Skip to main content

Agri-nanotechniques for Plant Availability of Nutrients

  • Chapter
  • First Online:
Plant Nanotechnology

Abstract

Nanotechnology has opened up a number of scopes for novel applications in the field of agricultural industries, because of several unique physicochemical properties of nanoparticles (NPs), i.e., high surface area, high reactivity, tunable pore size, and particle morphology. Nanoparticles may be treated as “magic bullets,” containing nanopesticides, nanofertilizers, etc., which will trigger specific cellular organelles in the plant to release their contents. So far, little information is available on the behavior of nanofertilzers in soil system, as well as utilization of nanoparticles for smart delivery of fertilizers. Still NPs have already shown promise for their potential utility in crop production in the form of nanofertilizers, nanopesticide, nanoherbicides around the world. The present chapter highlights the key role of nanoparticles in soil systems, their characterization, behavior, mobility, and effective means for the smart delivery of fertilizers that has a strong bearing on the growth and yield of plants. Nano-based slow-release or controlled-release (CR) fertilizers have the potential to increase the efficiency of nutrient uptake. In this chapter, utilization of nanoparticles for delivery of fertilizers in an agricultural production system for the sustainable environment has been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari T (2014) Implications of nanotechnology in soil science and plant nutrition. In: Proceedings of seventh international conference on smart materials, structures and systems, Bangalore, India, 8–11 July 2014, p 12

    Google Scholar 

  • Ajayan PM, Schadler LS, Braun PV (eds) (2003) Nanocomposite science and technology. Wiley-VCH Verlag GmbH and Co, KGaA, Weinheim

    Google Scholar 

  • Al-Amin Sadek MD, Jayasuriya HP (2007) Nanotechnology prospects in agricultural context: an overview. In: Proceedings of the international agricultural engineering conference, Bangkok, 3–6 Dec 2007, p 548

    Google Scholar 

  • Al-Busaidi A, Yamamoto T, Inoue A, Egrinya Eneji (2008) Effects of zeolite on soil nutrients and growth of barley following irrigation with saline water. In: 3rd international conference on water resources and arid environments and the 1st Arab water forum, Riyadh, Saudi Arabia, 16–19 Nov 2008, p 29

    Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng Res 28:1

    Article  Google Scholar 

  • Allen ER, Hossner LR, Ming DW, Henninger DL (1993) Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures. Soil Sci Soc Am J 57:1368–1374

    Article  CAS  PubMed  Google Scholar 

  • Anadão P (2012) Polymer/clay nanocomposites: concepts, researches, applications and trends for the future. In: Ebrahimi F (ed) Nanocomposites—new trends and developments. InTech, Croatia, p 514

    Google Scholar 

  • Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52:342–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    Article  CAS  PubMed  Google Scholar 

  • Azeem B, Kushaari K, Man ZB, Basit A, Thanh TH (2014) Review on materials & methods to produce controlled release coated urea fertilizer. J Control Release 181:11–21

    Article  CAS  PubMed  Google Scholar 

  • Banfield JF, Zhang H (2001) Nanoparticles in the environment. Chapter 1. In: Banfield JF, Navrotsky A (eds) Nanoparticles and the environment. Mineralogical Society of America, Washington, DC, pp 1–58

    Google Scholar 

  • Bansiwal AK, Rayalu SS, Labhasetwar NK, Juwarkar AA, Devotta S (2006) Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J Agric Food Chem 54:4773–4779

    Article  CAS  PubMed  Google Scholar 

  • Bastús NG, Casals E, Vázquez-Campos S, Puntes V (2008) Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media. Nanotoxico 2(3):99–112

    Article  CAS  Google Scholar 

  • Bastús NG, Casals E, Ojea I, Varon M, Puntes V (2012) The reactivity of colloidal inorganic nanoparticles. In: Hashim AA (ed) The delivery of nanoparticles. InTech, Croatia, pp 377–400

    Google Scholar 

  • Bendall JS, Paderi M, Ghigliotti F, Li Pira NL, Lambertini V, Lesnyak V, Gaponik N, Visimberga G. Eychmülle, A, Sotomayor Torres CM, Welland ME, Gieck C, Marchese L (2010) Layer-by-layer all-inorganic quantum dot-based LEDs: a simple procedure with robust performance. Adv Funct Mater 20:3298–3302

    Google Scholar 

  • Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393

    Article  CAS  PubMed  Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  CAS  PubMed  Google Scholar 

  • Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32

    Article  CAS  PubMed  Google Scholar 

  • Brady NC, Weil RR (1996) The nature and properties of soils. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Breck DW (1974) Zeolite molecular sieves. Wiley, New York

    Google Scholar 

  • Broos K, Warne J, Heemsbergen DA, Stevens D, Barnes MB, Correll RL, Mclaughlin MJ (2007) Soil factors controlling the toxicity of Copper and Zinc to microbial processes in Australian Soils. Environ Toxi Chem 26(4):583–590

    Article  CAS  Google Scholar 

  • Buffle J (2006) The key role of environmental colloids/nanoparticles for the sustainability of life. Environ Chem 3:155–158

    Article  CAS  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Article  CAS  PubMed  Google Scholar 

  • Calabi-Floody M, Bendall JS, Jara AA, Welland ME, Theng BKG, Rumpel C, de la Luz Mora M (2011) Nanoclays from an Andisol: extraction, properties and carbon stabilization. Geoderma 161:159–167

    Article  CAS  Google Scholar 

  • Casals E, Vázquez-Campos S, Bastús NG, Puntes V (2008) Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological systems. TrAC Trends Anal Chem 27(8):672–683

    Article  CAS  Google Scholar 

  • Chaudhry Q, Castle L, Watkins R (eds) (2010) Nanotechnologies in food. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31

    Google Scholar 

  • Chorover J, Kretzschmar R, Garcia-Pichel F, Sparks DL (2007) Soil biogeochemical processes within the critical zone. Elements 3:321–326

    Article  CAS  Google Scholar 

  • Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326–343

    Article  CAS  PubMed  Google Scholar 

  • Collins D, Luxton T, Kumar N, Shah S, Walker VK, Shah V (2012) Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. Plos One 1–11

    Google Scholar 

  • Coma V, Martial-Gros A, Garreau S, Copinet A, Salin F, Deschamps A (2002) Edible antimicrobial films based on chitosan matrix. J Food Sci 67:1162–1169

    Article  CAS  Google Scholar 

  • Cornelis G, Thomas CD, McLaughlin MJ, Kirby JK, Beak DG (2012) Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Am J 76:891–902

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Corradini E, De Moura M, Mattoso L (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Exp Polym Lett 4(8):509–515

    Article  CAS  Google Scholar 

  • Cosgrove T (2005) Colloid science: principles, methods and applications. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Cui HX, Sun CJ, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International conference on Nanoagri, Sao Pedro, Brazil, 20–25 June 2010, pp 28–33

    Google Scholar 

  • Curkovic L, Cerjan-Stefanovic S, Filipan T (1997) Metal ion exchange by natural and modified zeolites. Water Res 31:1379–1382

    Article  CAS  Google Scholar 

  • Dana M, Lefroy RDB, Blair GJ (1994) A glasshouse evaluation of sulfur fertilizer sources for crops and pastures.1. Flooded and non-flooded rice. Aust J Agril Res 45:1497–1515

    Article  CAS  Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT, Nguyen OT, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–1199

    Article  CAS  PubMed  Google Scholar 

  • Davidson DW, Verma MS, Gu FX (2013) Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springer Plus 2:318. doi:10.1186/2193-1801-2-318

    Google Scholar 

  • De Rosa G, Lopez-Moreno ML, De Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey J (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85(12):2161–2174

    Google Scholar 

  • De Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91–94

    Article  CAS  Google Scholar 

  • Derjaguin B, Sidorenkov G (1941) Thermoosmosis at ordinary temperatures and its analogy with the thermomechanical effect in helium II. CR Acad Sci 32:622–626

    Google Scholar 

  • Ditta A, Arshad M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences. Springer, Switzerland, pp 55–75

    Google Scholar 

  • Dunphy Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of Titania nanoparticles. Environ Sci Technol 40:7688–7693

    Article  CAS  Google Scholar 

  • Doshi R, Braida W, Christodoulatos C, Wazne M, O’Connor G (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:296–303

    Article  CAS  PubMed  Google Scholar 

  • Dwairi JM (1998) Renewable, controlled and environmentally safe phosphorous released in soil mixtures of NH4 +-phillipsite tuff and phosphate rock. Environ Geol 34:293–296

    Article  CAS  Google Scholar 

  • Eeberl DD (2008) Controlled release fertilisers using zeolites. USGS science for changing world. Tech Transfer, pp 1–3

    Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modeling and simulation. Butterworth-Heinemann, Woburn, MA

    Google Scholar 

  • Fang J, Shan X, Wen B, Lin J, Owens G (2009) Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95

    Google Scholar 

  • Ferguson JF, Gavis J (1972) Review of the arsenic cycle in natural waters. Water Res 11:1259–1274

    Article  Google Scholar 

  • Gabriels W, Goethals P, Hermans P, De Pauw N (2001) Development of short and long-term management options for bergelenput to avoid fish kills caused by algal blooms. Meded Rijksuniv Gent Fak Landbouwkd Toegep. Biol Wet 66:63–70

    CAS  Google Scholar 

  • Gao FQ, Hong FH, Liu C, Zheng L, Su MY, Wu X, Yang F, Wu Yang P (2006) Mechanism of nano-nantase TiO2 on promoting photosynthetic carbon reaction of spinach–including complex of Rubisco-Rubisco activase. Biol Trace Elem Res 111:239–253

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Ramírez EG, Theng BKG, Mora ML (2010) Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions- a review. Appl Clay Sci 47:182–192

    Article  CAS  Google Scholar 

  • Ghosh S, Mashayekhi H, Pan B, Bhowmik P, Xing B (2008) Colloidal behavior of aluminum oxide nanoparticles As affected by pH and natural organic matter. Langmuir 24:12385–12391

    Article  CAS  PubMed  Google Scholar 

  • Gladkovaa MM, Terekhovaa VA (2013) Engineered nanomaterials in soil: sources of entry and migration pathways. Univ Soil Sci Bull 68(3):129–134

    Article  Google Scholar 

  • Goertz HM (1993) Technology development in coated fertilisers. In: Proceedings Dahlia Greidinger memorial international workshop on controlled/slow release fertilisers, technion-israel institute of technology, Haifa, Israel, pp 102–109, Mar 7–12, 1993

    Google Scholar 

  • Goldstein AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256(5062):1425–1427

    Article  CAS  PubMed  Google Scholar 

  • Gumbo RJ, Ross G, Cloete ET (2008) Biological control of microcystis dominated harmful algal blooms. Afr J Biotechnol 7:4765–4773

    Google Scholar 

  • Guo J (2004) Synchrotron radiation, soft X-ray spectroscopy and nanomaterials. Int J Nanotechnol 1(1):193–225

    Article  CAS  Google Scholar 

  • Guo M, Zhu M, Falu WuL (2005) Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation. Ind Eng Chem Res 44(12):4206–4211

    Article  CAS  Google Scholar 

  • Guo X, Zenga L, Li X, Spark H (2008) Ammonium and potassium removal for anerobically digested wastewater using natural clinoptilolite followed by membrane pretreatment. J Hazard Mater 151:125–133

    Article  CAS  PubMed  Google Scholar 

  • Haack EA, Johnston C, Maurice PA (2008) Siderophore sorption to montmorillonite. Geochim Cosmochim Acta 72:3381–3397

    Article  CAS  Google Scholar 

  • Hashim N, Hussein MZ, Yahaya AH, Zainal Z (2007) Formation of zinc aluminium layered double hydroxides-4(2,4-dichlorophenoxy)butyrate nanocomposites by direct and indirect methods. Malaysian J Anal Sci 11(1):1–7

    Google Scholar 

  • He F, Zhao DY, Liu JC, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethy cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34

    Article  CAS  Google Scholar 

  • Hernandez G, Diaz R, Notario del Pino JS, Gonzalez Martin MM (1994) NH4 + Na-exchange and NH4 +—release studies in natural phillipsite. Appl Clay Sci 9:29–137

    Google Scholar 

  • Heymann D, Jenneskens LW, Jehlicka J, Koper C, Vlietstra E (2003) Terrestrial and extraterrestrial fullerenes. Fullerenes Nanotubes Carbon Nanostruct 11(333):370

    Google Scholar 

  • Hochella MF Jr (2002) There’s plenty of room at the bottom: nanoscience in geochemistry. Geochim Cosmochim Acta 66:735–743

    Article  CAS  Google Scholar 

  • Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and Earth systems. Science 319:1631–1635

    Article  CAS  PubMed  Google Scholar 

  • Hong FH, Yang F, Liu C, Gao Q, Wan ZG, Gu FG, Wu C, Ma ZN, Zhou J, Yang P (2005) Influence of nano–TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104:249–260

    Article  CAS  PubMed  Google Scholar 

  • Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41:6418–6424

    Article  CAS  PubMed  Google Scholar 

  • Iorio M, Pan B, Capasso R, Xing BS (2008) Sorption of phenanthrene by dissolved organic matter and its complex with aluminum oxide nanoparticles. Environ Pollut 156:1021–1029

    Google Scholar 

  • Iran Nanotechnology Initiative Council (2009) First nano-organic iron chelated fertilizer invented in Iran [webpage on the Internet] Tehran, Iran: Iran Nanotechnology Initiative Council. http://www.iranreview.org/content/Documents/IraniansResearchersProduceNanoOrganicFertilizer.htm

  • Ji LL, Chen W, Zheng SR, Xu ZY, Zhu DQ (2009) Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 25(1608):11613

    Google Scholar 

  • Jiang J, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  • Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279

    Article  CAS  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414

    Article  CAS  PubMed  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050

    Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of Arsenic(III) from groundwater by nanoscale zerovalent iron. Environ Sci Technol 39(5):1291–1298

    Article  CAS  PubMed  Google Scholar 

  • Kanel SR, Nepal D, Manning B, Choi H (2007) Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanopart Res 9:725–735

    Article  CAS  Google Scholar 

  • Karthikeyan K (2014) Naturally-occurring nano-clays in Indian soils: their role in plant nutrient management. In: Proceedings of seventh international conference on smart materials, structures and systems, Bangalore, India, pp 33–34, July 8–11, 2014

    Google Scholar 

  • Ke YC, Stroeve P (2005) Polymer-layered silicate and silica nanocomposites, 1st edn. Elsevier BV, Amsterdam

    Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15. doi:10.1007/s11051-013-1692-4

  • Khedr MH, Omar AA, Abdel-Moaty SA (2006) Reduction of carbon dioxide intocarbon by freshly reduced CoFe2O4 nanoparticles. Mater Sci Eng A 432:26–33

    Article  CAS  Google Scholar 

  • Kim KS, Park M, Choi CL, Lee DH, Seo YJ, Kim CY, Kim JS, Yun S-IN, Ro H-M, Komarneni S (2011) Suppression of NH3 and N2O emissions by massive urea intercalation in montmorillonite. J Soils Sediments 11:416–422

    Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin ML, Lead JR (2008) Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Kool PL, Diez Ortiz M, van Gestel CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719

    Article  CAS  PubMed  Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101(1):73–78

    CAS  Google Scholar 

  • Kretzschmar R, Schafer T (2005) Metal retention and transport on colloidal particles in the environment. Elements 1:205–210

    Article  CAS  Google Scholar 

  • Krichevskii GE (2010) Nanotechnologies: dangers and risks. Inspecting principles for nano technologies and nanomaterials. Nanotekhnol Okhrana Zdorov’ya 2(3):4

    Google Scholar 

  • Kumar R, Rawat KS, Mishra AK (2012) Nanoparticles in the soil environment and their behaviour: an overview. J App Natural Sci 4(2):310–324

    CAS  Google Scholar 

  • Kumar SK, Krishnamoorti R (2010) Nanocomposites: structure, phase behavior, and properties. Annu Rev Chem Biomol Eng 1:37–58

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Adhikari T, Coumar MV, Rajendiran S, Bhattacharyya R, Saha JK, Biswas AK, Subba Rao A (2013) Pine oleoresin: a potential urease inhibitor and coating material for slow-release urea. Curr Sci 104(8):1068–1071

    CAS  Google Scholar 

  • Lal R (2008) Soils and India’s food security. J Indian Soc Soil Sci 56:129–138

    Google Scholar 

  • Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of a nomaterials in porous media. Environ Sci Technol 38:5164–5169

    Article  CAS  PubMed  Google Scholar 

  • Lefroy RDB, Dana M, Blair GJ (1994) A glasshouse evaluation of sulfur fertilizer sources for crops and pastures.3. Soluble and non-soluble sulfur and phosphorus sources for pastures. Aust J Agric Res 45:1525–1537

    Article  CAS  Google Scholar 

  • Leggo PJ (2000) An investigation of plant growth in an organo–zeolitic substrate and its ecological significance. Plant Soil 219:135–146

    Article  CAS  Google Scholar 

  • Li Z (2003) Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Microporous Mesoporous Mat 61:181–188

    Article  CAS  Google Scholar 

  • Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10(7):2289–2295

    Article  CAS  PubMed  Google Scholar 

  • Liang R, Liu M, Wu L (2007) Controlled release NPK compound fertilizer with the function of water retention. React Funct Polym 67(9):769–779

    Article  CAS  Google Scholar 

  • Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1–13

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Liang R, Zhan F, Liu Z, Niu A (2007) Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization. Polym Int 56(6):729–737

    Article  CAS  Google Scholar 

  • Liu LS, Kost J, Fishman M, Hicks KB (2008) A review: controlled release systems for agricultural and food applications. In: Parris N, Liu LS, Song C, Shastri VP (eds) New delivery systems for controlled drug release from naturally occurring materials, ACS Symposium series, vol 992. pp 265–281

    Google Scholar 

  • Liu RQ, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686. doi:10.1038/srep05686

    CAS  PubMed  Google Scholar 

  • Liu X, Feng Z, Zhang F, Zhang S, He X (2006) Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agric Sci China 5:700–706

    Article  Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of glycine max and its mechanism. Soybean Sci 21(3):168–171

    CAS  Google Scholar 

  • Malhi SS, Haderlin LK, Pauly DG, Johnson AM (2002) Improving fertiliser use efficiency. Better Crops 86:22–25

    Google Scholar 

  • Manikandan A, Subramanian KS (2014) Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr J Agric Res 9(2):276–284

    Article  CAS  Google Scholar 

  • Manning BA, Hunt M, Amrhein C, Yarmoff JA (2002) Arsenic(III) and Arsenic(V) reactions with zero valent iron corrosion products. Environ Sci Technol 36(24):5455–5461

    Article  CAS  PubMed  Google Scholar 

  • Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Switzerland, pp 25–67

    Google Scholar 

  • Maurice PA, Hochella MF (2008) Nanoscale particles and processes: a new dimension in soil science. Adv Agron 100:124–153

    Google Scholar 

  • Melendi G, Fernandez-Pacheo P, Coronado R, Corredor MJ, Testillano E, Risueno PS, Marquina MC (2008) Nanoparticles as smart treatment delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Google Scholar 

  • Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB (2007a) The structure of ferrihydrite, a nanocrystalline material. Science 316:1726–2729

    Article  CAS  PubMed  Google Scholar 

  • Michel FM, Ehm L, Liu G, Han WQ, Antao SM, Chupas PJ, Lee PL, Knorr K, Eulert H, Kim J, Grey CP, Celestian AJ, Gillow J, Schoonen MAA, Strongin DR, Parise JB (2007b) Similarities in 2-and 6-line ferrihydrite based on pair distribution function analysis of X-ray total scattering. Chem Mater 19:1489–1496

    Article  CAS  Google Scholar 

  • Millán G, Agosto F, Vázquez M, Botto L, Lombardi L, Juan L (2008) Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. Ciene Inv Agr 35:245–254

    Google Scholar 

  • Moaveni P, Kheiri T (2011) TiO2 nano particles affected on maize (Zea mays L.). In: 2nd international conference on agricultural and animal science. IACSIT Press, Maldives, 25–27 Nov 2011, pp 160–163

    Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  PubMed  Google Scholar 

  • Murr LE, Soto KF, Esquivel EV, Bang JJ, Guerrero PA, Lopez DA, Ramirez DA (2004) Carbon nanotubes and other fullerene related nanocrystals in the environment: a TEM study. J Mater Sci 56:2831

    Google Scholar 

  • Mukhopadhyay R, De N (2014) Nano clay polymer composite: synthesis, characterization, properties and application in rainfed agriculture. Global J Bio Biotechnol 3(2):133–138

    Google Scholar 

  • NAAS (2013) Nanotechnology in agriculture: scope and current relevance. Policy Paper No 63, National Academy of Agricultural Sciences, New Delhi, India, pp 1–20

    Google Scholar 

  • Naderi MR, Abedi A (2012) Application of nanotechnology in agriculture and refinement of environmental pollutants. J Nanotechnol 11(1):18–26

    Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229–2232

    Google Scholar 

  • Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12(3):2212–2220

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Google Scholar 

  • Nakache E, Poulain N, Candau F, Orecchioni AM, Irache JM (1999) Biopolymer and polymer nanoparticles and their biomedical applications. In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology, Academic Press, New York, USA, pp 577–635

    Google Scholar 

  • Namjesnik-Dejanovic K, Maurice PA (2001) Conformations and aggregate structures of sorbed natural organic matter on muscovite and hematite. Geochim Cosmochim Acta 65:1047–1057

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72:87–100

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Oades JM (1989) An introduction to organic matter in mineral soils. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn. Soil Science Society of America, Madison, WI, pp 89–159

    Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Hena S, Krug T, Quinn J, Clausen C, Geiger C (2006) Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Remediation 16(2):35–56

    Article  Google Scholar 

  • Oya A, Kurokawa Y, Yasuda H (2000) Factors controlling mechanical properties of clay mineral/polypropylene nanocomposites. J Mater Sci 35(5):1045–1050

    Article  CAS  Google Scholar 

  • Pan B, Xing B (2010) Manufactured nanoparticles and their sorption of organic chemicals. Adv Agron 108:137–181

    Google Scholar 

  • Panwar J, Jain N, Bhargaya A, Akhtar MS, Yun YS (2012) Positive effect of zinc oxide nanoparticels on tomato plants: a step towards developing “Nano-fertilizers”. In: Proceedings of 3rd international conference on environmental research and technology (ICERT), May 30–June 1, 2012, Penang, Malaysia, pp 348–352

    Google Scholar 

  • Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15

    Article  CAS  PubMed  Google Scholar 

  • Pereira EI, Minussi FB, Cruz CCT, Bernardi ACC, Ribeiro C (2012) Urea-montmorilloniteextruded nanocomposites: a novel slow-release material. J Agric Food Chem 60:5267–5272

    Google Scholar 

  • Perrin TS, Drost DT, Boettinger JL, Norton JM (1998) Ammonium-loaded clinoptilolite: a slow-release nitrogen fertilizer for sweet corn. J Plant Nutri 21:515–530

    Article  CAS  Google Scholar 

  • Pfeiffer C, Rehbock C, Hu¨hn D, Carrillo-Carrion C, de Aberasturi DJ, Merk V, Barcikowski S, Parak WJ (2014) Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J Roy Soc Interface 11:20130931

    Google Scholar 

  • Pignatello JJ (1998) Soil organic matter as a nanoporous sorbent of organic pollutants. Adv Colloid Inter Sci 76–77:445–467

    Article  Google Scholar 

  • Pino N, Arteaga Padron JS, Gonzdlez Martin IJ, Garcfa Herndndez JE (1995) Phosphorus and potassium release from phillipsite-based slow-release fertilizers. J Control Release 34:25–29

    Article  Google Scholar 

  • Plank NOV, Howard I, Rao A, Wilson MWB, Ducati C, Mane RS, Bendall JS, Louca RRM, Greenham NC, Miura H, Friend RH, Snaith HJ, Welland ME (2009) Efficient ZnO nanowire solid-state dye-sensitized solar cells using organic dyes and core-shell nanostructures. J Phys Chem C 113:18515–18522

    Article  CAS  Google Scholar 

  • Prasad R, Bagde US, Varma A (2012) Intellectual property rights and agricultural biotechnology: an overview. Afr J Biotechnol 11(73):13746–13752

    Article  Google Scholar 

  • Preetha SP, Subramanian KS, Sharmila RC (2014) Characterization of slow release of sulphur nutrient—a zeolite based nano-fertilizer. Int J Dev Res 4(2):229–233

    Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP, Palmere RG, Hernandez-Viezcasc JA, Zhaoc L, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Nat Acad Sci USA 109:E2451–E2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahale CS (2010) Nutrient release pattern of nano-fertilizer formulations. PhD Thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

    Google Scholar 

  • Rai V, Acharya S, Dey AS., N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotchnol 3:315–324

    Google Scholar 

  • Raliya R, Tarafdar JC, Gulecha K, Choudhary K, Ram R, Mal P, Saran RP (2013) Review article, scope of nanoscience and nanotechnology in agriculture. J Appl Biol Biotechnol 1(03):041–044

    Google Scholar 

  • Ramesh K, Biswas AK, Somasundaram J, Subbarao A (2010) Nanoporous zeolites in farming: current status and issues ahead. Curr Sci 99:760–764

    Google Scholar 

  • Ramesh K, Reddy DD (2011) Zeolites and their potential uses in agriculture. Adv Agron 113:219–241

    Article  Google Scholar 

  • Roco MC (2003) Nanotechnology convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346

    Article  CAS  PubMed  Google Scholar 

  • Rose R (2002) Slow release fertilizers 101. In: Dumroese RK, Riley LE, Landis TD (eds) (Technical coordinators) National proceedings: forest and conservation nursery associations-1999, 2000, and 2001. Proceedings RMRS-P-24. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, pp 304–308

    Google Scholar 

  • Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton D, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42:3349–3355

    Article  CAS  PubMed  Google Scholar 

  • Saigusa M (2000) Broadcast application versus band application of polyolefin-coated fertilizer on green peppers grown on Andisol. J Plant Nutr 23:1485–1493

    Article  Google Scholar 

  • Santoso D, Lefroy RDB, Blair GJ (1995) Sulfur and phosphorus dynamics in an acid soil/crop system. Aust J Soil Res 33:113–124

    Article  CAS  Google Scholar 

  • Sartain JB (2010) Food for turf: slow-release nitrogen. Grounds Mainten 2:6–14

    Google Scholar 

  • Sawant R, Hurley J, Salmaso S, Kale A, Tolcheva E, Levchenko T, Torchilin V (2006) Smart drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconj Chem 17(4):943–949

    Article  CAS  Google Scholar 

  • Schrick B, Hydutsky W, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193

    Article  CAS  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Google Scholar 

  • Shaviv A (2005) Controlled release fertilizers, IFA International Workshop on Enhanced-efficiency Fertilizers, Frankfurt, International Fertilizer Industry Association, Paris, France

    Google Scholar 

  • Sheta AS, Falatah AM, Al-Sewailem MS, Khaled EM, Sallam ASH (2003) Sorption characteristics of zinc and iron by natural zeolite and bentonite. Microporous Mesoporous Materials 61:127–136

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F, (eds) Nanotechnology and plant sciences, Springer, Switzerland, pp 19–35

    Google Scholar 

  • Singh AL, Chaudhari V (1995) Source and mode of sulfur application on ground nut productivity. J Plant Nutr 18:2739–2759

    Article  CAS  Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, Moraes JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage. Agronomie 22:755–775

    Article  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Switzerland, pp 81–101

    Google Scholar 

  • Sparks DL, Jardine PM (1984) Comparison of kinetic equations to describe K-Ca exchange in pure and in mixed systems. Soil Sci 138:115–122

    Article  CAS  Google Scholar 

  • Subramanian KS, Paulraj C, Natarajan S (2008) Nanotechnological approaches in nutrient management. In: Chinnamuthu CR, Chandrasekaran B, Ramasamy C (eds) Nanotechnology applications in agriculture. TNAU technical bulletin, Coimbatore, India, pp 37–42

    Google Scholar 

  • Subramanian KS, Rahale CS (2009) Synthesis of nanofertiliser formulations for balanced nutrition. In: Proceedings of the Indian society of Soil Science-Platinum Jubilee Celebration, December 22–25, IARI, New Delhi, India, pp 85

    Google Scholar 

  • Subramanian KS, Rahale CS (2012) Nano-fertilizers—synthesis, characterization and applications. In: Proceedings of the application of nanotechnology in soil science & plant nutrition research, September 18–27, IISS, Bhoopal, India, p 107

    Google Scholar 

  • Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Switzerland, pp 69–80

    Google Scholar 

  • Subramanian KS, Tarafdar JC (2011) Prospects of nanotechnology in Indian farming. Indian J Agril Sci 81(10):887–893

    CAS  Google Scholar 

  • Subramanian KS, Tarafdar JC (2009) Nanotechnology in soil science. In: Proceedings of the Indian society of Soil Science-Platinum Jubilee celebration, December 22–25, IARI, New Delhi, India, p 199

    Google Scholar 

  • Sultan Y, Walsh R, Monreal CM, De Rosa MC (2009) Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromol J 10:1149–1154

    Article  CAS  Google Scholar 

  • Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Tai WP, Kim YS, Kim JG (2003) Fabrication and magnetic properties of Al2O3/Co nanocomposites. Mater Chem Phys 82(2):396–400

    Article  CAS  Google Scholar 

  • Teodorescu M, Lungu A, Stanescu PO, Neamtu C (2009) Preparation and properties of novel slow-release NPK agrochemical formulations based on poly(acrylic acid) hydrogels and liquid fertilizer. Indust Eng Chem Res 48:6527–6534

    Article  CAS  Google Scholar 

  • Theng BKG, Yuan G (2008) Nanoparticles in the soil environment. Elements 4:395–399

    Article  CAS  Google Scholar 

  • Tourinho PS, Van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S (2012) Metal based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxico Chem 31(8):1679–1692

    Google Scholar 

  • Trenkel ME (2010) Slow-and controlled-release and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture. International Fertilizer Industry Association, Paris, France, pp 1–162

    Google Scholar 

  • Unrine J, Bertsch P, Hunyadi S (2008) Bioavailability, trophic transfer, and toxicity of manufactured metal and metal oxide nanoparticles in terrestrial environments. In: Grassian V (ed) Nanoscience and nanotechnology: environmental and health impacts. John Wiley, New York, pp 345–366

    Chapter  Google Scholar 

  • Venitsianov EV, Vinichenko VN, Guseva TV (2003) Ekologicheskii monitoring: shag za shagom (Ecological Monitoring: Step by Step). In: Zaik EA (ed) Moscow University Soil Science Bulletin, Vestnik Moskovskogo Universiteta, Pochvovedenie, Moscow, pp 282–298

    Google Scholar 

  • Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme.Langmuir 20:6800–6807

    Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  • Waychunas GA, Kim CS, Banfield JA (2005) Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433

    Article  CAS  Google Scholar 

  • Wang XL, Tao S, Xing BS (2009) Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes. Environ Sci Technol 43:6214–6219

    Article  CAS  PubMed  Google Scholar 

  • Weatherley LR, Miladinovic ND (2004) Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Res 38(20):4305–4312

    Article  CAS  PubMed  Google Scholar 

  • Wei YX, Ye ZF, Wang YL, Ma MG, Li YF (2011) Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a-sequencing batch reactor process. Environ Technol 32:1337–1343

    Article  CAS  PubMed  Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116

    Article  CAS  Google Scholar 

  • Wilson MA, Tran NH, Milev AS, Kannangara G, Volk H, Lu G (2008) Nanomaterials in soils. Geoderma 146(1):291–302

    Article  CAS  Google Scholar 

  • Wu L, Liu M (2008) Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydr Polym 72(2):240–247

    Article  CAS  Google Scholar 

  • Yang F, Hong FS, You WJ, Liu C, Gao FQ, Wu C, Yang P (2006) Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190

    Article  CAS  PubMed  Google Scholar 

  • Yang GCC, Tu HC, Hung CH (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Separ Purif Technol 58:166–172

    Article  CAS  Google Scholar 

  • Yeh JM, Chang KC (2008) Polymer/layered silicate nanocomposite anticorrosive coatings. J Indust Engg Chem 14:275–280

    Article  CAS  Google Scholar 

  • Zaarei D, Sarabi AA, Sharif F, Kassiriha SM (2008) Structure, properties and corrosion resistivity of polymeric nanocomposite coatings based on layered silicates. J Coat Technol Res 5:241

    Article  CAS  Google Scholar 

  • Zha L, Hu J, Wang C, Fu S, Luo M (2002) The effect of electrolyte on the colloidal properties of poly (N-isopropyl acrylamidecodimethylaminoethylmethacrylate) microgel latexes. Colloid Polym Sci 280:1116–1121

    Article  CAS  Google Scholar 

  • Zhan JJ, Zheng TH, Piringer G, Day C, Mcpherson CL, Lu YF, Papadopoulos K, John VT (2008) Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environ Sci Technol 42:8871–8876

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Ali Z, Amin F, Feltz A, Oheim M, Parak WJ (2010) Ion and pH sensing with colloidal nanoparticles: influence of surface charge on sensing and colloidal properties. ChemPhysChem 11:730–735

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang R, Xiao Q, Wang Y, Zhang J (2006) Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on biology. II. Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on plants. Nanoscience 11:18–26

    CAS  Google Scholar 

  • Zheng L, Hong FS, Lu SP, Liu C (2005) Effect of nano–TiO2on strength of naturally and growth aged seeds of spinach. Biol Trace Elem Res 104:83–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pabitra Kumar Mani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mani, P.K., Mondal, S. (2016). Agri-nanotechniques for Plant Availability of Nutrients. In: Kole, C., Kumar, D., Khodakovskaya, M. (eds) Plant Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-42154-4_11

Download citation

Publish with us

Policies and ethics