Skip to main content

Innovation of Strategies and Challenges for Fungal Nanobiotechnology

  • Chapter
  • First Online:
Advances and Applications Through Fungal Nanobiotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Nanotechnology involves the study and use of materials under the 100 nm scale, exploiting the different physiochemical properties exhibited by these materials at the nanoscale level. Microorganisms are the best model and role of action for the nano/biotechnological applications. This technology has become increasingly important for the biotechnology and the related sectors. Promising applications have been already employed in the areas of drug delivery systems using bioactive nanoencapsulation, biosensors to detect and quantify pathogens, chemical and organic compounds, alteration of food compositions, and high-performance sensors and film to preserve fruits and vegetables. Moreover, the taste of food and food safety can be improved by new nano-materials from the microbiological sources. The huge benefits from this technology have led to increases in the market investments in nanoscience and nanoproducts in several areas.

Fungi are the common source of industrial enzymes by cause of their excellent capacity for extracellular protein production. These industrial enzymes are applied in pulp and paper chemical and biomedical products, food, starch, textile, drinks, baking, leather, detergents and animal feed. For industrial application, immobilization of enzymes has advantages due to their improvement in the stability and storage ability because of reuse, easy separation of enzymes from the reaction mixture, a possible increase in pH and thermal stability and low product cost. The reusability and the cost of immobilized enzymes display a great advantage comparing to those of free enzymes. Using nanoscale structures for immobilization is preferred due to an increase in the functional surface area to maximize enzyme loading and reducing diffusion limitations. In addition, the physical characteristics of nanostructure such as enhanced diffusion, thermal stability, irradiation resistance and support mobility can impact catalytic activity of immobilized enzymes. This chapter deals with the strategies, challenges, applications and benefits of fungal nanobiotechnology in different areas and, also, antifungal activity of nanoparticles from the microbial sources.

Fungal nanobiotechnology based agro-industries and environmental spheres created the enormous range of possible applications of fungi. The successful and promising studies in these areas have provided a better understanding of fungi in nanobiotechnological disciplines. The utilization of fungi in the environmental biotechnology is a more recent development with many advantages related to bioremediation, treatment of industrial wastes and biotransformation of specific compounds. The objective of this chapter is to summarize recent developments in fungal nanobiotechnology and fungal synthesis of nanoparticles.

The manufacture and use of dyes are widespread industries. The utilization of these pigments is an integral part of almost all manufacturing processes. Wastewaters are produced during the synthesis and use of dyes. Decolorization of water is a significant and a critical part of wastewater treatment processes. Furthermore, metal contaminated industrial wastewater treatment is also acknowledged as one of the bionanotechnological issues. Microorganisms, especially fungi, are possible and strong candidates for heavy metal removal from wastewaters due to its binding ability to a toxic metal or metal ion. Thus, nanobiotechnological aspects of fungal studies in wastewater treatment applications are explained in a separate section in this chapter.

Nanoparticles can be used in various areas such as medicine, biosensors, environmental treatment and so on. These could be produced by conventional chemical and physical methods although conventional methods have some disadvantages. Therefore, a relatively simple, economical and nonhazardous (i.e., eco-friendly) method must be used in order to synthesize various nanoparticles. Biotechnological methods have several advantages over conventional ones. Nanoparticles can be synthesized by using various organisms such as fungi and bacteria. Here, some of the fungi used in the synthesis of nanoparticles are reviewed. The mechanism of bionanoparticle synthesis and biological activity of these nanoparticles are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrio JL, Demain AL (2013) Fungal biotechnology. Int Microbiol 6:191–193

    Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan M, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of monodisperse gold nanoparticles by a an alkolotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Arruebo M, Fernandez-Pacheco R, Ibarra MR, Santamaria J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32

    Article  Google Scholar 

  • Aytar P, Åžam M, Çabuk A (2008) Microbial desulphurization of Turkish lignites. Energy Fuels 22:1196–1199

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Balaji DS, Basavaraja SB, Mahesh D, Prabhakar BK, Ventkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloid Surf B 68:88–92

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Basavaraja SS, Balaji SD, Lagashetty AK, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • Baskar G, Chandhuru J, Sheraz Fahad K, Praveen AS (2013) Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. Asian J Pharm Tech 3:142–146

    Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloid Surf B 47:160–164

    Article  CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2(1):135–141

    Article  CAS  PubMed  Google Scholar 

  • Bhat R, Deshpande R, Sharanabasava VG, Do SH, Venkataraman A (2011) Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorg Chem Appl. doi:10.1155/2011/650979

    Google Scholar 

  • Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun SI (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545

    Google Scholar 

  • Birhanli E, Yesilada O (2010) Enhanced production of laccase in repeated-batch cultures of Funalia trogii and Trametes versicolor. Biochem Eng J 52:33–37

    Article  CAS  Google Scholar 

  • Birhanli E, ErdoÄŸan S, Yesilada O, Onal Y (2013) Laccase production by newly isolated white rot fungus Funlaia trogii: effect of immobilization matrix on laccase production. Biochem Eng J 71:134–139

    Article  CAS  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  CAS  PubMed  Google Scholar 

  • Borovaya M, Pirko Y, Krupodorova T, Naumenko A, Blume Y, Yemets A (2015) Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnol Biotec Eq 29:1156–1163

    Article  CAS  Google Scholar 

  • Bumpus J (2004) Biodegradation of azo dyes by fungi. In: Dilip KA (ed) Fungal biotechnology in agricultural, food, and environmental applications, 21st edn. Basel, New York, pp 457–469

    Google Scholar 

  • Çabuk A, Aytar P, Gedikli S, Özel YK, Kocabıyık E (2013) Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage. Environ Sci Pollut Res 20:4540–4550

    Article  CAS  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloid Surf B 83:42–48

    Article  CAS  Google Scholar 

  • Chan YS, Don MM (2012) Characterization of Ag nanoparticles produced by white-rot fungi and its in vitro antimicrobial activities. Int Arabic J Antimicrobial Agents 2:1–8

    Google Scholar 

  • Chen G, Yi B, Zeng G, Niu Q, Yan M, Chen A, Du J, Huang J, Zhang Q (2014) Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloid Surf B 117:199–205

    Article  CAS  Google Scholar 

  • Cihangir N, Saglam N (1999) Removal of cadmium by Pleurotus sajor-caju basidiomycetes. Acta Biotech 19:171–177

    Article  CAS  Google Scholar 

  • Cuevas R, Durán N, Diez MC, Tortella G, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white rot fungus from Chilean forests. J Nanomater. doi:10.1155/2015/789089

    Google Scholar 

  • Daizy P (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A 73:374–381

    Article  CAS  Google Scholar 

  • Dar J, Soytong K (2014) Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. J Agr Technol 10:823–831

    Google Scholar 

  • Das K, Thiagarajan P (2012) Mycobiosynthesis of metal nanoparticles. Int J Nanotech Nanosci 1:1–10

    Article  Google Scholar 

  • Devika R, Elumalai S, Manikandan E, Eswaramoorthy D (2012) Biosynthesis of silver nanoparticles using the Fungus Pleurotus ostreatus and their antibacterial activity. Open Access Scientific Reports. doi:10.4172/scientificreports.557

    Google Scholar 

  • Duran N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  • Durán N, Cuevas R, Cordi L, Rubilar O, Diez MC (2014) Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. Springer Plus 3:1–7

    Article  CAS  Google Scholar 

  • El-Batal AI, El Kenawy NM, Yassin AS, Amin MA (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Reports 5:31–39

    Article  Google Scholar 

  • El-Newehy MH, Al-Deyab SS, Kenawy E, Abdel-Megeed A (2012) Fabrication of electrospun antimicrobial nanofibers containing metronidazole using nanospider technology. Fiber Polym 13:709–717

    Article  CAS  Google Scholar 

  • Faramarzia MA, Forootanfara H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloid Surf B 87:23–27

    Article  CAS  Google Scholar 

  • Fayaz M, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6:103–109

    CAS  PubMed  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MKJ (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243–248

    Article  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol 5:382–386

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Gopinath K, Arumugam A (2014) Extracellular mycosynthesis of gold nanoparticles using Fusarium solani. App Nanosci 4:657–662

    Article  CAS  Google Scholar 

  • Grimm LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. App Microbiol Biotechnol 69:375–384

    Article  CAS  Google Scholar 

  • Gupta S, Sharma K, Sharma R (2012) Myconanotechnology and application of nanoparticles in biology. Recent Res Sci Technol 4:36–38

    CAS  Google Scholar 

  • Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S (2013) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomed 8:4399–4413

    Google Scholar 

  • Gurunathan S, Han J, Park JH, Kim YK (2014) A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res Lett 9:1–11

    Article  CAS  Google Scholar 

  • Hutten A, Sudfeld D, Ennen I, Reiss G, Hachmann W, Heinzmann U, Wojczykowski K, Jutzi P, Saikaly W, Thomas G (2004) New magnetic nanoparticles for biotechnology. J Biotechnol 112:47–63

    Article  CAS  PubMed  Google Scholar 

  • Ilk S, Demircan D, Saglam S, Saglam N, Rzayev ZMO (2016) Immobilization of laccase onto a porous nanocomposite: application for textile dye degradation. Turkish J Chem 40:262–276.

    Google Scholar 

  • Ingle A, Rai MK, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanoparticle Res 11:2079–2085

    Article  CAS  Google Scholar 

  • Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloid Surf B 81:430–433

    Article  CAS  Google Scholar 

  • Karwa A, Gaikwad S, Rai M (2011) Mycosynthesis of silver nanoparticles using lingzhi or reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P. Karst and their role as antimicrobials and antibiotic activity enhancers. Int J Med Mushrooms 13:483–491

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B 71:133–137

    Article  CAS  Google Scholar 

  • Kumar SA, Ayoobul AA, Absar A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporium. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. doi:10.1155/2011/270974

    Google Scholar 

  • Mansoori GA (2010) Synthesis of nanoparticles by fungi. US patent. US 2010/0,055,199 A1

    Google Scholar 

  • Mazumdar H, Haloi N (2011) A study on biosynthesis of iron nanoparticles by Pleurotus sp. J Microbiol Biotechnol Res 1:39–49

    CAS  Google Scholar 

  • Mirunalini S, Arulmozhi V, Deeppalakshmi K, Krishnaveni M (2012) Intracellular biosynthesis and antibacterial activity of silver nanoparticles using edible mushrooms. Notulae Scientia Biologicae 4:55–61

    CAS  Google Scholar 

  • Mohammed-Fayaz A, Balaji K, Kalaichelvana PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles—an effect of temperature on the size of particles. Colloid Surf B 74:123–126

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramfrez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16:2346–2353

    Article  CAS  Google Scholar 

  • Mühling M, Bradford A, Readman A, Somerfield PJ, Handy RD (2009) An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar Environ Res 68:278–283

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parischa R, Ajayakumar PV, Alam M, Kumar R, Sastry M (2001a) Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001b) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Roy M, Mandal B, Dey G, Mukherjee P, Ghatak J (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnol 19:103–110

    Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Coll Int Sci 156:1–13

    Article  CAS  Google Scholar 

  • Nayak RR, Pradhan N, Behera KM, Pradhan S, Mishra S, Sukla LB, Mishra KB (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Natopart Res 13:3129–3137

    Article  CAS  Google Scholar 

  • Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest J Nanomater Biostruct 4:623–629

    Google Scholar 

  • Nithya R, Ragunathan R (2011) Decolorization of the dye Congo red by Pleurotus sajor caju Silver nanoparticle. Int Conf Food Eng Biotechnol 9:12–15

    Google Scholar 

  • Owaid MN, Raman J, Lakshmanan H, Al-Saeedi SS, Sabaratnam V, Abed IA (2015) Mycosynthesis of silver nanoparticles by Pleurotus cornucopiae var. citrinopileatus and its inhibitory effects against Candida sp. Mater Lett 153:186–190

    Google Scholar 

  • Paul S, Sasikumar CS, Singh AR (2005) Fabrication of silver nanoparticles synthesized from Ganoderma lucidium into the cotton fabrica and its antimicrobial property. Int J Pharma Sci 7:53–56

    Google Scholar 

  • Popescu M, Velea A, Lorinzi (2010) Biogenic production of nanoparticles. Digest J Nanomater Biosufactans 5:1035–1040

    Google Scholar 

  • Prabhu N, Revathi N, Darsana R, Sruthi M, Chinnaswamy P, Innocent DJP (2009) Antibacterial activities of silver nanoparticles synthesized bu Aspergillus fumigatus. Icfai Univ J Biotechnol 3:50–55

    Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles. doi:10.1155/2014/963961

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2015) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol. doi:10.1002/wnan.1363

    Google Scholar 

  • Rai M, Yadav A, Bridge PD, Gade A (2009) Myconanotechnology: a new and emerging science. In: Rai M, Bridge PD (eds) Applied mycology. Wallingford, UK, pp 258–267

    Chapter  Google Scholar 

  • Raman JG, Reddy R, Lakshmanan H, Selvaraj H, Gajendran B, Nanjian R, Chinnasamy A, Sabaratnam V (2015) Mycosynthesis and characterization of silver nanoparticles from Pleurotus djamor var. roseus and their in vitro cytotoxicity effect on PC3 cells. Pro Biochem 50:140–147

    Article  CAS  Google Scholar 

  • Ravindra BK, Rajasab AH (2014) A comparative study on biosynthesis of silver nanoparticles using four different fungal species. Int J Pharm Sci 6:372–376

    CAS  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Kumar Das T, Prasad Maiti G, Basu U (2016) Microbial biosynthesis of nontoxic gold nanoparticles. Mat Sci Eng B 203:41–51

    Article  CAS  Google Scholar 

  • Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Kozlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci Poland 26:419–424

    CAS  Google Scholar 

  • Safarik I, Safarikova M (2002) Magnetic nanoparticles and biosciences. In: Hofmann IH, Rahman Z, Schubert U (eds) Nanostructured materials. Springer, Vienna, pp 1–23

    Chapter  Google Scholar 

  • Sanghi R, Verma P (2009a) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Biores Technol 100:501–504

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P (2009b) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1:154–162

    Article  CAS  Google Scholar 

  • Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloid Surf B 77:214–218

    Article  CAS  Google Scholar 

  • Sarsar V, Selwal MK, Selwal KK (2015) Biofabrication, characterization and antibacterial efficacy of extracellular silver nanoparticles using novel fungal strain of Penicillium atramentosum KM. J Saudi Chem Soc 19:682–688

    Article  Google Scholar 

  • Sastry M, Ahmad A, Khaan MI, Kumar R (2003) Biosytnhesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Ind J Phys A 78:101–105

    Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticle. Small 1(5):517–520

    Article  CAS  PubMed  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G et al (2009) Biosynthesis of silver nanoparticles using the aqueous extract from the compaction producing fungal strain. Process Biochem 44:939–943

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasrichaa R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shi C, Zhu N, Cao Y, Wu P (2015) Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Res Lett 10(147):1–8

    Google Scholar 

  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E.coli and S. aureus. Bioinorg Chem Appl 2014, Article ID 408021

    Google Scholar 

  • Spasova M, Monolova N, Naydenov M, Kuzmonova J, Rashkov I (2011) Electrospun biohybrid materials for plant biocontrol containing chitosan and Trichoderma viride spores. J Bioact Compat Pol 26:148–155

    Article  CAS  Google Scholar 

  • Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spect 114:144–147

    Article  CAS  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei. Insciences J 1:65–79

    Article  CAS  Google Scholar 

  • Vala A (2015) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sus Energy 34:194–197

    Article  CAS  Google Scholar 

  • Vetchinkina EP, Burov AM, Ageeva MV, Dykman LA, Nikitin VE (2013) Biological synthesis of gold nanoparticles by the xylotrophic basidiomycete Lentinula edodes. App Biochem Microbiol 49:406–411

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phanerochaete chrysosporium. Colloid Surf B 53:55–59

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramany RH (2007) Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir 23:7113–7117

    Article  CAS  PubMed  Google Scholar 

  • Yehia RS, Al-Sheikh H (2014) Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J Microbiol Biotechnol 30:2797–2803

    Article  CAS  PubMed  Google Scholar 

  • Yesilada O, Asma D, Cing S (2003) Decolorization of textile dyes by fungal pellets. Process Biochem 38:933–938

    Article  CAS  Google Scholar 

  • Yesilada O, Birhanli E, Ozmen N, Ercan S (2014) Highly stable laccase from repeated-batch culture of Funalia trogii ATCC 200800. App Biochem Microbiol 50:55–61

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necdet Saglam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saglam, N. et al. (2016). Innovation of Strategies and Challenges for Fungal Nanobiotechnology. In: Prasad, R. (eds) Advances and Applications Through Fungal Nanobiotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42990-8_2

Download citation

Publish with us

Policies and ethics