soil microbial community to drying? Soil Biol Biochem 81:58–66

    Article  CAS  Google Scholar 

  • Panke- Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989

    Article  CAS  PubMed  Google Scholar 

  • Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202

    Article  CAS  PubMed  Google Scholar 

  • Perugini M, Nuñez EGH, Baldi L, Esposito M, Serpe FP, Amorena M (2012) Predicting dioxin-like PCBs soil contamination levels using milk of grazing animal as indicator. Chemosphere 89:964–969

    Article  CAS  PubMed  Google Scholar 

  • Pieper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Microbiol 52:347–375

    CAS  Google Scholar 

  • Ritter L, Solomon KR, Forget J, Stemeroff M, O’Leary C (2007) Persistent organic pollutants. United Nations Environment Programme. Accessed 01 July 2016

    Google Scholar 

  • Safe S, Yao C, Davis D (1990) Development of toxic equivalency factors for polychlorinated biphenyls (PCBs). Organohalogen Compd 2:55–59

    CAS  Google Scholar 

  • Shann JR (2001) Bioremediation through rhizosphere technology coats, vol 563. American Chemical Society, Washington, DC

    Google Scholar 

  • Sheng X, Chen X, He L (2008) Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. Int Biodeter 62:88–95

    Article  CAS  Google Scholar 

  • Stohs SJ (2014) Polychlorinated biphenyls (PCBs). In: Wexler P (ed) Encyclopaedia of toxicology, 3rd edn. Academic, Oxford, pp 1035–1037

    Chapter  Google Scholar 

  • Strek HJ, Weber JB (1982) Adsorption and reduction in bioactivity of polychlorinated biphenyl (Aroclor 1254) to red root Pigweed by soil organic matter and montmorillonite clay. Soil Sci Soc Am J 46:318–322

    Article  CAS  Google Scholar 

  • Tao C, Min-min Y, Xiong-yuan SI, You-bin SI (2012) Isolation, identification and characteristics of PCB77-degrading strain. Environment Science Technology, School of Resource and Environment, Anhui Agricultural University, Hefei

    Google Scholar 

  • Teng Y, Luo Y, Sun X, Tu C, Xu L, Liu W, Li Z, Christie P (2010) Influence of arbuscular mycorrhiza and Rhizobium on phytoremediation by Alfalfa of an agricultural soil contaminated with weathered PCBs: a field study. Intl J Phytorem 12:516–533

    Article  CAS  Google Scholar 

  • Teng Y, Li X, Chen T, Zhang M, Wang X, Li Z, Luo Y (2015) Isolation of the PCB-degrading bacteria Mesorhizobium sp. ZY1 and its combined remediation with Astragalus sinicus L. for contaminated soil. Intl J Phytorem 18(2):141–149. doi:10.1080/15226514.2015.1073667

    Article  Google Scholar 

  • Tsai PC, Ko YC, Huang W, Liu HS, Guo YL (2007) Increased liver and lupus mortalities in 24-year follow-up of the Taiwanese people highly exposed to PCBs and PDDF. Sci Total Environ 247:216–232

    Article  Google Scholar 

  • Tu C, Teng Y, Luo Y, Li X, Sun X, Li Z, Liu W, Christie P (2011) Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti. J Hazard Mater 186:1438–1444

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth- promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    Article  CAS  Google Scholar 

  • USEPA (1995) How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers. U.S. Government Printing Office, Washington, DC, EPA-510-B-95-007 http://www2.epa.gov/ust

  • Van Gestel M, Merckx R, Vlassak K (1993) Microbial biomass responses to soil drying and rewetting: the fate of fast- and slow-growing microorganisms in soils from different climates. Soil Biol Biochem 25:109–123

    Article  Google Scholar 

  • Vasilyeva G, Strijakova E (2007) Bioremediation of soils and sediments contaminated by polychlorinated biphenyls. Microbiology 76:639–653

    Article  CAS  Google Scholar 

  • Villacieros M, Whelan C, Mackova M, Molgaard J, Sánchez-Contreras M, Lloret J, de Cárcer DA, Oruezábal RI, Bolanos L, Macek T, Karlson U (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagacha JM, Muthomi JW (2008) Mycotoxins in Africa: current status, implications to food safety and health and possible management strategies. Int J Food Microbiol 124:187–201

    Article  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton BT, Guthrie EA, Hoylman AM (1994) Toxicant degradation in the rhizosphere. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology, vol 563. ACS Series, Washington, DC, pp 11–26

    Chapter  Google Scholar 

  • Wang X, Mavrodi DV, Linfeng KE, Mavrodi OV, Yang M, Thomashow LS, Zheng N, Weller DM, Zhang J (2015) Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microbial Biotechnol 8:404–418

    Article  CAS  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soil borne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Wiegel J, Wu Q (2000) Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol 32:1–15

    Article  CAS  PubMed  Google Scholar 

  • Willman EJ, Manchester-Neesvig JB, Armstrong DE (1997) Influence of ortho-substitution on pattern of PCB accumulation in sediments; plankton and fish in fresh water estuary. Environ Sci Technol 31:3712–3718

    Article  CAS  Google Scholar 

  • Wu H, Tang S, Zhang X, Guo J, Song Z, Tian S, Smith DL (2009) Using elevated CO2 to increase the biomass of a Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium. J Hazard Mater 170:861–870

    Article  CAS  PubMed  Google Scholar 

  • Yang CF, Lee CM (2008) Enrichment, isolation, and characterization of 4-chlorophenol-degrading bacterium Rhizobium sp 4-CP-20. Biodegradation 19:329–336

    Article  CAS  PubMed  Google Scholar 

  • Yang GX, Zhuang HS, Chen HY, Ping XY, Bu D (2014) A sensitive immunosorbent bio-barcode assay based on real-time immuno-PCR for detecting 3, 4, 3′, 4′-tetrachlorobiphenyl. Anal Bioanal Chem 406:1693–1700

    Article  CAS  PubMed  Google Scholar 

  • Younas A, Hilber I, Rehman S, Khawaja M, Bucheli TD (2013) DDT factory in Pakistan revisited for remediation: severe DDT concentrations in soils and plants from within the area. Environ Sci Pollut Res 20:1966–1976. doi:10.1007/s11356-012-1317-y

    Article  CAS  Google Scholar 

  • Zeeb BA, Amphlett JS, Rutter A, Reimer KJ (2006) Potential for phytoremediation of polychlorinated biphenyl-(PCB-) contaminated soil. Int J Phytorem 8:199–221

    Article  CAS  Google Scholar 

  • Zhou W, Anitescu G, Rice PA, Tavlarides LL (2004) Supercritical fluid extraction–oxidation technology to remediate PCB-contaminated soils/sediments: an economic analysis. Environ Prog 23:222–231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Ahmad Asad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Asad, S.A. (2017). Soil–PCB–PGPR Interactions in Changing Climate Scenarios. In: Hashmi, M., Kumar, V., Varma, A. (eds) Xenobiotics in the Soil Environment. Soil Biology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-47744-2_19

Download citation

Publish with us

Policies and ethics