Skip to main content

Biomarkers of Ecotoxicological Effects in Social Insects

  • Chapter
  • First Online:
Perspectives in Environmental Toxicology

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Complementing ecotoxicity testing, a biomarker approach is widely used in ecological risk assessment programs. Biomarkers provide information about early warning biological responses to one or several chemical pollutants and can be revealed in an organism or its products. Biochemical, morphological or behavioral parameters of living organisms can be set to biomarkers of exposure, effect or susceptibility or biomarkers of defense and damage. This concept is more developed within aquatic than terrestrial ecotoxicology and social hymenopterans insect (ants, bees, bumblebees, wasps and termites), which are already actively used as bioindicator species, can be furtherly studied for revealing novel sets of biomarkers. They can provide sufficient information about ecosystem health because social insects usually occupy high trophic levels and are important predators, pollinators, scavengers and ecological engineers. Social insect colonies stay in a certain place (except army ants), which makes them excellent model group for biomarker studies on ecotoxicological effects in nature. Despite their high ecological significance, wide spread distribution and sampling convenience, social insects are not intensively studied within biomonitoring programs and still not widely used as sentinel species. Revealing direct biological responses of social insects to toxic substances at the different levels of biological organization, systematization of scientific data and creating of simplified recommendations for practical biomonitoring purposes may facilitate progress in current terrestrial ecotoxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla FC, da Costa Domingues CE (2015) Hepato-nephrocitic system: a novel model of biomarkers for analysis of the ecology of stress in environmental biomonitoring. PLoS ONE 10:e0132349

    Article  Google Scholar 

  • Amiard-Triquet C, Amiard JC (2013) Behavioral Ecotoxicology. In: Amiard-Triquet C, Amiard J-C, Rainbow PS (eds) Ecological biomarkers: indicators of ecotoxicological effects. CRC Press, Boca Raton, pp 253–277

    Google Scholar 

  • Amiard-Triquet C, Amiard JC, Rainbow PS (2013) Ecological biomarkers: indicators of ecotoxicological effects. CRC Press, Boca Raton

    Google Scholar 

  • Andersen AN, Majer JD (2004) Ants show the way down under: invertebrates as bioindicators in land management. Front Ecol Environ 2:291–298

    Article  Google Scholar 

  • Andersen AN, Hoffmann BD, Müller WJ, Griffiths AD (2002) Using ants as bioindicators in land management: simplifying assessment of ant community responses. J Appl Ecol 39:8–17

    Article  Google Scholar 

  • Bartell SM (2006) Biomarkers, bioindicators and ecological risk assessment—a brief review and evaluation. Environ Bioindic 1:60–73

    Article  Google Scholar 

  • Bartrons M, Catalan J, Penuelas J (2016) Spatial and temporal trends of organic pollutants in vegetation from remote and rural areas. Sci Rep 6:e25446

    Article  Google Scholar 

  • Berhet B (2013) Sentinel species. In: Amiard-Triquet C, Amiard J-C, Rainbow PS (eds) Ecological biomarkers: indicators of ecotoxicological effects. CRC Press, Boca Raton, pp 155–185

    Google Scholar 

  • Boake CRB (1989) Repeatability: its role in evolutionary studies of mating behavior. Evol Ecol 3:173–182

    Article  Google Scholar 

  • Chapman AD (2009) Numbers of living species in Australia and the world. Australian Biological Resources Study, Canberra

    Google Scholar 

  • Chen H, Goldberg MS, Villeneuve PJ (2008) A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev Environ Health 23:243–297

    Google Scholar 

  • Cuviller-Hot V, Salin K, Devers S et al (2014) Impact of ecological doses of the most widespread phthalate on a terrestrial species, the ant Lasius niger. Environ Res 131:104–110

    Article  Google Scholar 

  • De Anna EB, Bonisoli-Alquati A, Mousseau TA (2013) The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: a meta-analysis. Ecol Indic 30:218–226

    Article  Google Scholar 

  • De Lafontaine Y (2000) Biomarkers in zebra mussels (Dreissena polymorpha) for the assessment and monitoring of water quality of the St Lawrence River (Canada). Aquat Toxicol 50:51–71

    Article  Google Scholar 

  • Depledge MH (1994) The rational basis for the use of biomarkers as ecotoxicological tools. In: Fossi MC, Leonzio C (eds) Nondestructive biomarkers in vertebrates. Lewis Publishers, Boca Raton, FL, pp 271–295

    Google Scholar 

  • Eeva T, Sorvari J, Koivunen V (2004) Effects of heavy metal pollution on red wood ant (Formica s. str.) populations. Environ Pollut 132:533–539

    Article  Google Scholar 

  • Ellison AM (2012) Out of Oz: opportunities and challenges for using ants (Hymenoptera: Formicidae) as biological indicators in north-temperate cold biomes. Myrmecol News 17:105–119

    Google Scholar 

  • Fedoseeva EB (2011) Morphometric characteristics of Formica aquilonia ants in monitoring of their settlements. Entomol Rev 91:152–168

    Article  Google Scholar 

  • Frouz J, Jilková V (2008) The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol News 11:191–199

    Google Scholar 

  • Frouz J, Jílková V, Sorvari J (2016) Contribution of wood ants to nutrient cycling and ecosystem function. In: Stockan JA, Robinson EJH (eds) Wood ant ecology and conservation. Cambridge University Press, Cambridge, pp 207–220

    Google Scholar 

  • Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850

    Article  Google Scholar 

  • Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-levels traits in bees. Nature 491:105–109

    Article  Google Scholar 

  • Gong SL, Barrie LA (2005) Trends of heavy metal components in the Arctic aerosols and their relationship to the emissions in the Northern Hemisphere. Sci Total Environ 342:175–183

    Article  Google Scholar 

  • GrzeÅ› IM, Okrutniak M, Woch MW (2015a) Monomorphic ants undergo within-colony morphological changes along the metal-pollution gradient. Environ Sci Pollut Res 22:6126–6134

    Article  Google Scholar 

  • GrzeÅ› IM, Okrutniak M, Szpila P (2015b) Fluctuating asymmetry of the yellow meadow ant along a metal-pollution gradient. Pedobiologia 58:195–200

    Article  Google Scholar 

  • Hansen P-D (2003) Biomarkers. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors: principles, concepts and applications. Elsevier, Amsterdam, Boston, pp 203–220

    Chapter  Google Scholar 

  • Härkönen SK, Sorvari J (2014) Species richness of associates of ants in the nests of red wood ant Formica polyctena (Hymenoptera, Formicidae). Insect Conserv Divers 7:485–495

    Article  Google Scholar 

  • Hughes DP, Pierce NE, Boomsma JJ (2008) Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol 23:672–677

    Article  Google Scholar 

  • Izzo A, Wells M, Huang Z, Tibbets E (2010) Cuticular hydrocarbons correlate with fertility, not dominance, in a paper wasp, Polistes dominulus. Behav Ecol Sociobiol 64:857–864

    Article  Google Scholar 

  • Lenoir A, Cuvillier-Hot V, Devers S et al (2012) Ant cuticles: a trap for atmospheric phthalate contaminants. Sci Total Environ 441:209–212

    Article  Google Scholar 

  • Lenoir A, Touchard A, Devers S et al (2014) Ant cuticular response to phthalate pollution. Environ Sci Pollut Res 21:13446–13451

    Article  Google Scholar 

  • Lenoir A, Boulay R, Dejean A et al (2016) Phthalate pollution in an Amazonian rainforest. Environ Sci Pollut Res (in press). doi:10.1007/s11356-016-7141-z

  • Majer JD (1983) Ants: bio-indicators of minesite rehabilitation, land-use, and land conservation. Environ Manag 7(4):375–383

    Article  Google Scholar 

  • Manahan SE (2003) Toxicological Chemistry and Biochemistry. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Martin SJ, Drijfhout FD (2009) Nestmate and task cues are influenced and encoded differently within ant cuticular hydrocarbon profiles. J Chem Ecol 35:368–374

    Article  Google Scholar 

  • Matsumoto M, Hirata-Koizumi M, Ema M (2008) Potential adverse effects of phthalic acid esters on human health: a review of recent studies on reproduction. Regul Toxicol Pharmacol 50:37–49

    Article  Google Scholar 

  • McGraw KJ (2003) Melanins, metals and mate quality. Oikos 102:402–406

    Article  Google Scholar 

  • Mommaerts V, Reynders S, Boulet J et al (2010) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behaviour. Ecotoxicology 19:207–215

    Article  Google Scholar 

  • Mommaerts V, Hagenaars A, Meyer J et al (2011) Impact of a perfluorinated organic compound PFOS on the terrestrial pollinator Bombus terrestris (Insecta, Hymenoptera). Ecotoxicology 20:447–456

    Article  Google Scholar 

  • Nation JL Sr (2015) Insect physiology and biochemistry. CRC Press, Boca Raton

    Google Scholar 

  • Ortiz-Urquiza A, Keyhani NO (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4:357–374

    Article  Google Scholar 

  • Perl CD, Niven JE (2016) Colony-level differences in the scaling rules governing wood ant compound eye structure. Sci Rep 6:24204

    Article  Google Scholar 

  • Rabea EI, Nasr HM, Badawy MEI (2010) Toxic effect and biochemical study of chlorfluazuron, oxymatrine and spinosad on honey bees (Apis mellifera). Arch Environ Contam Toxicol 58:722–732

    Article  Google Scholar 

  • Rabitsch WB (1997) Levels of asymmetry in Formica pratensis Retz. (Hymenoptera, Insecta) from a chronic metal-contaminated site. Environ Toxicol Chem 16:1433–1440

    Article  Google Scholar 

  • Romeo M, Giamberini L (2013) History of biomarkers. In: Amiard-Triquet C, Amiard J-C, Rainbow PS (eds) Ecological biomarkers: indicators of ecotoxicological effects. CRC Press, Boca Raton, pp 15–43

    Google Scholar 

  • Sanders D, van Veen FJF (2011) Ecosystem engineering and predation: the multi-trophic impact of two ant species. J Anim Ecol 80:569–576

    Article  Google Scholar 

  • Sorvari J, Eeva T (2010) Air pollution diminishes aggressiveness between territorial ant colonies. Sci Total Environ 408:3189–3192

    Article  Google Scholar 

  • Sorvari J, Rantala LM, Rantala MJ et al (2007) Heavy metal pollution disturbs immune response in wild ant populations. Environ Pollut 145:324–328

    Article  Google Scholar 

  • Sorvari J, Theodora P, Turillazzi S et al (2008) Food resources, chemical signalling and nestmate recognition in the polydomous wood ant Formica aquilonia. Behav Ecol 19:441–447

    Article  Google Scholar 

  • Stahl T, Heyn J, Thiele H et al (2009) Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Arch Environ Contam Toxicol 57:289–298

    Article  Google Scholar 

  • Sugumaran M (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigm Cell Res 15:2–9

    Article  Google Scholar 

  • Thomas ML, Parry LJ, Allan RA, Elgar MA (1999) Geographic affinity, cuticular hydrocarbons and colony recognition in the Australian meat ant Iridomyrmex purpureus. Naturwissenschaften 86:87–92

    Article  Google Scholar 

  • Tickner JA, Schettler T, Guidotti T (2001) Health risks posed by use of Di-2-ethylhexyl phthalate (DEHP) in PVC medical devices. Am J Ind Med 39:100–111

    Article  Google Scholar 

  • Tschinkel WR, Mikheyev AS, Storz SR (2003) Allometry of workers of the fire ant, Solenopsis invicta. J Ins Sci 3:2

    Google Scholar 

  • Urbini A, Sparvoli E, Turilazzi S (2006) Social paper wasps as bioindicators: a preliminary research with Polistes dominulus (Hymenoptera Vespidae) as a trace metal accumulator. Chemosphere 64:697–703

    Article  Google Scholar 

  • Wallis DI (1962) Behaviour patterns for the ant Formica fusca. Anim Behav 10:105–111

    Article  Google Scholar 

  • Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352

    Article  Google Scholar 

  • Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jouni Sorvari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Skaldina, O., Sorvari, J. (2017). Biomarkers of Ecotoxicological Effects in Social Insects. In: Kesari, K. (eds) Perspectives in Environmental Toxicology. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-46248-6_10

Download citation

Publish with us

Policies and ethics