Skip to main content

Virtual Production Intelligence (VPI)

  • Chapter
  • First Online:
Integrative Production Technology

Abstract

The research area Virtual Production Intelligence (VPI) focuses on the integrated support of collaborative planning processes for production systems and products. The focus of the research is on processes for information processing in the design domains Factory and Machine. These processes provide the integration and interactive analysis of emerging, mostly heterogeneous planning information. The demonstrators (flapAssist, memoSlice und VPI platform) that are information systems serve for the validation of the scientific approaches and aim to realize a continuous and consistent information management in terms of the Digital Factory. Central challenges are the semantic information integration (e.g., by means of metamodeling), the subsequent evaluation as well as the visualization of planning information (e.g., by means of Visual Analytics and Virtual Reality). All scientific and technical work is done within an interdisciplinary team composed of engineers, computer scientists and physicists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The results presented in Sects. 4.4.1.1 and 4.4.1.2 have been previously published in Büscher et al. (2016).

  2. 2.

    http://www.vistable.de.

  3. 3.

    https://www.threadingbuildingblocks.org/.

  4. 4.

    http://developer.android.com/guide/components/intents-filters.html.

References

  • Abbott D, Bale K, Gowigati R, Pritchard D, Chapman P (2011) Empire 3D: a collaborative semantic annotation tool for virtual environments. In: Proceedings of the international conference on modelling, simulation and visualization methods, pp 121–128

    Google Scholar 

  • Ackermann J, Börner F, Hopf H, Horbach S, Müller E (2013) Approaches for planning and operation of adaptable factories. Int J Prod Res 51(15):4618–4629. doi:10.1080/00207543.2013.783243

    Article  Google Scholar 

  • Aggteleky B (1987) Fabrikplanung: Werksentwicklung und Betriebsrationalisierung [Factory planning: factory development and operation rationalisation], 2nd edn. Hanser, München

    Google Scholar 

  • Al Khawli T, Eppelt U, Schulz W (2015) Sensitivity analysis of laser cutting based on metamodeling approach. Handbook of research on computational simulation and modeling in engineering, Chapter 20

    Google Scholar 

  • Alexiev V (2005) Information integration with ontologies: experiences from an industrial showcase. Wiley, Chichester

    Google Scholar 

  • Arnott D, Pervan G (2005) A critical analysis of decision support systems research. J Inf Technol 20(2):67–87. doi:10.1057/palgrave.jit.2000035

    Article  Google Scholar 

  • Assenmacher I, Kuhlen T (2008) The ViSTA virtual reality toolkit. In: Proceedings of the IEEE VR workshop software engineering and architectures for realtime interactive systems. Shaker Verlag, pp 23–28

    Google Scholar 

  • Aurich JC, Ostermayer D, Wagenknecht CH (2009) Improvement of manufacturing processes with virtual reality-based CIP workshops. Int J Prod Res 47(19):5297–5309

    Article  Google Scholar 

  • Baars H, Lasi H, Kemper H-G, Koch M (2010) Manufacturing execution systems and business intelligence for production environments. In: AMCIS 2010 Proceedings

    Google Scholar 

  • Barth H (2011) Zukunftssichere Planung von automotiven Fabriken [Future-proof planning of automotive plants]. ATZproduktion 4(4):12–16

    Article  Google Scholar 

  • Becker RA, Cleveland WS (1987) Brushing scatterplots. Technometrics 29(2):127–142

    Article  MathSciNet  Google Scholar 

  • Belforte DA (2015) Fiber lasers continue growth streak in 2014 laser market. http://www.industrial-lasers.com/articles/print/volume-30/issue-1/features/fiber-lasers-continue-growth-streak-in-2014-laser-market-revenues-increase-despite-mixed-global-manufacturing-growth.html (Online)

  • Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

    Google Scholar 

  • Berger W, Piringer H, Filzmoser P, Gröller E (2011) Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction. Comput Graph Forum 30(3):911–920. doi:10.1111/j.1467-8659.2011.01940.x

    Article  Google Scholar 

  • Bergholz MA (2005) Objektorientierte Fabrikplanung [Object-oriented factory planning]. PhD thesis, RWTH Aachen University

    Google Scholar 

  • Booker AJ, Dennis JE, Frank JPD, Serafini DB, Torczon V (1999) Trosset. A rigorous framework for optimization of expensive functions by surrogates. Struct Optim 17(1):1–13

    Article  Google Scholar 

  • Booshehrian M, Möller T, Peterman RM, Munzner T (2012) Vismon: facilitating analysis of trade-offs, uncertainty, and sensitivity in fisheries management decision making. Comput Graph Forum 31(3pt3):1235–1244. doi:10.1111/j.1467-8659.2012.03116.x

  • Box G, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York, p 424

    Google Scholar 

  • Box G, Hunter J (2005) Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building. John Wiley and Sons, New York

    Google Scholar 

  • Bracht U, Geckler D, Wenzel S (2011) Digitale Fabrik. Methoden und Praxisbeispiele [Digital Factory. Methods and practical examples]. Springer, Berlin

    Google Scholar 

  • Brecher C, Jeschke S, Schuh G, Aghassi S, Arnoscht J, Bauhoff F, Fuchs S, Jooß C, Karmann WO, Kozielski S, Orilski S, Richert A, Roderburg A, Schiffer M, Schubert J, Stiller S, Tönissen S, Welter F (2012) Integrative production technology for high-wage countries. In: Brecher C (ed) Integrative production technology for high-wage countries. Springer, Berlin, pp 17–76

    Chapter  Google Scholar 

  • Bremer P-T, Hamann B, Edelsbrunner H, Pascucci V (2004) A topological hierarchy for functions on triangulated surfaces. IEEE Trans Visual Comput Graphics 10(4):385–396. doi:10.1109/TVCG.2004.3

    Article  Google Scholar 

  • Büscher C (2015) Ontologiebasierte Kennzahlenentwicklung für Virtual Production Intelligence [Ontology based development of KPI for Virtual Production Intelligence]. PhD thesis, RWTH Aachen University

    Google Scholar 

  • Büscher C, Voet H, Meisen T, Krunke M, Kreisköther K, Kampker A, Schilberg D, Jeschke S (2014) Improving factory planning by analyzing process dependencies. Procedia CIRP 17:38–43. doi:10.1016/j.procir.2014.01.142

    Article  Google Scholar 

  • Büscher C, Meisen T, Schilberg D, Jeschke S (2015) VPI-FP: an integrative information system for factory planning. Int J Prod Res. doi:10.1080/00207543.2015.1057298

    Google Scholar 

  • Büscher C, Voet H, Krunke M, Burggräf P, Meisen T, Jeschke S (2016) Semantic information modelling for factory planning projects. In: Research and innovation in manufacturing: key enabling technologies for the factories of the future—proceedings of the 48th CIRP conference on manufacturing systems, vol 41, pp 478–483. doi:10.1016/j.procir.2015.12.022

  • Campolongo F, Braddock R (1999) The use of graph theory in the sensitivity analysis of the model output: a second order screening method. Reliab Eng Syst Saf 64(1):1–12. doi:10.1016/S0951-8320(98)00008-8

    Article  Google Scholar 

  • Caputo F, Di Gironimo G, Marzano A (2006) A structured approach to simulate manufacturing systems in virtual environment. Congreso International de Ingegneria Grafica

    Google Scholar 

  • Chen D (2012) Information management for factory planning and design. PhD dissertation, KTH Royal Institute of Technology, Stockholm

    Google Scholar 

  • Codd EF (1990) The relational model for database management: Version 2. Addison-Wesley, Reading, Mass

    MATH  Google Scholar 

  • Cover TM (1965) Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans Electron Comput 14:326–334

    Article  MATH  Google Scholar 

  • Doan A, Halevy A, Ives ZG (2012) Principles of data integration. Morgan Kaufmann, Waltham

    Google Scholar 

  • Dubey AK, Yadava V (2008) Laser beam machining—a review. Int J Mach Tools Manuf 48:609–628

    Article  Google Scholar 

  • Edelsbrunner H, Harer J, Zomorodian A (2001) Hierarchical morse complexes for piecewise linear 2-manifolds. In: Proceedings of the seventeenth annual symposium on computational geometry, pp 70–79

    Google Scholar 

  • Edelsbrunner H, Harer J, Natarajan V, Pascucci V (2003) Morse-smale complexes for piecewise linear 3-manifolds. In: Proceedings of the annual symposium on computational geometry, pp 361–370

    Google Scholar 

  • Elmqvist N, Dragicevic P, Fekete J (2008) Rolling the dice: multidimensional visual exploration using scatterplot matrix navigation. IEEE Trans Visual Comput Graphics 14:1148–1539

    Google Scholar 

  • Engel K, Hadwiger M, Kniss JM, Rezk-Salama C (2006) Real-Time Volume Graphics. Eurographics (Tutorials), pp 595–748

    Google Scholar 

  • Feldman R, Sanger J (2007) The text mining handbook: advanced approaches in analyzing unstructured data. Cambridge University Press, Cambridge

    Google Scholar 

  • Forsberg J, Nilsson L (2005) On polynomial response surfaces and kriging for use in structural optimization of crashworthiness. Struct Multi Optim 29:232–243

    Article  Google Scholar 

  • Franke R (1982) Smooth interpolation of scattered data by local thin plate splines. Comput Math Appl 8:273–281

    Article  MathSciNet  MATH  Google Scholar 

  • Gebhardt S, Pick S, Leithold F, Hentschel B, Kuhlen T (2013) Extended pie menus for immersive virtual environments. IEEE Trans Visual Comput Graphics 19(4):644–651

    Google Scholar 

  • Gerber S, Bremer P-T, Pascucci V, Whitaker R (2010) Visual exploration of high dimensional scalar functions. IEEE Trans Visual Comput Graphics 16(6):1271–1280. doi:10.1109/TVCG.2010.213

    Article  Google Scholar 

  • Giachetti RE (2004) A framework to review the information integration of the enterprise. Int J Prod Res 42(6):1147–1166. doi:10.1080/00207540310001622430

    Article  MATH  Google Scholar 

  • Gorissen D (2010) Grid-enabled adaptive surrogate modeling for computer aided engineering. PhD Dissertation, Universiteit Antwerpen (Belgium)

    Google Scholar 

  • Grundig C-G (2009) Fabrikplanung: Planungssystematik - Methoden - Anwendungen [Factory planning: planning system—methods—applications], 3rd edn. Hanser, München

    Google Scholar 

  • Guerreiro J, Medeiros D, Mendes D, Sousa M, Jorge J, Raposo A, Santos I (2014) Beyond post-it: structured multimedia annotations for collaborative VEs. In: International conference on artificial reality and telexistence eurographics symposium on virtual environments, pp 55–62

    Google Scholar 

  • Gyulassy A, Natarajan V, Pascucci V, Hamann B (2007) Efficient computation of morse-smale complexes for three-dimensional scalar functions. IEEE Trans Visual Comput Graphics 13(6):1440–1447. doi:10.1109/TVCG.2007.70552

    Article  Google Scholar 

  • Gyulassy A, Bremer P-T, Hamann B, Pascucci V (2008) A practical approach to morse-smale complex computation: scalability and generality. IEEE Trans Visual Comput Graphics 14(6):1619–1626

    Article  Google Scholar 

  • Halpin TA, Morgan T (2008) Information modeling and relational databases, 2nd edn. Morgan Kaufmann series in data management systems. Morgan Kaufmann Publishers, Burlington

    Google Scholar 

  • Hardy R (1990) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76(8):1905–1915

    Article  Google Scholar 

  • Harmon R, Patterson W, Ribarsky W, Bolter J (1996) The virtual annotation system. In: Proceedings of the IEEE virtual reality annual international symposium, pp 239–245

    Google Scholar 

  • HassounaYounis AA (2010) Space exploration and region elimination global optimization algorithms for multidisciplinary design optimization, University of Victoria

    Google Scholar 

  • Haykin S (1999) Neural networks a comprehensive introduction. Prentice Hall, New Jersey

    Google Scholar 

  • Heinrich LJ, Heinzl A, Riedl R (2011) Wirtschaftsinformatik: Einführung und Grundlegung [Business informatics: introduction and foundation], 4th revised and expanded edition. Springer, Berlin

    Google Scholar 

  • Hibino H, Inukai T, Fukuda Y (2006) Efficient manufacturing system implementation based on combination between real and virtual factory. Int J Prod Res 44(18–19):3897–3915. doi:10.1080/00207540600632224

    Article  MATH  Google Scholar 

  • Hoffmann M, Büscher C, Meisen T, Jeschke S (2016) Continuous integration of field level production data into top-level information systems using the OPC interface standard. Procedia CIRP 41:496–501. doi:10.1016/j.procir.2015.12.059

    Article  Google Scholar 

  • Jung T, Gross MD, Do EY (2002) Annotating and sketching on 3D web models. In: Proceedings of the international conference on intelligent user interfaces, pp 95–102

    Google Scholar 

  • Kampker A, Osebold R, Trautz M, Burggräf P, Krunke M, Meckelnborg A, Leufgens I, Rogel D (2012) Innovative Fabriken interdisziplinär planen. wt Werkstattstechnik online 102(4):186–192

    Google Scholar 

  • Kehrer J, Hauser H (2013) Visualization and visual analysis of multifaceted scientific data: a survey. IEEE Trans Visual Comput Graphics 19(3):495–513

    Article  Google Scholar 

  • Kleijnen J (2008) Design and analysis of simulation experiments. International series in operations research and management science. Springer, New York, p 111

    Google Scholar 

  • Korves B, Loftus M (1999) The application of immersive virtual reality for layout planning of manufacturing cells. Proc Inst Mech Eng B J Eng Manuf 213(1):87–91

    Google Scholar 

  • Korves B, Loftus M (2000) Designing an immersive virtual reality interface for layout planning. J Mater Process Technol 107(1–3):425–430

    Article  Google Scholar 

  • Krcmar H (2011) Einführung in das Informationsmanagement [Introduction to information management]. Springer, Berlin

    Book  Google Scholar 

  • Lin H-K, Harding JA, Shahbaz M (2004) Manufacturing system engineering ontology for semantic interoperability across extended project teams. Int J Prod Res 42(24):5099–5118. doi:10.1080/00207540412331281999

    Article  Google Scholar 

  • Luhn HP (1958) A business intelligence system. IBM J Res Dev 2(4):314–319

    Article  MathSciNet  Google Scholar 

  • Martin JD, Simpson T (2002) Use of adaptive metamodeling for design optimization. In Proceedings of the 9th AIAA/ISSMO symposium on multidisciplinary analysis and optimization, Atlanta, GA, USA

    Google Scholar 

  • Maxwell JC (1870) On hills and dales. London Edinb Dublin Phil Mag J Sci 40:421–427

    Google Scholar 

  • Meckesheimer M, Barton R, Simpson R, Limayem T, Yannou B (2001) Metamodeling of combined discrete/continuous responses. AIAA J 39:1950

    Google Scholar 

  • Meckesheimer M, Booker AJ, Barton RR, Simpson TW (2002) Computationally inexpensive metamodel assessment strategies. AIAA J 40(10):2053–2060

    Article  Google Scholar 

  • Meisen T (2012) Framework zur Kopplung numerischer Simulationen für die Fertigung von Stahlerzeugnissen [Framework for coupling of numerical simulations for the manufacturing of steel products]. PhD thesis, RWTH Aachen University

    Google Scholar 

  • Meisen T, Meisen P, Schilberg D, Jeschke S (2011) Adaptive information integration: bridging the semantic gap between numerical simulations. In: Proceedings of the 13th international conference on enterprise information systems, pp 51–65

    Google Scholar 

  • Menck N, Yang X, Weidig C, Winkes PA, Lauer C, Hagen H, Hamann B, Aurich JC (2012) Collaborative factory planning in virtual reality. Procedia CIRP 3:317–322

    Article  Google Scholar 

  • Milnor JW (1963) Morse theory. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  • Neugebauer R, Purzel F, Schreiber A, Riedel T (2011) Virtual reality-aided planning for energy-autonomous factories. In: IEEE international conference on industrial informatics, pp 250–254

    Google Scholar 

  • Nöcker JC (2012) Zustandsbasierte Fabrikplanung [Condition based factory planning]. PhD thesis, RWTH Aachen University

    Google Scholar 

  • Nyhuis P, Elscher A, Kolakowski M (2004) Prozessmodell der Synergetischen Fabrikplanung. Fachzeitschrift wt Werkstattstechnik 94:95–99

    Google Scholar 

  • Oesterling P, Heine C, Janicke H, Scheuermann G (2010) Visual analysis of high dimensional point clouds using topological landscapes. In: Proceedings of the IEEE pacific visualization symposium, pp 113–120

    Google Scholar 

  • Orr M (1996) Introduction to radial basis function networks. http://www.anc.ed.ac.uk/rbf/rbf.html (On-line available)

  • Pick S, Kuhlen TW (2015) A framework for developing flexible virtual-reality-centered annotation systems. In: Proceedings IEEE conference on virtual reality SEARIS workshop

    Google Scholar 

  • Pick S, Puika AS, Kuhlen T (2016a) SWIFTER: design and evaluation of a speech-based text input metaphor for immersive virtual environments. In: Proceedings of the IEEE symposium on 3D user interfaces (accepted for publication)

    Google Scholar 

  • Pick S, Weyers B, Hentschel B, Kuhlen TW (2016b) Design and evaluation of data annotation workflows for CAVE-like virtual environments. IEEE Trans Visual Comput Graphics 22(4):1452–1461. doi:10.1109/TVCG.2016.2518086

    Article  Google Scholar 

  • Piringer H, Berger W, Krasser J (2010) HyperMoVal: interactive visual validation of regression models for real-time simulation. Comput Graphics Forum 29(3):983–992. doi:10.1111/j.1467-8659.2009.01684.x

    Article  Google Scholar 

  • Radovanovic M, Madic M (2011) Experimental investigations of CO2 laser cut quality: a review. Nonconventional Technol Rev 15:35–42

    Google Scholar 

  • Reinhard R, Büscher C, Meisen T, Schilberg D, Jeschke S (2012) Virtual production intelligence—a contribution to the digital factory. In: Proceedings of the 5th international conference on intelligent robotics and applications (ICIRA 2012), vol 1, pp 706–715

    Google Scholar 

  • Roberts JC (2007) State of the art: coordinated multiple views in exploratory visualization. In: Proceedings of the international conference on coordinated and multiple views in exploratory visualization, pp 61–71

    Google Scholar 

  • Ruh WA, Maginnis FX, Brown WJ (2001) Enterprise application integration: a wiley tech brief. Wiley, New York

    Google Scholar 

  • Sacco M, Pedrazzoli P, Terkaj W (2010) VFF: virtual factory framework. In: Proceedings of the international conference on concurrent enterprising, pp 21–23

    Google Scholar 

  • Sacco M, Maso GD, Milella F (2011) Virtual factory manager. Virtual and mixed reality-systems and applications. Springer, Berlin, 397–406

    Google Scholar 

  • Sacks J, Schiller S, Welch WJ (1989) Designs for computer experiments. Technometrics 31(1):41–47

    Article  MathSciNet  Google Scholar 

  • Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, Chichester

    MATH  Google Scholar 

  • Schenk M, Straßburger S, Kissner H (2005) Combining virtual reality and assembly simulation for production planning and worker qualification. In: Proceedings of international conference on changeable, agile, reconfigurable and virtual production

    Google Scholar 

  • Schenk M, Wirth S, Müller E (2014) Factory planning manual: situation-driven production facility planning. Springer, Berlin

    Google Scholar 

  • Schuh & Co. GmbH (2016) Complexity manager. http://www.complexitymanager.de/en/. Accessed 15 Feb 2016

  • Schuh G, Kampker A, Wesch-Potente C (2011) Condition based factory planning. Prod Eng Res Dev 5(1):89–94. doi:10.1007/s11740-010-0281-y

    Article  Google Scholar 

  • Schulz W (1998) Die Dynamik des thermischen Abtrags mit Grenzschichtcharakter. Habilitation, RWTH Aachen University

    Google Scholar 

  • Schulz W, Kostrykin V, Zefferer H, Petring D, Poprawe R (1997) A free boundary problem related to laser beam fusion cutting: ODE approximation. Int. J. Heat Mass Transf 12(40):2913–2928

    Article  MATH  Google Scholar 

  • Schulz W, Niessen M, Eppelt U, Kowalick K (2009) Simulation of laser cutting. In: Dowden JM (ed) The theory of laser materials processing: heat and mass transfer in modern technology. springer series in materials science, vol 119, pp 21–69

    Google Scholar 

  • Sedlmair M, Heinzl C, Bruckner S, Piringer H, Moller T (2014) Visual parameter space analysis: a conceptual framework. IEEE Trans Visual Comput Graphics 20(12):2161–2170. doi:10.1109/TVCG.2014.2346321

    Article  Google Scholar 

  • Siau K (1999) Information modeling and method engineering. J Database Manage 10(4):44–50. doi:10.4018/jdm.1999100105

    Article  Google Scholar 

  • Smale S (1961) On gradient dynamical systems. Ann Math 74(1):199–206

    Article  MathSciNet  MATH  Google Scholar 

  • Terkaj W, Pedrielli G, Sacco M (2012) Virtual factory data model. In: Anastasiou D, Ramos L, Krima S, Chen Y-J (eds) Proceedings of the workshop on ontology and semantic web for manufacturing (OSEMA 2012): Graz, Austria, 24 July 2012, pp 29–43

    Google Scholar 

  • Tolio T, Sacco M, Terkaj W, Urgo M (2013) Virtual factory: an integrated framework for manufacturing systems design and analysis. Procedia CIRP 7:25–30

    Article  Google Scholar 

  • Tompkins JA, White J, Bozer Y, Tanchoco J (2010) Facilities planning, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Torsney-Weir T, Saad A, Möller T, Weber B, Hege H-C, Verbavatz J-M, Bergner S (2011) Tuner: principled parameter finding for image segmentation algorithms using visual response surface exploration. IEEE Trans Visual Comput Graphics 17(12):1892–1901. doi:10.1109/TVCG.2011.248

    Article  Google Scholar 

  • Tufte ER (1983) The visual display of quantitative information. Graphics Press, Cheshire

    Google Scholar 

  • van Wijk JJ (2005) The value of visualization. In: VIS 05. IEEE visualization. IEEE, pp 79–86

    Google Scholar 

  • van Wijk JJ, van Liere R (1993) HyperSlice: visualization of scalar functions of many variables. In: Proceedings of the 4th conference on visualization ’93. IEEE Computer Society, pp 119–125

    Google Scholar 

  • VDI (2008) Digital factory part 1: fundamentals ICS 03.100.50, 35.240.50(4499, Part 1)

    Google Scholar 

  • VDI (2011) Factory planning part 1: planning procedures ICS 03.100.99(5200, Part 1)

    Google Scholar 

  • Vossen G, Hermanns T, Schuettler J (2013) Analysis and optimal control for free melt flow boundaries in laser cutting with distributed radiation. ZAMM J Appl Math Annu Mark Forecast Back Track Solid Growth Ind Laser Rev 7–10

    Google Scholar 

  • Weimer T (2010) Informationsmodell für die durchgängige Datennutzung in Fabrikplanung und -betrieb [Information model for the integrated data sharing in factory planning and operation]. PhD thesis, University of Stuttgart

    Google Scholar 

  • Wendland H (2005) Scattered data approximation. Cambridge monographs on applied and computational mathematics. Cambridge University, Cambridge

    Google Scholar 

  • Zdravković M, Trajanović M, Panetto H (2011) Local ontologies for semantic interoperability in supply chain networks. In: Proceedings of the 13th international conference on enterprise information systems, vol 1, pp 22–31. doi:10.5220/0003416500220031

  • Zhou Q (1999) Information management in production planning for a virtual enterprise. Int J Prod Res 37(1):207–218. doi:10.1080/002075499192011

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Jeschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jeschke, S. et al. (2017). Virtual Production Intelligence (VPI). In: Brecher, C., Özdemir, D. (eds) Integrative Production Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47452-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47452-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47451-9

  • Online ISBN: 978-3-319-47452-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics