Skip to main content

The Role of Glucose and Lipid Metabolism in Growth and Survival of Cancer Cells

  • Chapter
  • First Online:
Metabolism in Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 207))

Abstract

One of the prerequisites for cell growth and proliferation is the synthesis of macromolecules, including proteins, nucleic acids and lipids. Cells have to alter their metabolism to allow the production of metabolic intermediates that are the precursors for biomass production. It is now evident that oncogenic signalling pathways target metabolic processes on several levels and metabolic reprogramming has emerged as a hallmark of cancer. The increased metabolic demand of cancer cells also produces selective dependencies that could be targeted for therapeutic intervention. Understanding the role of glucose and lipid metabolism in supporting cancer cell growth and survival is crucial to identify essential processes that could provide therapeutic windows for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, Vander Heiden MG, Cantley LC (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to antioxidant responses. Science. doi:10.1126/science.1211485 science.1211485 [pii]

    PubMed  PubMed Central  Google Scholar 

  • Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A, Yang H, Mattaini KR, Metallo CM, Fiske BP, Courtney KD, Malstrom S, Khan TM, Kung C, Skoumbourdis AP, Veith H, Southall N, Walsh MJ, Brimacombe KR, Leister W, Lunt SY, Johnson ZR, Yen KE, Kunii K, Davidson SM, Christofk HR, Austin CP, Inglese J, Harris MH, Asara JM, Stephanopoulos G, Salituro FG, Jin S, Dang L, Auld DS, Park HW, Cantley LC, Thomas CJ, Vander Heiden MG (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8(10):839–847. doi:10.1038/nchembio.1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banning A, Brigelius-Flohe R (2005) NF-kappaB, Nrf2, and HO-1 interplay in redox-regulated VCAM-1 expression. Antioxid Redox Signal 7(7–8):889–899. doi:10.1089/ars.2005.7.889

    Article  CAS  PubMed  Google Scholar 

  • Barford D, Hu SH, Johnson LN (1991) Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol 218(1):233–260

    Article  CAS  PubMed  Google Scholar 

  • Bengoechea-Alonso MT, Ericsson J (2007) SREBP in signal transduction: cholesterol metabolism and beyond. Curr Opin Cell Biol 19(2):215–222

    Article  CAS  PubMed  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120

    Article  CAS  PubMed  Google Scholar 

  • Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89(3):331–340 S0092-8674(00)80213-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95. doi:10.1038/nrc2981 nrc2981 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Carling D, Thornton C, Woods A, Sanders MJ (2012) AMP-activated protein kinase: new regulation, new roles? Biochem J 445(1):11–27. doi:10.1042/BJ20120546

    Article  CAS  PubMed  Google Scholar 

  • Cejas P, Garcia-Cabezas MA, Casado E, Belda-Iniesta C, De Castro J, Fresno JA, Sereno M, Barriuso J, Espinosa E, Zamora P, Feliu J, Redondo A, Hardisson DA, Renart J, Gonzalez-Baron M (2007) Phospholipid hydroperoxide glutathione peroxidase (PHGPx) expression is downregulated in poorly differentiated breast invasive ductal carcinoma. Free Radical Res 41(6):681–687. doi:10.1080/10715760701286167

    Article  CAS  Google Scholar 

  • Chaneton B, Hillmann P, Zheng L, Martin AC, Maddocks OD, Chokkathukalam A, Coyle JE, Jankevics A, Holding FP, Vousden KH, Frezza C, O’Reilly M, Gottlieb E (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491(7424):458–462. doi:10.1038/nature11540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008a) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233

    Article  CAS  PubMed  Google Scholar 

  • Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008b) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452(7184):181–186

    Article  CAS  PubMed  Google Scholar 

  • Clem BF, O’Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DA 2nd, Klarer AC, Redman R, Miller DM, Trent JO, Telang S, Chesney J (2013) Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther 12(8):1461–1470. doi:10.1158/1535-7163.MCT-13-0097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David CJ, Chen M, Assanah M, Canoll P, Manley JL (2010) HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463(7279):364–368. doi:10.1038/nature08697 nature08697 [pii]

    Article  CAS  PubMed  Google Scholar 

  • De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, Phng LK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663. doi:10.1016/j.cell.2013.06.037

    Article  PubMed  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. doi:10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffield-Lillico AJ, Slate EH, Reid ME, Turnbull BW, Wilkins PA, Combs GF, Jr., Park HK, Gross EG, Graham GF, Stratton MS, Marshall JR, Clark LC, Nutritional Prevention of Cancer Study G (2003) Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. J Nat Cancer Inst 95(19):1477–1481

    Google Scholar 

  • Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, Mackeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171–183. doi:10.1016/j.molcel.2010.06.022 S1097-2765(10)00463-6 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57(5 Suppl):779S–785S (discussion 785S–786S)

    Google Scholar 

  • Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510(7504):298–302. doi:10.1038/nature13236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatto F, Nookaew I, Nielsen J (2014) Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. Proc Natl Acad Sci USA 111(9):E866–E875. doi:10.1073/pnas.1319196111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goidts V, Bageritz J, Puccio L, Nakata S, Zapatka M, Barbus S, Toedt G, Campos B, Korshunov A, Momma S, Van Schaftingen E, Reifenberger G, Herold-Mende C, Lichter P, Radlwimmer B (2012) RNAi screening in glioma stem-like cells identifies PFKFB4 as a key molecule important for cancer cell survival. Oncogene 31(27):3235–3243. doi:10.1038/onc.2011.490

    Article  CAS  PubMed  Google Scholar 

  • Gonzalvez F, Gottlieb E (2007) Cardiolipin: setting the beat of apoptosis. Apoptosis Int J Programmed Cell Death 12(5):877–885. doi:10.1007/s10495-007-0718-8

    Article  CAS  Google Scholar 

  • Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15(11):1406–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, Lechpammer M, Huesken D, Zimmermann J, Signoretti S, Loda M (2004) The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 5(3):253–261

    Article  CAS  PubMed  Google Scholar 

  • Griffiths B, Lewis CA, Bensaad K, Ros S, Zhang X, Ferber EC, Konisti S, Peck B, Miess H, East P, Wakelam M, Harris AL, Schulze A (2013) Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumour growth. Cancer Metabol 1(3)

    Google Scholar 

  • Haberzettl P, Hill BG (2013) Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biol 1(1):56–64. doi:10.1016/j.redox.2012.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heirman I, Ginneberge D, Brigelius-Flohe R, Hendrickx N, Agostinis P, Brouckaert P, Rottiers P, Grooten J (2006) Blocking tumor cell eicosanoid synthesis by GP x 4 impedes tumor growth and malignancy. Free Radical Biol Med 40(2):285–294. doi:10.1016/j.freeradbiomed.2005.08.033

    Article  CAS  Google Scholar 

  • Hitosugi T, Zhou L, Elf S, Fan J, Kang HB, Seo JH, Shan C, Dai Q, Zhang L, Xie J, Gu TL, Jin P, Aleckovic M, LeRoy G, Kang Y, Sudderth JA, DeBerardinis RJ, Luan CH, Chen GZ, Muller S, Shin DM, Owonikoko TK, Lonial S, Arellano ML, Khoury HJ, Khuri FR, Lee BH, Ye K, Boggon TJ, Kang S, He C, Chen J (2012) Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 22(5):585–600. doi:10.1016/j.ccr.2012.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong JH, Kim MJ, Park MR, Kwag OG, Lee IS, Byun BH, Lee SC, Lee KB, Rhee SJ (2004) Effects of vitamin E on oxidative stress and membrane fluidity in brain of streptozotocin-induced diabetic rats. Clin chimica acta; Int J Clin Chem 340(1–2):107–115

    Article  CAS  Google Scholar 

  • Hughes AL, Todd BL, Espenshade PJ (2005) SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell 120(6):831–842

    Article  CAS  PubMed  Google Scholar 

  • Israelsen WJ, Dayton TL, Davidson SM, Fiske BP, Hosios AM, Bellinger G, Li J, Yu Y, Sasaki M, Horner JW, Burga LN, Xie J, Jurczak MJ, DePinho RA, Clish CB, Jacks T, Kibbey RG, Wulf GM, Di Vizio D, Mills GB, Cantley LC, Vander Heiden MG (2013) PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155(2):397–409. doi:10.1016/j.cell.2013.09.025

    Article  CAS  PubMed  Google Scholar 

  • Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485(7400):661–665. doi:10.1038/nature11066nature11066 nature11066 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13(3):310–316. doi:10.1038/ncb2172 ncb2172 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Du W, Mancuso A, Wellen KE, Yang X (2013) Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493(7434):689–693. doi:10.1038/nature11776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, White EP, Thompson CB, Rabinowitz JD (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Nat Acad Sci U.S.A. 110(22):8882–8887. doi:10.1073/pnas.1307237110

    Article  CAS  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    Article  PubMed  Google Scholar 

  • Klarer AC, O’Neal J, Imbert-Fernandez Y, Clem A, Ellis SR, Clark J, Clem B, Chesney J, Telang S (2014) Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism. Cancer Metab 2(1):2. doi:10.1186/2049-3002-2-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Krycer JR, Sharpe LJ, Luu W, Brown AJ (2010) The Akt-SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol Metab. doi:10.1016/j.tem.2010.01.001 S1043-2760(10)00003-2 [pii]

    PubMed  Google Scholar 

  • Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, Pasternack GR (1994) Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci USA 91(14):6379–6383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, Vokes NI, Feist AM, Vander Heiden MG, Metallo CM (2014) Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell 55(2):253–263. doi:10.1016/j.molcel.2014.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M (2011) AMPK Phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13(4):376–388. doi:10.1016/j.cmet.2011.03.009 S1550-4131(11)00096-9 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline JA, Parsons JK, Bearden JD 3rd, Crawford ED, Goodman GE, Claudio J, Winquist E, Cook ED, Karp DD, Walther P, Lieber MM, Kristal AR, Darke AK, Arnold KB, Ganz PA, Santella RM, Albanes D, Taylor PR, Probstfield JL, Jagpal TJ, Crowley JJ, Meyskens FL Jr, Baker LH, Coltman CA Jr (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, J Am Med Assoc 301(1):39–51. doi:10.1001/jama.2008.864

    Article  CAS  Google Scholar 

  • Liu J, Du J, Zhang Y, Sun W, Smith BJ, Oberley LW, Cullen JJ (2006) Suppression of the malignant phenotype in pancreatic cancer by overexpression of phospholipid hydroperoxide glutathione peroxidase. Hum Gene Ther 17(1):105–116. doi:10.1089/hum.2006.17.105

    Article  CAS  PubMed  Google Scholar 

  • Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13(8):572–583. doi:10.1038/nrc3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H, Sasaki AT, Anastasiou D, Mullarky E, Vokes NI, Sasaki M, Beroukhim R, Stephanopoulos G, Ligon AH, Meyerson M, Richardson AL, Chin L, Wagner G, Asara JM, Brugge JS, Cantley LC, Vander Heiden MG (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43(9):869–874. doi:10.1038/ng.890 ng.890 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louie SM, Roberts LS, Mulvihill MM, Luo K, Nomura DK (2013) Cancer cells incorporate and remodel exogenous palmitate into structural and oncogenic signaling lipids. Biochim Biophys Acta 1831(10):1566–1572. doi:10.1016/j.bbalip.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  • Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464. doi:10.1146/annurev-cellbio-092910-154237

    Article  CAS  PubMed  Google Scholar 

  • Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, Vousden KH (2013) Serine starvation induces stress and p 53-dependent metabolic remodelling in cancer cells. Nature 493(7433):542–546. doi:10.1038/nature11743

    Google Scholar 

  • Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16(5):819–830

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marnett LJ (1999) Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 424(1–2):83–95

    Article  CAS  PubMed  Google Scholar 

  • Mazurek S, Boschek CB, Hugo F, Eigenbrodt E (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15(4):300–308

    Article  CAS  PubMed  Google Scholar 

  • Medes G, Thomas A, Weinhouse S (1953) Metabolism of neoplastic tissue. IV. a study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res 13(1):27–29

    CAS  PubMed  Google Scholar 

  • Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777

    Article  CAS  PubMed  Google Scholar 

  • Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384. doi:10.1038/nature10602

    PubMed  PubMed Central  Google Scholar 

  • Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2012) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381):385–388. doi:10.1038/nature10642

    CAS  Google Scholar 

  • Murata T, Lin MI, Aritake K, Matsumoto S, Narumiya S, Ozaki H, Urade Y, Hori M, Sessa WC (2008) Role of prostaglandin D2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proc Nat Acad Sci U.S.A. 105(50):20009–20014. doi:10.1073/pnas.0805171105

    Article  CAS  Google Scholar 

  • Nakagawa Y (2004) Role of mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx) as an antiapoptotic factor. Biol Pharm Bull 27(7):956–960

    Article  CAS  PubMed  Google Scholar 

  • Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys. Res Commun 338(1):668–676. doi:10.1016/j.bbrc.2005.08.072

    Article  CAS  PubMed  Google Scholar 

  • Nohturfft A (2008) Regulation of lipid synthesis. Annu Rev Cell Dev Biol. doi:10.1146/annurev.cellbio.24.110707.175344

    Google Scholar 

  • Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y (2000) Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351(Pt 1):183–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140(1):49–61. doi:10.1016/j.cell.2009.11.027 S0092-8674(09)01439-1 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, Jha AK, Smolen GA, Clasquin MF, Robey RB, Hay N (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24(2):213–228. doi:10.1016/j.ccr.2013.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN, Sabatini DM (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146(3):408–420. doi:10.1016/j.cell.2011.06.034 S0092-8674(11)00709-4 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J, Schulze A (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24(43):6465–6481. doi:10.1038/sj.onc.1208802

    CAS  PubMed  Google Scholar 

  • Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung YL, Schulze A (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8(3):224–236. doi:10.1016/j.cmet.2008.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360):346–350. doi:10.1038/nature10350 nature10350 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riahi Y, Cohen G, Shamni O, Sasson S (2010) Signaling and cytotoxic functions of 4-hydroxyalkenals. Am J physiol Endocrinol Metabol 299(6):E879–E886. doi:10.1152/ajpendo.00508.2010

    Article  CAS  Google Scholar 

  • Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L (2004) 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J 381(Pt 3):561–579. doi:10.1042/BJ20040752BJ20040752 BJ20040752 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohr-Udilova N, Sieghart W, Eferl R, Stoiber D, Bjorkhem-Bergman L, Eriksson LC, Stolze K, Hayden H, Keppler B, Sagmeister S, Grasl-Kraupp B, Schulte-Hermann R, Peck-Radosavljevic M (2012) Antagonistic effects of selenium and lipid peroxides on growth control in early hepatocellular carcinoma. Hepatology 55(4):1112–1121. doi:10.1002/hep.24808

    Article  CAS  PubMed  Google Scholar 

  • Ros S, Santos CR, Moco S, Baenke F, Kelly G, Howell M, Zamboni N, Schulze A (2012) Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov 2(4):328–343. doi:10.1158/2159-8290.CD-11-0234

    Article  CAS  PubMed  Google Scholar 

  • Sales KJ, Boddy SC, Williams AR, Anderson RA, Jabbour HN (2007) F-prostanoid receptor regulation of fibroblast growth factor 2 signaling in endometrial adenocarcinoma cells. Endocrinology 148(8):3635–3644. doi:10.1210/en.2006-1517

    Article  CAS  PubMed  Google Scholar 

  • Schneider M, Wortmann M, Mandal PK, Arpornchayanon W, Jannasch K, Alves F, Strieth S, Conrad M, Beck H (2010) Absence of glutathione peroxidase 4 affects tumor angiogenesis through increased 12/15-lipoxygenase activity. Neoplasia 12(3):254–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiler A, Schneider M, Forster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Radmark O, Wurst W, Bornkamm GW, Schweizer U, Conrad M (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metabol 8(3):237–248. doi:10.1016/j.cmet.2008.07.005

    Article  CAS  Google Scholar 

  • Shao W, Espenshade PJ (2012) Expanding roles for SREBP in metabolism. Cell Metab 16(4):414–419. doi:10.1016/j.cmet.2012.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukhatme VP, Chan B (2012) Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence. FEBS Lett 586(16):2389–2395. doi:10.1016/j.febslet.2012.05.052

    Article  CAS  PubMed  Google Scholar 

  • Sundquist A, Bengoechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW, Ericsson J (2005) Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 1(6): 379–391

    Google Scholar 

  • Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW, Chesney J (2006) Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene 25(55):7225–7234. doi:10.1038/sj.onc.1209709 1209709 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602. doi:10.1146/annurev.biochem.70.1.535

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3 K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13(3):195–203. doi:10.1038/nrm3290 nrm3290 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Vladykovskaya E, Sithu SD, Haberzettl P, Wickramasinghe NS, Merchant ML, Hill BG, McCracken J, Agarwal A, Dougherty S, Gordon SA, Schuschke DA, Barski OA, O’Toole T, D’Souza SE, Bhatnagar A, Srivastava S (2012) Lipid peroxidation product 4-hydroxy-trans-2-nonenal causes endothelial activation by inducing endoplasmic reticulum stress. J Biol Chem 287(14):11398–11409. doi:10.1074/jbc.M111.320416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM, Shioda T, Hansen M, Yang F, Niebergall LJ, Vance DE, Tzoneva M, Hart AC, Naar AM (2011) A conserved SREBP-1/Phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147(4):840–852. doi:10.1016/j.cell.2011.09.045 S0092-8674(11)01193-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Dubois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10(3):181–193. doi:10.1038/nrc2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Wang H, Shi Q, Katkuri S, Walhi W, Desvergne B, Das SK, Dey SK, DuBois RN (2004) Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell 6(3):285–295. doi:10.1016/j.ccr.2004.08.011

    Article  CAS  PubMed  Google Scholar 

  • Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Zeitschr 152:309–344

    CAS  Google Scholar 

  • Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8(2):83–93. doi:10.1038/nrc2290 nrc2290 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Williams KJ, Argus JP, Zhu Y, Wilks MQ, Marbois BN, York AG, Kidani Y, Pourzia AL, Akhavan D, Lisiero DN, Komisopoulou E, Henkin AH, Soto H, Chamberlain BT, Vergnes L, Jung ME, Torres JZ, Liau LM, Christofk HR, Prins RM, Mischel PS, Reue K, Graeber TG, Bensinger S (2013) An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res. doi:10.1158/0008-5472.CAN-13-0382-T

    Google Scholar 

  • Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, DeMatteo RG, Simon MC, Thompson CB (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 108(49):19611–19616. doi:10.1073/pnas.1117773108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nature Rev Mol Cell Biol 9(2):162–176. doi:10.1038/nrm2335

    Article  CAS  Google Scholar 

  • Yagublu V, Arthur JR, Babayeva SN, Nicol F, Post S, Keese M (2011) Expression of selenium-containing proteins in human colon carcinoma tissue. Anticancer Res 31(9):2693–2698

    CAS  PubMed  Google Scholar 

  • Yalcin A, Telang S, Clem B, Chesney J (2009) Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp Mol Pathol 86(3):174–179. doi:10.1016/j.yexmp.2009.01.003 S0014-4800(09)00008-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331. doi:10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshii Y, Furukawa T, Yoshii H, Mori T, Kiyono Y, Waki A, Kobayashi M, Tsujikawa T, Kudo T, Okazawa H, Yonekura Y, Fujibayashi Y (2009) Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolism. Cancer Sci 100(5):821–827

    Article  CAS  PubMed  Google Scholar 

  • Young RM, Ackerman D, Quinn ZL, Mancuso A, Gruber M, Liu L, Giannoukos DN, Bobrovnikova-Marjon E, Diehl JA, Keith B, Simon MC (2013) Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev 27(10):1115–1131. doi:10.1101/gad.198630.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL, Cheng JX (2014) Cholesteryl ester accumulation induced by PTEN loss and PI3 K/AKT activation underlies human prostate cancer aggressiveness. Cell Metabol 19(3):393–406. doi:10.1016/j.cmet.2014.01.019

    Article  CAS  Google Scholar 

  • Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2):259–272. doi:10.1016/j.cell.2011.11.050 S0092-8674(11)01444-9 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almut Schulze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brault, C., Schulze, A. (2016). The Role of Glucose and Lipid Metabolism in Growth and Survival of Cancer Cells. In: Cramer, T., A. Schmitt, C. (eds) Metabolism in Cancer. Recent Results in Cancer Research, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-42118-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42118-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42116-2

  • Online ISBN: 978-3-319-42118-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics