Skip to main content

Hierarchy Nano- and Ultrastructure of Lignocellulose and Its Impact on the Bioconversion of Cellulose

  • Chapter
  • First Online:
Nanotechnology for Bioenergy and Biofuel Production

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Lignocellulose has been considered as one of the most promising biomass feedstock for producing biofuels and biochemicals. However, lignocellulose is indeed a complicated natural biomaterial at nano- and microscales. This is because the chemical compositions of lignocellulose cell wall construct a bulwark with a spatially hierarchy nano- and ultrastructure to protect the structural carbohydrates from degradation, which is known as the biomass recalcitrance. In this chapter, we have reviewed the structural features of lignocellulosic biomass, particularly on the hierarchy nano- and ultrastructure of plant cell wall and its impact on the bioconversion of the biomass. The effects of various pretreatments on the structure changes of the biomass substrates have been discussed. The tools and methodologies to characterize the nano- and ultrastructure of lignocellulosic biomass also have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler E (1977) Lignin chemistry—past, present and future. Wood Sci Technol 11:169–218

    Article  Google Scholar 

  • Afzal M, Butt PK, Ahmad N (1973) Determination of specific surface area of solids by the BET method. Pakistan J Sci 25:171–174

    Google Scholar 

  • Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224:1141–1153

    Article  Google Scholar 

  • Angles MN, Ferrando F, Farriol X, Salvado J (2001) Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition. Biomass Bioenergy 21:211–224

    Article  Google Scholar 

  • Azuma J (1989) Analysis of lignin-carbohydrate complexes of plant cell walls. In: Linskens H, Jackson J (eds) Modern methods of plant analysis. Springer, New York, NY, pp 100–126

    Google Scholar 

  • Balan V, Bals B, da Costa Sousa B, Garlock R, Dale B (2011) A short review on ammonia-based lignocellulosic biomass pretreatment. In: Blake A (ed) Chemical and biochemical catalysis for next generation biofuels. Royal Society of Chemistry, London, pp 89–114

    Chapter  Google Scholar 

  • Bals B, Rogers C, Jin MJ, Balan V, Dale B (2010) Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels 3:1. doi:10.1186/1754-6834-3-1

    Article  Google Scholar 

  • Beckham G, Matthews J, Peters B, Bomble Y, Himmel M, Crowley M (2011) Molecular-level origins of biomass recalcitrance: decrystallization free energies for four common cellulose polymorphs. J Phys Chem B 115:4118–4127

    Article  Google Scholar 

  • Beecher J, Hunt C, Zhu J (2009) Tools for the characterization of biomass at the nanometer scale. In: Lucia L, Rojas O (eds) The nanoscience and technology of renewable biomaterials. Blackwell, Oxford, pp 61–90

    Chapter  Google Scholar 

  • Biermann CJ, McGinnis GD, Schultz TP (1987) Scanning electron microscopy of mixed hardwoods subjected to various pretreatment processes. J Agr Food Chem 35:713–716

    Article  Google Scholar 

  • Brandt A, Grasvik J, Hallett J, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583

    Article  Google Scholar 

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran K, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:787532

    Article  Google Scholar 

  • Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuel Bioprod Bior 6:580–598

    Article  Google Scholar 

  • Buranov A, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28:237–259

    Article  Google Scholar 

  • Calvo-Flores F, Dobado J (2010) Lignin as renewable raw material. Chemsuschem 3:1227–1235

    Article  Google Scholar 

  • Capanema EA, Balakshin MY, Kadla JF (2005) Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J Agr Food Chem 53:9639–9649

    Article  Google Scholar 

  • Chandra R, Ewanick S, Hsieh C, Saddler JN (2008) The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, Part 1: A modified Simons’ staining technique. Biotechnol Progr 24:1178–1185

    Article  Google Scholar 

  • Chen HZ, Liu ZH (2015) Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotech J 10:866–885

    Article  Google Scholar 

  • Chundawat S (2010) Ultrastructural and physicochemical modifications within ammonia treated lignocellulosic cell walls and their influence on enzymatic digestibility. PhD thesis, Michigan State University

    Google Scholar 

  • Chundawat S, Beckham G, Himmel M, Dale B, Prausnitz J (2011a) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol 2:121–145

    Article  Google Scholar 

  • Chundawat S, Bellesia G, Uppugundla N, Sousa L, Gao D, Cheh A, Agarwal U, Bianchetti C, Phillips G, Langan P, Balan V, Gnanakaran S, Dale B (2011b) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174

    Article  Google Scholar 

  • Chundawat SPS, Donohoe BS, Sousa LD, Elder T, Agarwal UP, Lu FC, Ralph J, Himmel ME, Balan V, Dale BE (2011c) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4:973–984

    Article  Google Scholar 

  • Ciolacu D, Pitol-Filho L, Ciolacu F (2012) Studies concerning the accessibility of different allomorphic forms of cellulose. Cellulose 19:55–68

    Article  Google Scholar 

  • Claxton N, Fellers T, Davidson M (2015) Laser scanning confocal microscopy. http://www.olympusconfocal.com/theory/LSCMIntro.pdf

  • Cybulska I, Brudecki G, Lei H (2013) Hydrothermal pretreatment of lignocellulosic biomass. In: Gu T (ed) Green biomass pretreatment for biofuels production. Springer, Dordrecht, pp 87–106

    Chapter  Google Scholar 

  • David K, Ragauskas A (2010) Switchgrass as an energy crop for biofuel production: a review of its ligno-cellulosic chemical properties. Energy Environ Sci 3:1182–1190

    Article  Google Scholar 

  • Davison B, Parks J, Davis M, Donohoe B (2013) Plant cell walls: basics of structure, chemistry, accessibility and the influence on conversion. In: Wyman C (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, 1st edn. Wiley, Chichester, pp 23–38

    Chapter  Google Scholar 

  • de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol R 65:497–522

    Article  Google Scholar 

  • del Rio JC, Rencoret J, Prinsen P, Martinez AT, Ralph J, Gutierrez A (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agr Food Chem 60:5922–5935

    Article  Google Scholar 

  • Demirbas A (2009) Biorefineries: current activities and future developments. Energy Convers Manage 50:2782–2801

    Article  Google Scholar 

  • Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060

    Article  Google Scholar 

  • Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460

    Article  Google Scholar 

  • Donaldson LA, Wong KKY, Mackie KL (1988) Ultrastructure of steam-exploded wood. Wood Sci Technol 22:103–114

    Article  Google Scholar 

  • Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49:7322–7324

    Article  Google Scholar 

  • Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Polysaccharides 1: Structure, characterization and use. Adv Polym Sci 186:1–67

    Article  Google Scholar 

  • El Mansouri N-E, Salvado J (2007) Analytical methods for determining functional groups in various technical lignins. Ind Crop Prod 26:116–124

    Article  Google Scholar 

  • Endler A, Persson S (2011) Cellulose synthases and synthesis in Arabidopsis. Mol Plant 4:199–211

    Article  Google Scholar 

  • Fengel D, Wegener G, Greune A (1989) Studies on the delignification of spruce wood by organosolv pulping using SEM-EDXA and TEM. Wood Sci Technol 23:123–130

    Article  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci U S A 108:E1195–E1203

    Article  Google Scholar 

  • Festucci-Buselli RA, Otoni WC, Joshi CP (2007) Structure, organization, and functions of cellulose synthase complexes in higher plants. Braz J Plant Physiol 19:1–13

    Article  Google Scholar 

  • Fromm J, Rockel B, Lautner S, Windeisen E, Wanner G (2003) Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J Struct Biol 143:77–84

    Article  Google Scholar 

  • Fujii T, Shimada K, Shimizu K (1994) Ultrastructural changes of cryptomeria and beechwood during acetosolv pulping. Mokuzai Gakkaishi 40:527–533

    Google Scholar 

  • Gibson L (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766

    Article  Google Scholar 

  • Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140:1246–1254

    Article  Google Scholar 

  • Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part & Part Syst Char 23(1):9–19

    Article  Google Scholar 

  • Girio F, Fonseca C, Carvalheiro F, Duarte L, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  Google Scholar 

  • Granström M (2009) Cellulose derivatives: synthesis, properties and applications. Academic dissertation, Department of Chemistry, University of Helsinki, Finland

    Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity – a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582

    Article  Google Scholar 

  • Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40:139–168

    Article  Google Scholar 

  • Hong J, Ye X, Zhang YHP (2007) Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir 23:12535–12540

    Article  Google Scholar 

  • Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48

    Article  Google Scholar 

  • Jacquet N, Maniet G, Vanderghem C, Delvigne F, Richel A (2015) Application of steam explosion as pretreatment on lignocellulosic material: a review. Ind Eng Chem Res 54:2593–2598

    Article  Google Scholar 

  • Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787

    Article  Google Scholar 

  • Jarvis M (2003) Chemistry – cellulose stacks up. Nature 426:611–612

    Article  Google Scholar 

  • Ji Z, Zhang X, Ling Z, Zhou X, Ramaswamy S, Xu F (2015) Visualization of Miscanthus x giganteus cell wall deconstruction subjected to dilute acid pretreatment for enhanced enzymatic digestibility. Biotechnol Biofuels 8:103. doi:10.1186/s13068-015-0282-3

    Article  Google Scholar 

  • Jung S, Foston M, Sullards MC, Ragauskas AJ (2010) Surface characterization of dilute acid pretreated populus deltoides by ToF-SIMS. Energy Fuel 24:1347–1357

    Article  Google Scholar 

  • Kallavus U, Gravitis J (1995) A comparative investigation of the ultrastructure of steam exploded wood with light, scanning and transmission electron microscopy. Holzforschung 49:182–188

    Article  Google Scholar 

  • Kamm B, Kamm M (2007) Biorefineries–multi product processes. Adv Biochem Eng/Biotechnol 105:175–205

    Article  Google Scholar 

  • Khalil HPSA, Yusra AFI, Bhat AH, Jawaid M (2010) Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Ind Crop Prod 31:113–121

    Article  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry: fundamentals and analytical methods, vol 1. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Klemm D, Schmauder H, Heinze T (2002) Cellulose. In: De Baets S, Vandamme E, Steinbüchel A (eds) Polysaccharides II: Polysaccharides from eukaryotes. Wiley-Blackwell, pp 275–320

    Google Scholar 

  • Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44:3358–3393

    Article  Google Scholar 

  • Koshijima T, Watanabe T (2003) Association between lignin and carbohydrates in wood and other plant tissues. Springer, Berlin

    Book  Google Scholar 

  • Krässig H (1996) Cellulose. Gordon and Breach Science, Amsterdam

    Google Scholar 

  • Kumagai A, Wu L, Iwamoto S, Lee S-H, Endo T, Rodriguez M Jr, Mielenz JR (2015) Improvement of enzymatic saccharification of Populus and switchgrass by combined pretreatment with steam and wet disk milling. Renew Energy 76:782–789

    Article  Google Scholar 

  • Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962

    Article  Google Scholar 

  • Laine C, Tamminen T, Hortling B (2004) Carbohydrate structures in residual lignin-carbohydrate complexes of spruce and pine pulp. Holzforschung 58:611–621

    Google Scholar 

  • Li X, Luo X, Li K, Zhu JY, Fougere JD, Clarke K (2012) Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine. Appl Biochem Biotechnol 168:1556–1567

    Article  Google Scholar 

  • Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE (2014) Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 111:485–492

    Article  Google Scholar 

  • Li Z, Bansal N, Azarpira A, Bhalla A, Chen CH, Ralph J, Hegg EL, Hodge DB (2015) Chemical and structural changes associated with Cu-catalyzed alkaline-oxidative delignification of hybrid poplar. Biotechnol Biofuels 8:123. doi:10.1186/s13068-015-0300-5

    Article  Google Scholar 

  • Lima M, Lavorente G, da Silva H, Bragatto J, Rezende C, Bernardinelli O, deAzevedo E, Gomez L, McQueen-Mason S, Labate C, Polikarpov I (2013) Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production – part 1. Biotechnol Biofuels 6:75. doi:10.1186/1754-6834-6-75

    Article  Google Scholar 

  • Lisperguer J, Perez P, Urizar S (2009) Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry. J Chil Chem Soc 54:460–463

    Article  Google Scholar 

  • Luo X, Zhu JY (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme MicrobTech 48:92–99

    Article  Google Scholar 

  • Ma J, Zhang X, Zhou X, Xu F (2014) Revealing the changes in topochemical characteristics of poplar cell wall during hydrothermal pretreatment. Bioenergy Res 7:1358–1368

    Article  Google Scholar 

  • Ma J, Ji Z, Chen JC, Zhou X, Kim YS, Xu F (2015) The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling. Planta 242:327–337

    Article  Google Scholar 

  • Maki-Arvela P, Salmi T, Holmbom B, Willfor S, Murzin D (2011) Synthesis of sugars by hydrolysis of hemicelluloses–a review. Chem Rev 111:5638–5666

    Article  Google Scholar 

  • Matsuoka S, Kawamoto H, Saka S (2011) Reducing end-group of cellulose as a reactive site for thermal discoloration. Polym Degrad Stabil 96:1242–1247

    Article  Google Scholar 

  • Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403

    Article  Google Scholar 

  • McCann M, Carpita N (2015) Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. J Exp Bot 66:4109–4118

    Article  Google Scholar 

  • McDonough TJ (1993) The chemistry of organosolv delignification. Tappi J 76:186–193

    Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, pp 292–324

    Google Scholar 

  • Meng X, Ragauskas A (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158

    Article  Google Scholar 

  • Mohnen D, Bar-Peled M, Somerville C (2008) Cell wall polysaccharide synthesis. In: Himmel M (ed) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Wiley-Blackwell, Singapore, pp 94–159

    Chapter  Google Scholar 

  • Muzamal M, Jedvert K, Theliander H, Rasmuson A (2015) Structural changes in spruce wood during different steps of steam explosion pretreatment. Holzforschung 69:61–66

    Article  Google Scholar 

  • Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using C-13 NMR signal strengths. Solid State Nucl Mag 15:21–29

    Article  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  Google Scholar 

  • Peng F, Peng P, Xu F, Sun RC (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30:879–903

    Article  Google Scholar 

  • Pereira H, Graça J (2003) Wood chemistry in relation to quality. In: Barnett J, Jeronimidis G (eds) Wood quality and its biological basis. Blackwell, Oxford, pp 53–86

    Google Scholar 

  • Pingali SV, Urban VS, Heller WT, McGaughey J, O’Neill H, Foston M, Myles DA, Ragauskas A, Evans BR (2010) Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules 11:2329–2335

    Article  Google Scholar 

  • Ponni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. Bioresources 7:6077–6108

    Article  Google Scholar 

  • Puls J, Saake B (2004) Industrially isolated hemicelluloses. In: Gatenholm P, Tenhanen M (eds) Hemicelluloses: science and technology, vol 864, ACS Symposium Series. American Chemical Society, Washington, DC, pp 24–37

    Chapter  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  Google Scholar 

  • Ren J, Sun R (2010) Hemicelluloses. In: Sun R (ed) Cereal straw as a resource for sustainable biomaterials and biofuels. Elsevier, Amsterdam, pp 73–130

    Chapter  Google Scholar 

  • Sanderson K (2011) A chewy problem. Nature 474:S12–S14

    Article  Google Scholar 

  • Sant’Anna C, de Souza W (2012) Microscopy as a tool to follow deconstruction of lignocellulosic biomass. Formatex Research Center, Espanha. http://www.formatex.info/microscopy5/book/639-645.pdf

  • Sassi JF, Tekely P, Chanzy H (2000) Relative susceptibility of the I-alpha and I-beta phases of cellulose towards acetylation. Cellulose 7:119–132

    Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  Google Scholar 

  • Shevchenko SM, Bailey GW (1996) The mystery of the lignin-carbohydrate complex: a computational approach. J Mol Struc-Theochem 364:197–208

    Article  Google Scholar 

  • Singh S, Simmons B, Vogel K (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104:68–75

    Article  Google Scholar 

  • Sun RC, Sun XF, Tomkinson I (2004) Hemicelluloses and their derivatives. In: Gatenholm P, Tenhanen M (eds) Hemicelluloses: science and technology, vol 864, ACS Symposium Series. American Chemical Society, Washington, DC, pp 2–22

    Chapter  Google Scholar 

  • Sun L, Li C, Xue Z, Simmons B, Singh S (2013) Unveiling high-resolution, tissue specific dynamic changes in corn stover during ionic liquid pretreatment. RSC Adv 3:2017–2027

    Article  Google Scholar 

  • Szijarto N, Siika-aho M, Tenkanen M, Alapuranen M, Vehmaanpera J, Reczeya K, Viikari L (2008) Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. J Biotechnol 136:140–147

    Article  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  Google Scholar 

  • Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose I-alpha to I-beta. Polym J 35:155–159

    Article  Google Scholar 

  • Willfor S, Sundberg K, Tenkanen M, Holmbom B (2008) Spruce-derived mannans – a potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 72:197–210

    Article  Google Scholar 

  • Wu RC, Zhao XB, Liu DH (2016) Structural features of formalin pretreated sugar cane bagasse and their impact on the enzymatic hydrolysis of cellulose. ACS Sustain Chem Eng 4:1255–1261

    Article  Google Scholar 

  • Xiao L-P, Shi Z-J, Xu F, Sun R-C (2013) Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: evaluation of the process as a conversion method in a biorefinery concept. Bioresour Technol 135:73–81

    Article  Google Scholar 

  • Xu F (2010) Structure, ultrastructure, and chemical composition. In: Sun R (ed) Cereal straw as a resource for sustainable biomaterials and biofuels. Elsevier, Amsterdam, pp 9–49

    Chapter  Google Scholar 

  • Xu M, Xu M, Dai H, Wang S, Wu W (2013) The effects of ball milling and PFI pretreatment on the cellulose structure and fiber morphology. J Cellulose Sci Tech 21:46–52

    Google Scholar 

  • Yamamoto H, Horii F (1993) Carbon-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26:1313–1317

    Article  Google Scholar 

  • Yang S (2001) Plant fiber chemistry, 3rd edn. China Light Industry Press, Beijing

    Google Scholar 

  • Yang B, Wyman C (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Bior 2:26–40

    Article  Google Scholar 

  • Yu Y, Wu H (2010) Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Ind Eng Chem Res 49:3902–3909

    Article  MathSciNet  Google Scholar 

  • Yu CT, Chen WH, Men LC, Hwang WS (2009) Microscopic structure features changes of rice straw treated by boiled acid solution. Ind Crop Prod 29:308–315

    Article  Google Scholar 

  • Yuan T-Q, Sun S-N, Xu F, Sun R-C (2011) Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative C-13 and 2D HSQC NMR spectroscopy. J Agr Food Chem 59:10604–10614

    Article  Google Scholar 

  • Yuan Z, Long J, Wang T, Shu R, Zhang Q, Ma L (2015) Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis. Energy Convers Manage 101:481–488

    Article  Google Scholar 

  • Zakaria MR, Hirata S, Fujimoto S, Hassan MA (2015) Combined pretreatment with hot compressed water and wet disk milling opened up oil palm biomass structure resulting in enhanced enzymatic digestibility. Bioresour Technol 193:128–134

    Article  Google Scholar 

  • Zhan H (2005) Fiber chemistry and physics. Science Press, Beijing

    Google Scholar 

  • Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  Google Scholar 

  • Zhang ZH, Ma JF, Xu F (2012) Confocal Raman microspectroscopy study on the distribution of cellulose and lignin in Daphne odora Thunb. Spectrosc Spect Anal 32:1002–1006

    Google Scholar 

  • Zhang MM, Chen GJ, Kumar R, Xu BQ (2013) Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging. Biotechnol Biofuels 6:147. doi:10.1186/1754-6834-6-147

    Article  Google Scholar 

  • Zhao J, Chen H (2013) Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. Chem Eng Sci 104:1036–1044

    Article  Google Scholar 

  • Zhao H, Kwak J, Wang Y, Franz J, White J, Holladay J (2006) Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuel 20:807–811

    Article  Google Scholar 

  • Zhao X, Wang L, Liu D (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biot 83:950–956

    Article  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827

    Article  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012a) Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuel Bioprod Bior 6:465–482

    Article  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012b) Biomass recalcitrance. Part II: Fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuel Bioprod Bior 6:561–579

    Article  Google Scholar 

  • Zhu JY (2011) Physical pretreatment – woody biomass size reduction – for forest biorefinery. Sustainable production of fuels, chemicals, and fibers from forest biomass, American Chemical Society, Washington, DC, pp 89–107

    Google Scholar 

  • Zhu J, Pan X (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002

    Article  Google Scholar 

  • Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100:2411–2418

    Article  Google Scholar 

  • Zugenmaier P (2007) Crystalline cellulose and derivatives-characterization and structures. Springer, Berlin, pp 101–174

    Google Scholar 

Download references

Acknowledgment

Authors are grateful for the supports of this work by National Natural Science Foundation of China (No. 21406130), National Energy Administration Project (No. NY20130402) and Dongguan Social and Technical Development Project (No. 2015108101004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, X., Qi, F., Liu, D. (2017). Hierarchy Nano- and Ultrastructure of Lignocellulose and Its Impact on the Bioconversion of Cellulose. In: Rai, M., da Silva, S. (eds) Nanotechnology for Bioenergy and Biofuel Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-45459-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45459-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45458-0

  • Online ISBN: 978-3-319-45459-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics