Skip to main content

Modeling Heat Transfer Process in Grid-Holes Structure Changed in Time Using Fractional Variable Order Calculus

  • Conference paper
  • First Online:
Theory and Applications of Non-integer Order Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 407))

Abstract

The paper presents results of modelling the heat transfer process in specific grid-holes media whose geometry is changed in time. The process will be modeled based on variable fractional order calculus. Responses of variable structure heat transfer system will be obtained from numerical simulation based on finite elements method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dzielinski, A., Sierociuk, D.: Fractional order model of beam heating process and its experimental verification. In: Baleanu, D., Guvenc, Z.B., Machado, J.A.T. (eds.) New Trends in Nanotechnology and Fractional Calculus Applications, pp. 287–294. Springer, Netherlands (2010)

    Chapter  Google Scholar 

  2. Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Ac. Tech. 58(4), 583–592 (2010)

    Google Scholar 

  3. Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogeneous media using fractional calculus. Phil. Trans. Math. Phys. Eng. Sci. 371 (2013)

    Google Scholar 

  4. Dzielinski, A., Sarwas, G., Sierociuk, D.: Time domain validation of ultracapacitor fractional order model. In: 49th IEEE Conference on Decision and Control (CDC), pp. 3730–3735 (2010)

    Google Scholar 

  5. Dzielinski, A., Sierociuk, D.: Ultracapacitor modelling and control using discrete fractional order state-space model. Acta Montan. Slovaca 13(1), 136–145 (2008)

    MATH  Google Scholar 

  6. Havlin, S., Ben-Avraham, D.: Diffusion in disordered media. Adv. Phys. 36(6), 695–798 (1987)

    Article  Google Scholar 

  7. Koch, D.L., Brady, J.F.: Anomalous diffusion in heterogeneous porous media. Phys. Fluids 31(5), 965–973 (1988)

    Article  MATH  Google Scholar 

  8. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls. Springer, Heidelberg (2010)

    Google Scholar 

  9. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, Cambridge (1974)

    Google Scholar 

  10. Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)

    Google Scholar 

  11. Sierociuk, D., Malesza, W., Macias, M.: Equivalent switching strategy and analog validation of the fractional variable order derivative definition. In: Proceedings of European Control Conference, pp. 3464–3469 (2013)

    Google Scholar 

  12. Sierociuk, D., Malesza, W., Macias, M.: On a new definition of fractional variable-order derivative. In: Proceedings of the 14th International Carpathian Control Conference (ICCC), pp. 340–345 (2013)

    Google Scholar 

  13. Sierociuk, D., Malesza, W., Macias, M.: Switching scheme, equivalence, and analog validation of the alternative fractional variable-order derivative definition. In: Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 3876–3881(2013)

    Google Scholar 

  14. Sierociuk, D., Macias, M., Malesza, W.: Analog modeling of fractional switched-order derivatives: Experimental approach. In: Advances in the Theory and Applications of Non-integer Order Systems. pp. 271–280. Springer International Publishing, Heidelberg (2013)

    Google Scholar 

  15. Sierociuk, D., Malesza, W., Macias, M.: Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl. Math. Model. 39(13), 3876–3888 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sierociuk, D., Malesza, W., Macias, M.: On the recursive fractional variable-order derivative: equivalent switching strategy, duality, and analog modeling. Circ. Syst. Signal Pr. 34(4), 1077–1113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sheng, H., Sun, H., Coopmans, C., Chen, Y., Bohannan, G.W.: Physical experimental study of variable-order fractional integrator and differentiator. In: Proceedings of The 4th IFAC Workshop Fractional Differentiation and its Applications FDA’10 (2010)

    Google Scholar 

  18. Ramirez, L., Coimbra, C.: On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Physica D. 240(13), 1111–1118 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sierociuk, D., Sakrajda, P.: Modeling of variable structure heat transfer process based on fractional variable order calculus. In: Proceedings of the 55nd IEEE Conference on Decision and Control, Las Vegas, NV, USA (2016). (submitted to)

    Google Scholar 

  20. Sierociuk, D.: Fractional Variable Order Derivative Simulink Toolkit (2012). http://www.mathworks.com/matlabcentral/fileexchange/38801-fractional-variable-order-derivative-simulink-toolkit

Download references

Acknowledgments

This work was partially supported in part by the Polish National Science Center with the decision number UMO-2014/15/B/ST7/00480, and by the PL - SK cooperation agreement under decision number SK-PL-2015-0038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Sierociuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sakrajda, P., Sierociuk, D. (2017). Modeling Heat Transfer Process in Grid-Holes Structure Changed in Time Using Fractional Variable Order Calculus. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds) Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-319-45474-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45474-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45473-3

  • Online ISBN: 978-3-319-45474-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics