Skip to main content

Biomaterials in Meniscus Tissue Engineering

  • Chapter
  • First Online:
Regenerative Strategies for the Treatment of Knee Joint Disabilities

Abstract

Meniscus is a complex tissue that plays important roles on the knee performance and homeostasis. The meniscus tissue is very susceptible to injury and despite the great advances in meniscus regeneration area, none of the current strategies for the treatment of meniscus lesions are completely effective. To overcome such great challenge, tissue engineering-based strategies have been attempted. One of the main targets in this research area is to find out a biomaterial or formulations that are able to mimic as much as possible the meniscus native extracellular matrix. In the last few years the characteristics and behaviors of different biomaterials were explored and several processing routes attempted to obtain an adequate architecture for proper cells adhesion, ingrowths, proliferation and differentiation. Herein, a panoply of biomaterials that have been used in meniscus tissue engineering strategies are overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scotti C, Hirschmann MT, Antinolfi P, Martin I, Peretti GM (2013) Meniscus repair and regeneration: review on current methods and research potential. Eur Cells Mater 26:150–170

    Google Scholar 

  2. Baker BE, Peckham AC, Pupparo F, Sanborn JC (1985) Review of meniscal injury and associated sports. Am J Sports Med 13(1):1–4

    Article  Google Scholar 

  3. Hede A, Jensen DB, Blyme P, Sonne-Holm S (1990) Epidemiology of meniscal lesions in the knee. 1,215 open operations in Copenhagen 1982–84. Acta Orthop Scand 61(5):435–437

    Article  Google Scholar 

  4. Khetia EA, McKeon BP (2007) Meniscal allografts: biomechanics and techniques. Sports Med Arthrosc Rev 15(3):114–120. doi:10.1097/JSA.0b013e3180dca217

    Article  Google Scholar 

  5. Longo UG, Loppini M, Forriol F, Romeo G, Maffulli N, Denaro V (2012) Advances in meniscal tissue engineering. Stem Cells Int 2012:11. doi:10.1155/2012/420346

    Google Scholar 

  6. Guo W, Liu S, Zhu Y, Yu C, Lu S, Yuan M, Gao Y, Huang J, Yuan Z, Peng J, Wang A, Wang Y, Chen J, Zhang L, Sui X, Xu W, Guo Q (2015) Advances and prospects in tissue-engineered meniscal scaffolds for meniscus regeneration. Stem Cells Int 2015:13. doi:10.1155/2015/517520

    Google Scholar 

  7. Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P (2014) Biomaterials in search of a meniscus substitute. Biomaterials 35(11):3527–3540. doi:10.1016/j.biomaterials.2014.01.017

    Article  Google Scholar 

  8. Elsner JJ, Portnoy S, Zur G, Guilak F, Shterling A, Linder-Ganz E (2010) Design of a free-floating polycarbonate-urethane meniscal implant using finite element modeling and experimental validation. J Biomech Eng 132(9):095001. doi:10.1115/1.4001892

    Article  Google Scholar 

  9. Schuttler KF, Pottgen S, Getgood A, Rominger MB, Fuchs-Winkelmann S, Roessler PP, Ziring E, Efe T (2015) Improvement in outcomes after implantation of a novel polyurethane meniscal scaffold for the treatment of medial meniscus deficiency. Knee Surg Sports Traumatol Arthrosc 23(7):1929–1935. doi:10.1007/s00167-014-2977-6

    Article  Google Scholar 

  10. Baynat C, Andro C, Vincent JP, Schiele P, Buisson P, Dubrana F, Gunepin FX (2014) Actifit synthetic meniscal substitute: experience with 18 patients in Brest, France. Orthop Traumatol Surg Res 100(8 Suppl):S385–S389. doi:10.1016/j.otsr.2014.09.007

    Article  Google Scholar 

  11. Rodkey WG, DeHaven KE, Montgomery WH 3rd, Baker CL Jr, Beck CL Jr, Hormel SE, Steadman JR, Cole BJ, Briggs KK (2008) Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg 90(7):1413–1426. doi:10.2106/jbjs.g.00656

    Article  Google Scholar 

  12. Sommerlath K, Gillquist J (1992) The effect of a meniscal prosthesis on knee biomechanics and cartilage. An experimental study in rabbits. Am J Sports Med 20(1):73–81

    Article  Google Scholar 

  13. Odian G (2004) Principles of polymerization. Wiley, London

    Book  Google Scholar 

  14. Sommerlath K, Gallino M, Gillquist J (1992) Biomechanical characteristics of different artificial substitutes for rabbit medial meniscus and effect of prosthesis size on knee cartilage. Clin Biomech (Bristol Avon) 7(2):97–103. doi:10.1016/0268-0033(92)90022-v

    Article  Google Scholar 

  15. Messner K, Lohmander LS, Gillquist J (1993) Cartilage mechanics and morphology, synovitis and proteoglycan fragments in rabbit joint fluid after prosthetic meniscal substitution. Biomaterials 14(3):163–168. doi:10.1016/0142-9612(93)90018-W

    Article  Google Scholar 

  16. Messner K, Gillquist J (1993) Prosthetic replacement of the rabbit medial meniscus. J Biomed Mater Res 27(9):1165–1173. doi:10.1002/jbm.820270907

    Article  Google Scholar 

  17. Noguchi T, Yamamuro T, Oka M, Kumar P, Kotoura Y, Hyon S, Ikada Y (1991) Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: evaluation of biocompatibility. J Appl Biomater 2(2):101–107. doi:10.1002/jab.770020205

    Article  Google Scholar 

  18. Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657

    Article  Google Scholar 

  19. Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K (2006) Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res Part A 78(1):1–11. doi:10.1002/jbm.a.30655

    Article  Google Scholar 

  20. Kobayashi M, Chang YS, Oka M (2005) A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26(16):3243–3248. doi:10.1016/j.biomaterials.2004.08.028

    Article  Google Scholar 

  21. Kelly BT, Robertson W, Potter HG, Deng XH, Turner AS, Lyman S, Warren RF, Rodeo SA (2007) Hydrogel meniscal replacement in the sheep knee: preliminary evaluation of chondroprotective effects. Am J Sports Med 35(1):43–52. doi:10.1177/0363546506292848

    Article  Google Scholar 

  22. Holloway JL, Lowman AM, Palmese GR (2010) Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater 6(12):4716–4724. doi:10.1016/j.actbio.2010.06.025

    Article  Google Scholar 

  23. Holloway JL, Lowman AM, VanLandingham MR, Palmese GR (2014) Interfacial optimization of fiber-reinforced hydrogel composites for soft fibrous tissue applications. Acta Biomater 10(8):3581–3589. doi:10.1016/j.actbio.2014.05.004

    Article  Google Scholar 

  24. Scholes SC, Unsworth A, Jones E (2007) Polyurethane unicondylar knee prostheses: simulator wear tests and lubrication studies. Phys Med Biol 52(1):197–212. doi:10.1088/0031-9155/52/1/013

    Article  Google Scholar 

  25. Zur G, Linder-Ganz E, Elsner JJ, Shani J, Brenner O, Agar G, Hershman EB, Arnoczky SP, Guilak F, Shterling A (2011) Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model. Knee Surg Sports Traumatol Arthrosc 19(2):255–263. doi:10.1007/s00167-010-1210-5

    Article  Google Scholar 

  26. Khan I, Smith N, Jones E, Finch DS, Cameron RE (2005) Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: in vivo investigation. Biomaterials 26(6):633–643. doi:10.1016/j.biomaterials.2004.02.064

    Article  Google Scholar 

  27. Bigsby RJA, Auger DD, Jin ZM, Dowson D, Hardaker CS, Fisher JA (1998) Comparative tribological study of the wear of composite cushion cups in a physiological hip joint simulator. J Biomech 31(4):363–369. doi:10.1016/S0021-9290(98)00034-7

    Article  Google Scholar 

  28. Shemesh M, Asher R, Zylberberg E, Guilak F, Linder-Ganz E, Elsner JJ (2014) Viscoelastic properties of a synthetic meniscus implant. J Mech Behav Biomed Mater 29:42–55. doi:10.1016/j.jmbbm.2013.08.021

    Article  Google Scholar 

  29. Ma PX, Choi JW (2001) Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 7(1):23–33. doi:10.1089/107632701300003269

    Article  Google Scholar 

  30. Testa Pezzin AP, Cardoso TP, do Carmo Alberto Rincon M, de Carvalho Zavaglia CA, de Rezende Duek EA (2003) Bioreabsorbable polymer scaffold as temporary meniscal prosthesis. Artif Organs 27(5):428–431

    Article  Google Scholar 

  31. Esposito AR, Moda M, Cattani SM, de Santana GM, Barbieri JA, Munhoz MM, Cardoso TP, Barbo ML, Russo T, D’Amora U, Gloria A, Ambrosio L, Duek EA (2013) PLDLA/PCL-T scaffold for meniscus tissue engineering. BioResearch 2(2):138–147. doi:10.1089/biores.2012.0293

    Google Scholar 

  32. Ibarra C, Jannetta C, Vacanti CA, Cao Y, Kim TH, Upton J, Vacanti JP (1997) Tissue engineered meniscus: a potential new alternative to allogeneic meniscus transplantation. Transpl Proc 29(1–2):986–988

    Article  Google Scholar 

  33. Aufderheide AC, Athanasiou KA (2005) Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng 11(7–8):1095–1104. doi:10.1089/ten.2005.11.1095

    Article  Google Scholar 

  34. Kang SW, Son SM, Lee JS, Lee ES, Lee KY, Park SG, Park JH, Kim BS (2006) Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. J Biomed Mater Res Part A 78(3):659–671. doi:10.1002/jbm.a.30904

    Article  Google Scholar 

  35. Fox DB, Warnock JJ, Stoker AM, Luther JK, Cockrell M (2010) Effects of growth factors on equine synovial fibroblasts seeded on synthetic scaffolds for avascular meniscal tissue engineering. Res Vet Sci 88(2):326–332. doi:10.1016/j.rvsc.2009.07.015

    Article  Google Scholar 

  36. Freymann U, Endres M, Neumann K, Scholman HJ, Morawietz L, Kaps C (2012) Expanded human meniscus-derived cells in 3-D polymer-hyaluronan scaffolds for meniscus repair. Acta Biomater 8(2):677–685. doi:10.1016/j.actbio.2011.10.007

    Article  Google Scholar 

  37. Gu Y, Zhu W, Hao Y, Lu L, Chen Y, Wang Y (2012) Repair of meniscal defect using an induced myoblast-loaded polyglycolic acid mesh in a canine model. Exp Ther Med 3(2):293–298. doi:10.3892/etm.2011.403

    Google Scholar 

  38. Kwak HS, Nam J, J-h L, Kim HJ, Yoo JJ (2014) Meniscal repair in vivo using human chondrocyte-seeded PLGA mesh scaffold pretreated with platelet-rich plasma. J Tissue Eng Regener Med. doi:10.1002/term.1938

    Google Scholar 

  39. Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, Oh JS, Akaike T, Cho CS (2003) A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 24(5):801–808

    Article  Google Scholar 

  40. Bezwada RS, Jamiolkowski DD, Lee IY, Agarwal V, Persivale J, Trenka-Benthin S, Erneta M, Suryadevara J, Yang A, Liu S (1995) Monocryl suture, a new ultra-pliable absorbable monofilament suture. Biomaterials 16(15):1141–1148

    Article  Google Scholar 

  41. Darney PD, Monroe SE, Klaisle CM, Alvarado A (1989) Clinical evaluation of the Capronor contraceptive implant: preliminary report. Am J Obstet Gynecol 160(5 Pt 2):1292–1295

    Article  Google Scholar 

  42. Milella E, Brescia E, Massaro C, Ramires PA, Miglietta MR, Fiori V, Aversa P (2002) Physico-chemical properties and degradability of non-woven hyaluronan benzylic esters as tissue engineering scaffolds. Biomaterials 23(4):1053–1063

    Article  Google Scholar 

  43. Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, Ambrosio L, Tognana E, Kon E, Salter D, Nehrer S (2006) A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage 14(10):1056–1065. doi:10.1016/j.joca.2006.04.007

    Article  Google Scholar 

  44. Kon E, Filardo G, Tschon M, Fini M, Giavaresi G, Marchesini Reggiani L, Chiari C, Nehrer S, Martin I, Salter DM, Ambrosio L, Marcacci M (2012) Tissue engineering for total meniscal substitution: animal study in sheep model–results at 12 months. Tissue Eng Part A 18(15–16):1573–1582. doi:10.1089/ten.TEA.2011.0572

    Article  Google Scholar 

  45. Elema H, Groot JH, Nijenhuis AJ, Pennings AJ, Veth RPH, Klompmaker J, Jansen HWB (1990) Use of porous biodegradable polymer implants in meniscus reconstruction. 2) Biological evaluation of porous biodegradable polymer implants in menisci. Colloid Polym Sci 268(12):1082–1088. doi:10.1007/bf01410673

    Article  Google Scholar 

  46. Klompmaker J, Jansen HW, Veth RP, de Groot JH, Nijenhuis AJ, Pennings AJ (1991) Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs. Biomaterials 12(9):810–816

    Article  Google Scholar 

  47. Tienen TG, Heijkants RG, de Groot JH, Pennings AJ, Schouten AJ, Veth RP, Buma P (2006) Replacement of the knee meniscus by a porous polymer implant: a study in dogs. Am J Sports Med 34(1):64–71. doi:10.1177/0363546505280905

    Article  Google Scholar 

  48. Heijkants RG, van Calck RV, De Groot JH, Pennings AJ, Schouten AJ, van Tienen TG, Ramrattan N, Buma P, Veth RP (2004) Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J Mater Sci Mater Med 15(4):423–427

    Article  Google Scholar 

  49. Tienen TG, Heijkants RG, de Groot JH, Schouten AJ, Pennings AJ, Veth RP, Buma P (2006) Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater 76(2):389–396. doi:10.1002/jbm.b.30406

    Article  Google Scholar 

  50. Hannink G, van Tienen TG, Schouten AJ, Buma P (2011) Changes in articular cartilage after meniscectomy and meniscus replacement using a biodegradable porous polymer implant. Knee Surg Sports Traumatol Arthrosc 19(3):441–451. doi:10.1007/s00167-010-1244-8

    Article  Google Scholar 

  51. Maher SA, Rodeo SA, Doty SB, Brophy R, Potter H, Foo L-F, Rosenblatt L, Deng X-H, Turner AS, Wright TM, Warren RF (2010) Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy 26(11):1510–1519. doi:10.1016/j.arthro.2010.02.033

    Article  Google Scholar 

  52. Brophy RH, Cottrell J, Rodeo SA, Wright TM, Warren RF, Maher SA (2010) Implantation of a synthetic meniscal scaffold improves joint contact mechanics in a partial meniscectomy cadaver model. J Biomed Mater Res Part A 92(3):1154–1161. doi:10.1002/jbm.a.32384

    Google Scholar 

  53. Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs EL (2011) Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med 39(4):774–782. doi:10.1177/0363546511398040

    Article  Google Scholar 

  54. Bouyarmane H, Beaufils P, Pujol N, Bellemans J, Roberts S, Spalding T, Zaffagnini S, Marcacci M, Verdonk P, Womack M, Verdonk R (2014) Polyurethane scaffold in lateral meniscus segmental defects: clinical outcomes at 24 months follow-up. Orthop Traumatol Surg Res 100(1):153–157. doi:10.1016/j.otsr.2013.10.011

    Article  Google Scholar 

  55. Schuttler KF, Haberhauer F, Gesslein M, Heyse TJ, Figiel J, Lorbach O, Efe T, Roessler PP (2015) Midterm follow-up after implantation of a polyurethane meniscal scaffold for segmental medial meniscus loss: maintenance of good clinical and MRI outcome. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3759-5

    Google Scholar 

  56. Gelber PE, Petrica AM, Isart A, Mari-Molina R, Monllau JC (2015) The magnetic resonance aspect of a polyurethane meniscal scaffold is worse in advanced cartilage defects without deterioration of clinical outcomes after a minimum two-year follow-up. Knee 22(5):389–394. doi:10.1016/j.knee.2015.01.008

    Article  Google Scholar 

  57. Valluzzi R, Winkler S, Wilson D, Kaplan DL (2002) Silk: molecular organization and control of assembly. Philos Trans R Soc Lond B Biol Sci 357(1418):165–167. doi:10.1098/rstb.2001.1032

    Article  Google Scholar 

  58. Mandal BB, Park SH, Gil ES, Kaplan DL (2011) Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32(2):639–651. doi:10.1016/j.biomaterials.2010.08.115

    Article  Google Scholar 

  59. Mandal BB, Park S-H, Gil ES, Kaplan DL (2011) Stem cell-based meniscus tissue engineering. Tissue Eng Part A 17(21–22):2749–2761. doi:10.1089/ten.tea.2011.0031

    Article  Google Scholar 

  60. Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL (2012) Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 8(1):289–301. doi:10.1016/j.actbio.2011.09.037

    Article  Google Scholar 

  61. Gruchenberg K, Ignatius A, Friemert B, von Lubken F, Skaer N, Gellynck K, Kessler O, Durselen L (2015) In vivo performance of a novel silk fibroin scaffold for partial meniscal replacement in a sheep model. Knee Surg Sports Traumatol Arthrosc 23(8):2218–2229. doi:10.1007/s00167-014-3009-2

    Article  Google Scholar 

  62. Grogan SP, Chung PH, Soman P, Chen P, Lotz MK, Chen S, D’Lima DD (2013) Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater 9(7):7218–7226. doi:10.1016/j.actbio.2013.03.020

    Article  Google Scholar 

  63. Thein-Han WW, Saikhun J, Pholpramoo C, Misra RD, Kitiyanant Y (2009) Chitosan-gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells. Acta Biomater 5(9):3453–3466. doi:10.1016/j.actbio.2009.05.012

    Article  Google Scholar 

  64. Sarem M, Moztarzadeh F, Mozafari M (2013) How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues? Carbohydr Polym 93(2):635–643. doi:10.1016/j.carbpol.2012.11.099

    Article  Google Scholar 

  65. Sarem M, Moztarzadeh F, Mozafari M, Shastri VP (2013) Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. Mater Sci Eng C Mater Biol Appl 33(8):4777–4785. doi:10.1016/j.msec.2013.07.036

    Article  Google Scholar 

  66. Ishida K, Kuroda R, Miwa M, Tabata Y, Hokugo A, Kawamoto T, Sasaki K, Doita M, Kurosaka M (2007) The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng 13(5):1103–1112. doi:10.1089/ten.2006.0193

    Article  Google Scholar 

  67. Narita A, Takahara M, Sato D, Ogino T, Fukushima S, Kimura Y, Tabata Y (2012) Biodegradable gelatin hydrogels incorporating fibroblast growth factor 2 promote healing of horizontal tears in rabbit meniscus. Arthroscopy 28(2):255–263. doi:10.1016/j.arthro.2011.08.294

    Article  Google Scholar 

  68. Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73(12):4565–4569

    Article  Google Scholar 

  69. Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res Part A 76(2):431–438. doi:10.1002/jbm.a.30570

    Article  Google Scholar 

  70. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431. doi:10.1016/j.biomaterials.2004.02.049

    Article  Google Scholar 

  71. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1(5):406–408. doi:10.1002/term.51

    Article  Google Scholar 

  72. Martinez H, Brackmann C, Enejder A, Gatenholm P (2012) Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res Part A 100(4):948–957. doi:10.1002/jbm.a.34035

    Article  Google Scholar 

  73. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496. doi:10.1021/acs.biomac.5b00188

    Article  Google Scholar 

  74. Warth RJ, Rodkey WG (2015) Resorbable collagen scaffolds for the treatment of meniscus defects: a systematic review. Arthroscopy 31(5):927–941. doi:10.1016/j.arthro.2014.11.019

    Article  Google Scholar 

  75. Rodkey WG, Stone K, Steadman J (1992) Prosthetic meniscal replacement. Biology and biomechanics of the traumatized synovial joint: the knee as a model. American Academy of Orthopaedic Surgeons, Rosemont, pp 221–231

    Google Scholar 

  76. Hansen R, Bryk E, Vigorita V (2013) Collagen scaffold meniscus implant integration in a canine model: a histological analysis. J Orthop Res 31(12):1914–1919. doi:10.1002/jor.22456

    Article  Google Scholar 

  77. Steadman JR, Rodkey WG (2005) Tissue-engineered collagen meniscus implants: 5- to 6-year feasibility study results. Arthroscopy 21(5):515–525. doi:10.1016/j.arthro.2005.01.006

    Article  Google Scholar 

  78. Zaffagnini S, Marcheggiani Muccioli GM, Bulgheroni P, Bulgheroni E, Grassi A, Bonanzinga T, Kon E, Filardo G, Busacca M, Marcacci M (2012) Arthroscopic collagen meniscus implantation for partial lateral meniscal defects: a 2-year minimum follow-up study. Am J Sports Med 40(10):2281–2288. doi:10.1177/0363546512456835

    Article  Google Scholar 

  79. Monllau JC, Gelber PE, Abat F, Pelfort X, Abad R, Hinarejos P, Tey M (2011) Outcome after partial medial meniscus substitution with the collagen meniscal implant at a minimum of 10 years’ follow-up. Arthroscopy 27(7):933–943. doi:10.1016/j.arthro.2011.02.018

    Article  Google Scholar 

  80. Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N, Bruni D, Giordano G, Ravazzolo G, Molinari M, Marcacci M (2011) Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10-year follow-up study. Am J Sports Med 39(5):977–985. doi:10.1177/0363546510391179

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support from FCT/MCTES (Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia, e Ensino Superior) and the Fundo Social Europeu através do Programa Operacional do Capital Humano (FSE/POCH), PD/59/2013. J.M. Oliveira also thanks to the Portuguese Foundation for Science and Technology (FCT) for the funds provided to under the program Investigador FCT 2012 (IF/00423/2012)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João B. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Costa, J.B., Oliveira, J.M., Reis, R.L. (2017). Biomaterials in Meniscus Tissue Engineering. In: Oliveira, J., Reis, R. (eds) Regenerative Strategies for the Treatment of Knee Joint Disabilities. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-44785-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44785-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44783-4

  • Online ISBN: 978-3-319-44785-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics