Skip to main content

Advertisement

Log in

Introduction of functional chimeric E/L-selectin by RNA electroporation to target dendritic cells from blood to lymph nodes

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Inefficient migration of dendritic cells (DC) to regional lymph nodes (LN) upon intracutaneous injection is a major obstacle for effective DC vaccination. Intravenous vaccination is unfavorable, because DC cannot migrate directly from the blood into LN.

Methods

To enable human monocyte-derived (mo)DC to enter LN directly from the blood, we manipulated them by RNA electroporation to express a human chimeric E/L-selectin (CD62E/CD62L) protein, which binds to peripheral node addressin expressed on high endothelial venules.

Results

Transfection efficiency exceeded 95%, and high E/L-selectin surface expression was detected for >48 h. E/L-selectin RNA-transfected DC displayed an identical mature DC phenotype as mock-transfected DC. Furthermore, E/L-selectin-transfected DC maintained their normal CCR7-mediated migration capacity, and their ability to prime and expand functional cytotoxic T cells recognizing MelanA. Most importantly, E/L-selectin-RNA-transfected DC gained the capability to attach to and roll on sialyl-LewisX in vitro.

Outlook

The presented strategy can be readily translated into the clinic, as it involves no stable genetic manipulation or viral transformation, and allows targeting of a large number of LN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdel-Wahab Z, Cisco R, Dannull J, Ueno T, Abdel-Wahab O, Kalady MF, Onaitis MW, Tyler DS, Pruitt SK (2005) Cotransfection of DC with TLR4 and MART-1 RNA induces MART-1-specific responses. J Surg Res 124:264–273

    Article  PubMed  CAS  Google Scholar 

  2. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    Article  PubMed  CAS  Google Scholar 

  3. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61:6451–6458

    PubMed  CAS  Google Scholar 

  4. Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G (2001) Dendritic cells as vectors for therapy. Cell 106:271–274

    Article  PubMed  CAS  Google Scholar 

  5. Berger TG, Feuerstein B, Strasser E, Hirsch U, Schreiner D, Schuler G, Schuler-Thurner B (2002) Large-scale generation of mature monocyte-derived dendritic cells for clinical application in cell factories. J Immunol Methods 268:131–140

    Article  PubMed  CAS  Google Scholar 

  6. Breckpot K, Dullaers M, Bonehill A, Van Meirvenne S, Heirman C, De Greef C, Van Der BP, Thielemans K (2003) Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med 5:654–667

    Article  PubMed  CAS  Google Scholar 

  7. Buckley RH (2002) Gene therapy for SCID—a complication after remarkable progress. Lancet 360:1185–1186

    Article  PubMed  Google Scholar 

  8. Campbell DJ, Butcher EC (2002) Rapid acquisition of tissue-specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med 195:135–141

    Article  PubMed  CAS  Google Scholar 

  9. Cho HI, Kim HJ, Oh ST, Kim TG (2003) In vitro induction of carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes by dendritic cells transduced with recombinant adenoviruses. Vaccine 22:224–236

    Article  PubMed  CAS  Google Scholar 

  10. Cisco RM, Abdel-Wahab Z, Dannull J, Nair S, Tyler DS, Gilboa E, Vieweg J, Daaka Y, Pruitt SK (2004) Induction of human dendritic cell maturation using transfection with RNA encoding a dominant positive toll-like receptor 4. J Immunol 172:7162–7168

    PubMed  CAS  Google Scholar 

  11. Dannull J, Nair S, Su Z, Boczkowski D, DeBeck C, Yang B, Gilboa E, Vieweg J (2005) Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood 105:3206–3213

    Article  PubMed  CAS  Google Scholar 

  12. de Vries IJ, Krooshoop DJ, Scharenborg NM, Lesterhuis WJ, Diepstra JH, Van Muijen GN, Strijk SP, Ruers TJ, Boerman OC, Oyen WJ, Adema GJ, Punt CJ, Figdor CG (2003) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 63:12–17

    PubMed  Google Scholar 

  13. de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  CAS  Google Scholar 

  14. Dudda JC, Lembo A, Bachtanian E, Huehn J, Siewert C, Hamann A, Kremmer E, Forster R, Martin SF (2005) Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: important roles for soluble factors and tissue microenvironments. Eur J Immunol 35:1056–1065

    Article  PubMed  CAS  Google Scholar 

  15. Dudda JC, Simon JC, Martin S (2004) Dendritic cell immunization route determines CD8+ T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell-homing subsets. J Immunol 172:857–863

    PubMed  CAS  Google Scholar 

  16. Dullaers M, Breckpot K, Van Meirvenne S, Bonehill A, Tuyaerts S, Michiels A, Straetman L, Heirman C, De Greef C, Van Der BP, Thielemans K (2004) Side-by-side comparison of lentivirally transduced and mRNA-electroporated dendritic cells: implications for cancer immunotherapy protocols. Mol Ther 10:768–779

    Article  PubMed  CAS  Google Scholar 

  17. Erdmann M, Dörrie J, Schaft N, Strasser E, Hendelmeier M, Kämpgen E, Schuler G, Schuler-Thurner B (2007) Effective clinical-scale production of dendritic cell vaccines by monocyte elutriation directly in medium, subsequent culture in bags and final antigen loading using peptides or RNA transfection. J Immunother 30:663–674

    Article  PubMed  CAS  Google Scholar 

  18. Feuerstein B, Berger TG, Maczek C, Roder C, Schreiner D, Hirsch U, Haendle I, Leisgang W, Glaser A, Kuss O, Diepgen TL, Schuler G, Schuler-Thurner B (2000) A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use. J Immunol Methods 245:15–29

    Article  PubMed  CAS  Google Scholar 

  19. Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480

    Article  PubMed  CAS  Google Scholar 

  20. Fong L, Brockstedt D, Benike C, Wu L, Engleman EG (2001) Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 166:4254–4259

    PubMed  CAS  Google Scholar 

  21. Gilboa E, Vieweg J (2004) Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev 199:251–263

    Article  PubMed  CAS  Google Scholar 

  22. Grunebach F, Kayser K, Weck MM, Muller MR, Appel S, Brossart P (2005) Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4-1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes. Cancer Gene Ther 12:749–756

    Article  PubMed  CAS  Google Scholar 

  23. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S, Fischer A, Davies EG, Kuis W, Leiva L, Cavazzana-Calvo M (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193

    Article  PubMed  CAS  Google Scholar 

  24. Heiser A, Dahm P, Yancey DR, Maurice MA, Boczkowski D, Nair SK, Gilboa E, Vieweg J (2000) Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J Immunol 164:5508–5514

    PubMed  CAS  Google Scholar 

  25. Kocher T, Schultz-Thater E, Gudat F, Schaefer C, Casorati G, Juretic A, Willimann T, Harder F, Heberer M, Spagnoli GC (1995) Identification and intracellular location of MAGE-3 gene product. Cancer Res 55:2236–2239

    PubMed  CAS  Google Scholar 

  26. Korokhov N, de Gruijl TD, Aldrich WA, Triozzi PL, Banerjee PT, Gillies SD, Curiel TJ, Douglas JT, Scheper RJ, Curiel DT (2005) High Efficiency Transduction of Dendritic Cells by Adenoviral Vectors Targeted To DC-SIGN. Cancer Biol Ther 4:289–294

    Article  PubMed  CAS  Google Scholar 

  27. Kunkel EJ, Ley K (1996) Distinct phenotype of E-selectin-deficient mice. E-selectin is required for slow leukocyte rolling in vivo. Circ Res 79:1196–1204

    PubMed  CAS  Google Scholar 

  28. Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873

    Article  PubMed  CAS  Google Scholar 

  29. Ley K, Allietta M, Bullard DC, Morgan S (1998) Importance of E-selectin for firm leukocyte adhesion in vivo. Circ Res 83:287–294

    PubMed  CAS  Google Scholar 

  30. Lundqvist A, Palmborg A, Pavlenko M, Levitskaya J, Pisa P (2005) Mature dendritic cells induce tumor-specific type 1 regulatory T cells. J Immunother 28:229–235

    Article  PubMed  CAS  Google Scholar 

  31. Markiewicz MA, Kast WM (2004) Progress in the development of immunotherapy of cancer using ex vivo-generated dendritic cells expressing multiple tumor antigen epitopes. Cancer Invest 22:417–434

    Article  PubMed  CAS  Google Scholar 

  32. Marshall E (2002) Clinical research. Gene therapy a suspect in leukemia-like disease. Science 298:34–35

    Article  PubMed  CAS  Google Scholar 

  33. Mora JR, Cheng G, Picarella D, Briskin M, Buchanan N, von Andrian UH (2005) Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J Exp Med 201:303–316

    Article  PubMed  CAS  Google Scholar 

  34. Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK (1999) Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res 59:56–58

    PubMed  CAS  Google Scholar 

  35. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332

    Article  PubMed  CAS  Google Scholar 

  36. Oostingh GJ, Ludwig RJ, Enders S, Grüner S, Harms G, Boehncke W-H, Nieswandt B, Tauber R, Schön MP (2007) Diminished lymphocyte adhesion and alleviation of allergic responses by small-molecule- or antibody-mediated inhibition of l-selectin functions. J Invest Dermatol 127:90–97

    Article  PubMed  CAS  Google Scholar 

  37. Ophorst OJ, Kostense S, Goudsmit J, De Swart RL, Verhaagh S, Zakhartchouk A, Van Meijer M, Sprangers M, Van Amerongen G, Yuksel S, Osterhaus AD, Havenga MJ (2004) An adenoviral type 5 vector carrying a type 35 fiber as a vaccine vehicle: DC targeting, cross neutralization, and immunogenicity. Vaccine 22:3035–3044

    Article  PubMed  CAS  Google Scholar 

  38. Paczesny S, Ueno H, Fay J, Banchereau J, Palucka AK (2003) Dendritic cells as vectors for immunotherapy of cancer. Semin Cancer Biol 13:439–447

    Article  PubMed  CAS  Google Scholar 

  39. Rea D, Havenga MJ, van Den AM, Sutmuller RP, Lemckert A, Hoeben RC, Bout A, Melief CJ, Offringa R (2001) Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells. J Immunol 166:5236–5244

    PubMed  CAS  Google Scholar 

  40. Ridolfi R, Riccobon A, Galassi R, Giorgetti G, Petrini M, Fiammenghi L, Stefanelli M, Ridolfi L, Moretti A, Migliori G, Fiorentini G (2004) Evaluation of in vivo labelled dendritic cell migration in cancer patients. J Transl Med 2:27

    Article  PubMed  CAS  Google Scholar 

  41. Robert C, Klein C, Cheng G, Kogan A, Mulligan RC, von Andrian UH, Kupper TS (2003) Gene therapy to target dendritic cells from blood to lymph nodes. Gene Ther 10:1479–1486

    Article  PubMed  CAS  Google Scholar 

  42. Robert C, Kupper TS (1999) Inflammatory skin diseases, T cells, and immune surveillance. N Engl J Med 341:1817–1828

    Article  PubMed  CAS  Google Scholar 

  43. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  PubMed  CAS  Google Scholar 

  44. Sæbøe-Larssen S, Fossberg E, Gaudernack G (2002) mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J Immunol Methods 259:191–203

    Article  PubMed  Google Scholar 

  45. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  PubMed  CAS  Google Scholar 

  46. Scandella E, Men Y, Gillessen S, Forster R, Groettrup M (2002) Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood 100:1354–1361

    Article  PubMed  CAS  Google Scholar 

  47. Schaft N, Dorrie J, Thumann P, Beck VE, Muller I, Schultz ES, Kampgen E, Dieckmann D, Schuler G (2005) Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. J Immunol 174:3087–3097

    PubMed  CAS  Google Scholar 

  48. Sumimoto H, Tsuji T, Miyoshi H, Hagihara M, Takada-Yamazaki R, Okamoto S, Ikeda Y, Takahashi T, Kawakami Y (2002) Rapid and efficient generation of lentivirally gene-modified dendritic cells from DC progenitors with bone marrow stromal cells. J Immunol Methods 271:153–165

    Article  PubMed  CAS  Google Scholar 

  49. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den DP, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190:1669–1678

    Article  PubMed  CAS  Google Scholar 

  50. von Andrian UH, Mackay CR (2000) T-cell function and migration. Two sides of the same coin. N Engl J Med 343:1020–1034

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Manfred Lutz for fruitful discussions. We thank Drs. Sandy King and Robert Fuhlbrigge for performing pilot rolling experiments. We thank Susanne Rößner and Stefanie Baumann for technical assistance. This study was supported by grants to G.S. from the DFG—German Research Foundation (Collaborative Research Centre SFB643, Project C1), the European Union (DCVACC, contract no.: 503037), and by the Cancer Immunotherapy (CIMT) EU Integrated Project, WP02.02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Schaft.

Additional information

Jan Dörrie and Niels Schaft contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 45 KB)

(DOC 443 KB)

MOESM3 (MPEG 1.97 MB)

MOESM4 (MPEG 1.39 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dörrie, J., Schaft, N., Müller, I. et al. Introduction of functional chimeric E/L-selectin by RNA electroporation to target dendritic cells from blood to lymph nodes. Cancer Immunol Immunother 57, 467–477 (2008). https://doi.org/10.1007/s00262-007-0385-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0385-1

Keywords

Navigation