Skip to main content

mRNA Cancer Vaccines

  • Chapter
  • First Online:
Current Strategies in Cancer Gene Therapy

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 209))

Abstract

mRNA cancer vaccines are a relatively new class of vaccines, which combine the potential of mRNA to encode for almost any protein with an excellent safety profile and a flexible production process. The most straightforward use of mRNA vaccines in oncologic settings is the immunization of patients with mRNA vaccines encoding tumor-associated antigens (TAAs). This is exemplified by the RNActive® technology, which induces balanced humoral and cellular immune responses in animal models and is currently evaluated in several clinical trials for oncologic indications. A second application of mRNA vaccines is the production of personalized vaccines. This is possible because mRNA vaccines are produced by a generic process, which can be used to quickly produce mRNA vaccines targeting patient-specific neoantigens that are identified by analyzing the tumor exome. Apart from being used directly to vaccinate patients, mRNAs can also be used in cellular therapies to transfect patient-derived cells in vitro and infuse the manipulated cells back into the patient. One such application is the transfection of patient-derived dendritic cells (DCs) with mRNAs encoding TAAs, which leads to the presentation of TAA-derived peptides on the DCs and an activation of antigen-specific T cells in vivo. A second application is the transfection of patient-derived T cells with mRNAs encoding chimeric antigen receptors, which allows the T cells to directly recognize a specific antigen expressed on the tumor. In this chapter, we will review preclinical and clinical data for the different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Adenine

APC:

Antigen-presenting cell

CAR:

Chimeric antigen receptor

CTL:

Cytotoxic T lymphocyte

CTLA-4:

Cytotoxic T lymphocyte antigen 4

DC:

Dendritic cell

DNA:

Deoxyribonucleic acid

EGFR:

Endothelial growth factor receptor

ELISA:

Enzyme-linked immunosorbent assay

GC:

Guanine and cytosine

GITR:

Glucocorticoid-induced tumor necrosis factor receptor

HLA:

Human leukocyte antigen

HMGB1:

High-mobility group box 1

IDH1:

Isocitrate dehydrogenase 1

IFN:

Interferon

Ig:

Immunoglobulin

LLC:

Lewis lung cancer

MAGEC1:

Melanoma antigen family C1

MAGEC2:

Melanoma antigen family C2

MHC:

Major histocompatibility complex

mRNA:

Messenger ribonucleic acid

MUC1:

Mucin 1

NK:

Natural killer

NSCLC:

Non-small-cell lung cancer

NY-ESO-1:

New York esophageal squamous cell carcinoma-1

ORF:

Open reading frame

OVA:

Ovalbumin

PAP:

Prostatic acid phosphatase

PD1:

Programmed cell death 1

PDL1:

Programmed cell death 1 ligand 1

PDL2:

Programmed cell death 1 ligand 2

PFS:

Progression-free survival

PSA:

Prostate-specific antigen

PSCA:

Prostate stem cell antigen

PSMA:

Prostate-specific membrane antigen

RNA:

Ribonucleic acid

RT-PCR:

Reverse transcriptase polymerase chain reaction

STEAP1:

Six-transmembrane epithelial antigen of the prostate 1

TAA:

Tumor-associated antigen

TERT:

Telomerase reverse transcriptase

Th:

T helper

TLR:

Toll-like receptor

Tmeso:

CAR T cells specifically targeting mesothelin

TPBG:

Trophoblast glycoprotein

UTR:

Untranslated region

References

  • Aerts-Toegaert C, Heirman C, Tuyaerts S, Corthals J, Aerts JL, Bonehill A, Thielemans K, Breckpot K (2007) CD83 expression on dendritic cells and T cells: correlation with effective immune responses. Eur J Immunol 37(3):686–695

    Article  CAS  PubMed  Google Scholar 

  • Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, Karikó K (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 38(17):5884–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Kan S, Zhou S, Wang Y, Xu J, Cooke JP, Wen J, Deng H (2015) Enhancement of the in vivo persistence and antitumor efficacy of CD19 chimeric antigen receptor T cells through the delivery of modified TERT mRNA. Cell Discov 1:Article number: 15040

    Google Scholar 

  • Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M, Carroll RG, June CH, Grupp SA (2011) Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 22(12):1575–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett DM, Liu X, Jiang S, June CH, Grupp SA, Zhao Y (2013) Regimen-specific effects of RNA-modified chimeric antigen receptor T cells in mice with advanced leukemia. Hum Gene Ther 24(8):717–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, Chew A, Zhao Y, Levine BL, Albelda SM, Kalos M, June CH (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2(2):112–120

    Article  CAS  PubMed  Google Scholar 

  • Benteyn D, Heirman C, Bonehill A, Thielemans K, Breckpot K (2015) mRNA-based dendritic cell vaccines. Expert Rev Vaccines 14(2):161–176

    Article  CAS  PubMed  Google Scholar 

  • Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184(2):465–472

    Article  CAS  PubMed  Google Scholar 

  • Bonehill A, Van Nuffel AM, Corthals J, Tuyaerts S, Heirman C, François V, Colau D, van der Bruggen P, Neyns B, Thielemans K (2009) Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 15(10):3366–3375

    Article  CAS  PubMed  Google Scholar 

  • Boon T, Kellermann O (1977) Rejection by syngeneic mice of cell variants obtained by mutagenesis of a malignant teratocarcinoma cell line. Proc Natl Acad Sci USA 74(1):272–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12:337–365

    Article  CAS  PubMed  Google Scholar 

  • Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra38

    Article  PubMed  PubMed Central  Google Scholar 

  • Caruso DA, Orme LM, Neale AM, Radcliff FJ, Amor GM, Maixner W, Downie P, Hassall TE, Tang ML, Ashley DM (2004) Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro Oncol. 6(3):236–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caruso DA, Orme LM, Amor GM, Neale AM, Radcliff FJ, Downie P, Tang ML, Ashley DM (2005) Results of a Phase I study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children with Stage 4 neuroblastoma. Cancer 103(6):1280–1291

    Article  CAS  PubMed  Google Scholar 

  • Castle JC, Kreiter S, Diekmann J, Löwer M, van de Roemer N, de Graaf J, Selmi A, Diken M, Boegel S, Paret C, Koslowski M, Kuhn AN, Britten CM, Huber C, Türeci O, Sahin U (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72(5):1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Cerundolo V, Hermans IF, Salio M (2004) Dendritic cells: a journey from laboratory to clinic. Nat Immunol 5(1):7–10

    Article  CAS  PubMed  Google Scholar 

  • Cheadle EJ, Sheard V, Hombach AA, Chmielewski M, Riet T, Berrevoets C, Schooten E, Lamers C, Abken H, Debets R, Gilham DE (2012) Chimeric antigen receptors for T-cell based therapy. Methods Mol Biol 907:645–666

    Article  CAS  PubMed  Google Scholar 

  • Coulie PG, Lehmann F, Lethé B, Herman J, Lurquin C, Andrawiss M, Boon T (1995) A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci U S A. 92(17):7976–7980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dannull J, Nair S, Su Z, Boczkowski D, DeBeck C, Yang B, Gilboa E, Vieweg J (2005) Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood 105(8):3206–3213

    Article  CAS  PubMed  Google Scholar 

  • Demaria S, Formenti SC (2012) Role of T lymphocytes in tumor response to radiotherapy. Front Oncol 2:95

    PubMed  PubMed Central  Google Scholar 

  • Diken M, Kreiter S, Selmi A, Britten CM, Huber C, Türeci Ö, Sahin U (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18(7):702–708

    Article  CAS  PubMed  Google Scholar 

  • Dörrie J, Schaft N, Müller I, Wellner V, Schunder T, Hänig J, Oostingh GJ, Schön MP, Robert C, Kämpgen E, Schuler G (2008) Introduction of functional chimeric E/L-selectin by RNA electroporation to target dendritic cells from blood to lymph nodes. Cancer Immunol Immunother 57(4):467–477

    Article  PubMed  Google Scholar 

  • Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, Blanchard T, McMahon D, Sidney J, Sette A, Baker BM, Mandoiu II, Srivastava PK (2014) Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med 211(11):2231–2248

    Article  PubMed  PubMed Central  Google Scholar 

  • Echchakir H, Mami-Chouaib F, Vergnon I, Baurain JF, Karanikas V, Chouaib S, Coulie PG (2001) A point mutation in the alpha-actinin-4 gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human lung carcinoma. Cancer Res 61(10):4078–4083

    CAS  PubMed  Google Scholar 

  • Formenti SC, Demaria S (2013) Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 105(4):256–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotin-Mleczek M, Duchardt KM, Lorenz C, Pfeiffer R, Ojkić-Zrna S, Probst J, Kallen KJ (2011) Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 34(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Fotin-Mleczek M, Zanzinger K, Heidenreich R, Lorenz C, Thess A, Duchardt KM, Kallen KJ (2012) Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J Gene Med. 14(6):428–439

    Article  CAS  PubMed  Google Scholar 

  • Fotin-Mleczek M, Zanzinger K, Heidenreich R, Lorenz C, Kowalczyk A, Kallen KJ, Huber SM (2014) mRNA-based vaccines synergize with radiation therapy to eradicate established tumors. Radiat Oncol 9:180

    Article  PubMed  PubMed Central  Google Scholar 

  • Garnett CT, Schlom J, Hodge JW (2008) Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement. Clin Cancer Res 14(11):3536–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlinger M, Catto JW, Orntoft TF, Real FX, Zwarthoff EC, Swanton C (2015) Intratumour heterogeneity in urologic cancers: from molecular evidence to clinical implications. Eur Urol 67(4):729–737

    Article  CAS  PubMed  Google Scholar 

  • Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC (2014) Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3:e28518

    Article  PubMed  PubMed Central  Google Scholar 

  • Grünebach F, Kayser K, Weck MM, Müller MR, Appel S, Brossart P (2005) Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4-1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes. Cancer Gene Ther 12(9):749–756

    Article  PubMed  Google Scholar 

  • Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest. 109(3):409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Jäger E, Jäger D, Knuth A (2002) Clinical cancer vaccine trials. Curr Opin Immunol 14(2):178–182

    Article  PubMed  Google Scholar 

  • Jensen MC, Riddell SR (2015) Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol 33:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallen KJ, Theß A (2014) A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines. 2(1):10–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Kallen KJ, Heidenreich R, Schnee M, Petsch B, Schlake T, Thess A, Baumhof P, Scheel B, Koch SD, Fotin-Mleczek M (2013) A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines. Hum Vaccin Immunother. 9(10):2263–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF; IMPACT Study Investigators (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 363(5):411–22

    Google Scholar 

  • Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16(11):1833–1840

    Article  PubMed  PubMed Central  Google Scholar 

  • Kershaw MH, Westwood JA, Darcy PK (2013) Gene-engineered T cells for cancer therapy. Nat Rev Cancer 13(8):525–541

    Article  CAS  PubMed  Google Scholar 

  • Knapp DC, Mata JE, Reddy MT, Devi GR, Iversen PL (2003) Resistance to chemotherapeutic drugs overcome by c-Myc inhibition in a Lewis lung carcinoma murine model. Anticancer Drugs 14:39–47

    Article  CAS  PubMed  Google Scholar 

  • Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, Yang JC, Kammula US, Devillier L, Carpenter R, Nathan DA, Morgan RA, Laurencot C, Rosenberg SA (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119(12):2709–2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalczyk A, Doener F, Zanzinger K, Noth J, Baumhof P, Fotin-Mleczek M, Heidenreich R (2016) Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine 34:3882–3893

    Article  CAS  PubMed  Google Scholar 

  • Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, Boegel S, Schrörs B, Vascotto F, Castle JC, Tadmor AD, Schoenberger SP, Huber C, Türeci Ö, Sahin U (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520(7549):692–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kübler H, Scheel B, Gnad-Vogt U, Miller K, Schultze-Seemann W, Vom Dorp F, Parmiani G, Hampel C, Wedel S, Trojan L, Jocham D, Maurer T, Rippin G, Fotin-Mleczek M, von der Mülbe F, Probst J, Hoerr I, Kallen KJ, Lander T, Stenzl A (2015) Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J Immunother Cancer 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Kyte JA, Kvalheim G, Lislerud K, thor Straten P, Dueland S, Aamdal S, Gaudernack G (2007) T cell responses in melanoma patients after vaccination with tumor-mRNA transfected dendritic cells. Cancer Immunol Immunother 56(5):659–675

    Article  CAS  PubMed  Google Scholar 

  • Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24(13):e20–e22

    Article  PubMed  Google Scholar 

  • Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, Vulto A, den Bakker M, Oosterwijk E, Debets R, Gratama JW (2013) Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21(4):904–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leisegang M, Kammertoens T, Uckert W, Blankenstein T (2016) Targeting human melanoma neoantigens by T cell receptor gene therapy. J Clin Invest 126(3):854–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R, Calis JJ, Behjati S, Velds A, Hilkmann H, Atmioui DE, Visser M, Stratton MR, Haanen JB, Spits H, van der Burg SH, Schumacher TN (2015) High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med 21(1):81–85

    Article  CAS  PubMed  Google Scholar 

  • Lu YC, Yao X, Crystal JS, Li YF, El-Gamil M, Gross C, Davis L, Dudley ME, Yang JC, Samuels Y, Rosenberg SA, Robbins PF (2014) Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res 20(13):3401–3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lurquin C, Van Pel A, Mariamé B, De Plaen E, Szikora JP, Janssens C, Reddehase MJ, Lejeune J, Boon T (1989) Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58(2):293–303

    Article  CAS  PubMed  Google Scholar 

  • Mandelboim O, Vadai E, Fridkin M, Katz-Hillel A, Feldman M, Berke G, Eisenbach L (1995) Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nat Med 1(11):1179–1183

    Article  CAS  PubMed  Google Scholar 

  • Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, Wedge DC, Fullam A, Alexandrov LB, Tubio JM, Stebbings L, Menzies A, Widaa S, Stratton MR, Jones PH, Campbell PJ (2015) High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880–886 Tumor evolution

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinon F, Krishnan S, Lenzen G, Magné R, Gomard E, Guillet JG, Lévy JP, Meulien P (1993) Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 23(7):1719–1722

    Article  CAS  PubMed  Google Scholar 

  • Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, Arthur CD, White JM, Chen YS, Shea LK, Hundal J, Wendl MC, Demeter R, Wylie T, Allison JP, Smyth MJ, Old LJ, Mardis ER, Schreiber RD (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, Zhao Y, Kalos M, June CH (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 1(1):26–31

    Article  CAS  PubMed Central  Google Scholar 

  • Melero I, Berman DM, Aznar MA, Korman AJ, Pérez Gracia JL, Haanen J (2015) Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer 15(8):457–472

    Article  CAS  PubMed  Google Scholar 

  • Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54(6):777–785

    Article  CAS  PubMed  Google Scholar 

  • Morse MA, Nair SK, Mosca PJ, Hobeika AC, Clay TM, Deng Y, Boczkowski D, Proia A, Neidzwiecki D, Clavien PA, Hurwitz HI, Schlom J, Gilboa E, Lyerly HK (2003) Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Invest 21(3):341–349

    Article  CAS  PubMed  Google Scholar 

  • Nair SK, Hull S, Coleman D, Gilboa E, Lyerly HK, Morse MA (1999) Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. Int J Cancer 82(1):121–124

    Article  CAS  PubMed  Google Scholar 

  • Nair SK, Morse M, Boczkowski D, Cumming RI, Vasovic L, Gilboa E, Lyerly HK (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 235(4):540–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer M, Parker J, Modi S, Butts C, Smylie M, Meikle A, Kehoe M, MacLean G, Longenecker M (2001) Phase I study of the BLP25 (MUC1 peptide) liposomal vaccine for active specific immunotherapy in stage IIIB/IV non-small-cell lung cancer. Clin Lung Cancer 3(1):49–57 discussion 58

    Article  CAS  PubMed  Google Scholar 

  • Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, Schlake T, Thess A, Kallen KJ, Stitz L, Kramps T (2012) Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 30(12):1210–1216

    Article  CAS  PubMed  Google Scholar 

  • Ponsaerts P, Van Tendeloo VF, Berneman ZN (2003) Cancer immunotherapy using RNA-loaded dendritic cells. Clin Exp Immunol 134(3):378–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruitt SK, Boczkowski D, de Rosa N, Haley NR, Morse MA, Tyler DS, Dannull J, Nair S (2011) Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur J Immunol 41(12):3553–3563

    Article  CAS  PubMed  Google Scholar 

  • Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, Zhang W, Sougnez C, Cibulskis K, Sidney J, Stevenson K, Ritz J, Neuberg D, Brusic V, Gabriel S, Lander ES, Getz G, Hacohen N, Wu CJ (2014) Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 124(3):453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rammensee HG (2006) Some considerations on the use of peptides and mRNA for therapeutic vaccination against cancer. Immunol Cell Biol 84(3):290–294

    Article  CAS  PubMed  Google Scholar 

  • Ramos CA, Dotti G (2011) Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opin Biol Ther 11(7):855–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J, Griekspoor A, Mesman E, Verreck FA, Spits H, Schlom J, van Veelen P, Neefjes JJ (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281

    Article  CAS  PubMed  Google Scholar 

  • Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19(6):747–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savai R, Schermuly RT, Pullamsetti SS, Schneider M, Greschus S, Ghofrani HA, Traupe H, Grimminger F, Banat GA (2007) A combination hybrid-based vaccination/adoptive cellular therapy to prevent tumor growth by involvement of T cells. Cancer Res 67(11):5443–5453

    Article  CAS  PubMed  Google Scholar 

  • Scheel B, Teufel R, Probst J, Carralot JP, Geginat J, Radsak M, Jarrossay D, Wagner H, Jung G, Rammensee HG, Hoerr I, Pascolo S (2005) Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur J Immunol 35(5):1557–1566

    Article  CAS  PubMed  Google Scholar 

  • Schnee M, Vogel AB, Voss D, Petsch B, Baumhof P, Kramps T, Stitz L (2016) An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn Pigs. PLoS Negl Trop Dis 10(6)

    Google Scholar 

  • Schuler G, Schuler-Thurner B, Steinman RM (2003) The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15(2):138–147

    Article  CAS  PubMed  Google Scholar 

  • Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74

    Article  CAS  PubMed  Google Scholar 

  • Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, Menn O, Osswald M, Oezen I, Ott M, Keil M, Balß J, Rauschenbach K, Grabowska AK, Vogler I, Diekmann J, Trautwein N, Eichmüller SB, Okun J, Stevanović S, Riemer AB, Sahin U, Friese MA, Beckhove P, von Deimling A, Wick W, Platten M (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512(7514):324–327

    Article  CAS  PubMed  Google Scholar 

  • Sebastian M, Papachristofilou A, Weiss C, Früh M, Cathomas R, Hilbe W, Wehler T, Rippin G, Koch SD, Scheel B, Fotin-Mleczek M, Heidenreich R, Kallen KJ, Gnad-Vogt U, Zippelius A (2014) Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer 14:748

    Article  PubMed  PubMed Central  Google Scholar 

  • Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber H-P, Ferrara N (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+ Gr1+ myeloid cells. Nat Biotechnol 25:911–920

    Article  CAS  PubMed  Google Scholar 

  • Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  PubMed  PubMed Central  Google Scholar 

  • Stratton MR (2011) Exploring the genomes of cancer cells: progress and promise. Science 331(6024):1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Dannull J, Heiser A, Yancey D, Pruitt S, Madden J, Coleman D, Niedzwiecki D, Gilboa E, Vieweg J (2003) Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 63(9):2127–2133

    CAS  PubMed  Google Scholar 

  • Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS, Parkhurst MR, Yang JC, Rosenberg SA (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344(6184):641–645

    Article  CAS  PubMed  Google Scholar 

  • Tran E, Ahmadzadeh M, Lu YC, Gros A, Turcotte S, Robbins PF, Gartner JJ, Zheng Z, Li YF, Ray S, Wunderlich JR, Somerville RP, Rosenberg SA (2015) Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350(6266):1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Van den Eynde B, Lethé B, Van Pel A, De Plaen E, Boon T (1991) The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med 173(6):1373–1384

    Article  PubMed  Google Scholar 

  • van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254(5038):1643–1647

    Article  PubMed  Google Scholar 

  • Van Nuffel AM, Wilgenhof S, Thielemans K, Bonehill A (2012) Overcoming HLA restriction in clinical trials: Immune monitoring of mRNA-loaded DC therapy. Oncoimmunology 1(8):1392–1394

    Article  PubMed  PubMed Central  Google Scholar 

  • van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B, van Dijk LJ, Behjati S, Hilkmann H, El Atmioui D, Nieuwland M, Stratton MR, Kerkhoven RM, Kesmir C, Haanen JB, Kvistborg P, Schumacher TN (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31(32):e439–e442

    Article  PubMed  Google Scholar 

  • Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C, Van Bockstaele DR, Berneman ZN (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98(1):49–56

    Article  PubMed  Google Scholar 

  • Vesely MD, Schreiber RD (2013) Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann NY Acad Sci 1284:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wölfel T, Hauer M, Schneider J, Serrano M, Wölfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Büschenfelde KH, Beach D (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269(5228):1281–1284

    Article  PubMed  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247(4949 Pt 1):1465–1468

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J, Weinschenk T, Modrusan Z, Mellman I, Lill JR, Delamarre L (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL, Albelda SM, June CH (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70(22):9053–9061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Henoch Hong, Ulrike Gnad-Vogt, Ulrich Kruse, and Mariola Fotin-Mleczek for discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Fiedler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fiedler, K., Lazzaro, S., Lutz, J., Rauch, S., Heidenreich, R. (2016). mRNA Cancer Vaccines. In: Walther, W. (eds) Current Strategies in Cancer Gene Therapy. Recent Results in Cancer Research, vol 209. Springer, Cham. https://doi.org/10.1007/978-3-319-42934-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42934-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42932-8

  • Online ISBN: 978-3-319-42934-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics