Skip to main content

Geothermometry and Geobarometry

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Origins and Definitions

In its 1875 edition, Encyclopaedia Britannica described “natural philosophy” as “the science of energy”; by implication, thermometers and barometers, which measure the transfer of energy, are among the most fundamental of scientific instruments. Their development is traceable to the birth of science in the seventeenth century when, driven by curiosity about heat transfer, Santorre, Galileo, Sagredo, and Torricelli each constructed instruments to measure temperature (T) and pressure (P). These early instruments are in a liberal sense “geothermometers ” and “geobarometers ” as they were used to measure Earth’s atmosphere, and mineral-bearing chemical reactions, in an age when mineralogy and chemistry were not distinct sciences. In geology, though, we invariably use these terms to refer to mathematical models that are used to estimate P and T of the solid Earth. And since P and Tare usually interdependent, we often speak of “thermobarometers.” Such “models” are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Althaus E (1967) The triple point andalusite-sillimanite-kyanite; an experimental and petrologic study. Contrib Mineral Petrol 16:29–44

    Article  Google Scholar 

  • Anderson GM (1996a) Thermodynamics of natural systems. Wiley, New York. 382 p

    Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. Am Mineral 80:549–559

    Article  Google Scholar 

  • Anderson JL (1996b) Status of thermobarometry in granitic batholiths. Trans R Soc Edinb Earth Sci 87:125–138

    Article  Google Scholar 

  • Anderson DJ, Lindsley DH (1988) Internally consistent solution models for Fe- Mg-Mn-Ti oxides – Fe-Ti oxides. Am Mineral 73:714–726

    Google Scholar 

  • Anderson DJ, Lindsley DH, Davidson PM (1993) QUILF – a Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350

    Article  Google Scholar 

  • Anderson AT, Davis AM, Lu F (2000) Evolution of Bishop Tuff rhyolite magma based on melt and magnetite inclusions and zoned phenocrysts. J Petrol 41:449–473

    Article  Google Scholar 

  • Anderson JL, Barth AP, Wooden JL, Mazdab F (2008) Thermometers and thermobarometers in granitic systems. In: Putirka KP, Tepley (eds) Minerals, inclusions and volcanic processes. Reviews in mineralogy and geochemistry, Mineralogical Society of America, Washington D.C. vol 69. pp 121–142

    Google Scholar 

  • Anovitz LM, Blencoe JG (1999) Dry melting of high albite. Am Mineral 84:1830–1842

    Article  Google Scholar 

  • Barrow G (1893) On an intrusion of muscovite-biotite gneiss in the south-eastern Highlands of Scotland, and its accompanying metamorphism. Q J Geol Soc 49:330–358

    Article  Google Scholar 

  • Barth TFW (1934) Temperaturen I lava- og magmamasser samt et nytt geologisk thermometer. Nature 8:187–192

    Google Scholar 

  • Barth TFW (1951) The feldspar geologic thermometers. Neues Jb Mineral 82:143–153

    Google Scholar 

  • Barus C (1893) High temperature work in igneous fusion and ebullition, chiefly in relation to pressure. U.S. Geological Survey Bulletin, vol 103. Government Printing Office, Washington, DC

    Google Scholar 

  • Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Mineral Petrol 115:103–111

    Article  Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29:445–522

    Article  Google Scholar 

  • Beyer C, Frost DJ, Miyajima N (2015) Experimental calibration of a garnet-clinopyroxene geobarometer for mantle eclogites. Contrib Mineral Petrol 169:18

    Article  Google Scholar 

  • Blundy JD, Holland TJB (1990) Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib Mineral Petrol 104:208–224

    Article  Google Scholar 

  • Bohlen SR, Lindsley DH (1987) Thermometry and barometry of igneous and metamorphic rocks. Annu Rev Earth Planet Sci 15:397–420

    Article  Google Scholar 

  • Bohlen SR, Montana A, Kerrick DM (1991) Precise determination of the equilibria kyanite = silliaminate and kyanite = andalusite and a revised triple point for Al2SiO5 polymorphs. Am Mineral 76:677–684

    Google Scholar 

  • Bottinga Y, Weill DF (1972) The viscosity of magmatic silicate liquids: a model for calculation. Am J Sci 272:438–475

    Article  Google Scholar 

  • Bowen NL (1913) The melting phenomena of the plagioclase feldspars. Am J Sci 35: 577–599

    Article  Google Scholar 

  • Bowen NL (1940) Progressive metamorphism of siliceous limestone and dolomite. J Geol 48:225–274

    Article  Google Scholar 

  • Brady JB, Cherniak DJ (2010) Diffusion in minerals: an overview of published experimental diffusion data. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Reviews in mineralogy and geochemistry, Mineralogical Society of America, Washington D.C. vol 72. pp 899–920

    Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Article  Google Scholar 

  • Caddick MJ, Thompson AB (2008) Quantifying the tectono-metamorphic evolution of politic rocks from a wide range of tectonic settings: mineral compositions in equilibrium. Contrib Mineral Petrol 156:177–195

    Article  Google Scholar 

  • Chamberlain KJ, Morgan DJ, Wilson CJN (2014) Timescales of mixing and mobilization in the Bishop Tuff magma body: perspectives from diffusion chronometry. Contrib Mineral Petrol 168. doi:10.1007/s00410-014-1034-2

    Google Scholar 

  • Clapeyron E (1834) Memoir on the motive power of heat. J Ecole R Polytech 23:153–190, in Taylor’s Scientific Memoirs, 14:153–190, article 15

    Google Scholar 

  • Cusack R (1896) On the melting points of minerals. Proc R Ir Acad 4:399–413

    Google Scholar 

  • Day AL, Sossman RB (1911) The melting points of minerals in light of recent investigations on the gas thermometer. Am J Sci 31:341–349

    Article  Google Scholar 

  • Doelter C (1901) Ueber die bestimmung der schmelzpunkte bei mineralien und gesteinen. Tschermaks Mineral Petrogr Mitt 20:210–232

    Google Scholar 

  • Elkins LT, Grove TL (1990) Ternary feldspar experiments and thermodynamic models. Am Mineral 75:544–559

    Google Scholar 

  • Essene EJ (1982) Geologic thermometry and barometry. In: Ferry JM (ed) Characterization of metamorphism through mineral equilibria. Reviews in mineralogy, vol 10. Mineralogical Society of America, Washington, DC, pp 153–206

    Google Scholar 

  • Evans BW (2007) In: Wood BJS (Ser ed) Landmark papers: metamorphic petrology. Mineralogical society of Great Britain and Ireland, Middlesex, United Kingdom, vol 3, p 232

    Google Scholar 

  • Evans BW, Hildreth W, Bachmann O, Scaillet B (2016) In defense of magnetite-ilmenite thermometry in the Bishop Tuff and its implications for gradients in silicic magma reservoirs. Am Mineral 101:469–482

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437

    Article  Google Scholar 

  • Gardner JE, Befus KS, Gualda GAR, Ghiorso MS (2014) Experimental constraints on rhyolite-MELTS and the Late Bishop Tuff magma body. Contrib Mineral Petrol 168:1051. doi:10.1007/s00410-014-1051-1

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic mole for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Ghiorso MS, Hischmann MM, Reiners PW, Kress VC (2002) The pMelts: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst 3:1030

    Article  Google Scholar 

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen barometer. Am J Sci 308:957–1039

    Article  Google Scholar 

  • Gibbs JW (1874–1878) On the equilibrium of heterogeneous substances. Trans Connecticut Acad Arts Sci 111:101–524

    Google Scholar 

  • Goldschmidt VM (1912) Die gesetze der gesteinsmetamorphose mit beispielen aus der geoloigie des sudlichen norwegens, Skrifter utgit av Videnskapsselskapet I Kristiania, I. Matematisk-Naturvidenskabelig Klasse 22

    Google Scholar 

  • Guldberg CM, Waage P (1864) Studies concerning affinity. C.M. Forhandlinger: Videnskabs-Selskabet i Christiana, 35; Translator: EW Lund (1965). J Chem Educ 42:548–550

    Google Scholar 

  • Guldberg CM, Waage P (1879) Ueber die chemische affinitat. J Prakt Chem 127:69–114

    Article  Google Scholar 

  • Hall J (1790) Observations on the formation of granite. Trans R Soc Edinb 3:8–12

    Google Scholar 

  • Hall J (1798) Experiments on whinstone and lava. Trans R Soc Edinb 5:43–75

    Article  Google Scholar 

  • Hammerstrom JM, Zen E (1986) Aluminum in hornblende: an empirical igneous geobarometer. Am Mineral 71:1297–1313

    Google Scholar 

  • Hansteen TH, Klugel A (2008) Fluid inclusion thermobarometry as a tracer for magmatic processes. In: Putirka KD, Tepley F (eds). Reviews in mineralogy and geochemistry, Mineralogical Society of America, Washington D.C. vol 69. pp 143–177

    Google Scholar 

  • Hansteen TH, Klugel A, Schminke H-U (1998) Multi-stage magma ascent beneath the Canary Islands: evidence from fluid inclusions. Contrib Mineral Petrol 132:48–64

    Article  Google Scholar 

  • Hayden LA, Watson EB (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometer of quartz and zircon. Earth Planet Sci Lett 258:561–568

    Article  Google Scholar 

  • Hildreth W, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48:951–999

    Article  Google Scholar 

  • Holdaway MJ, Mukhopadhyay B (1993) A reevaluation of the stability relations of andalusite: thermochemical data and phase diagram for the aluminum silicates. Am Mineral 78:298–315

    Google Scholar 

  • Holdaway MJ (2001) Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. Am Mineral 86:1117–1129

    Article  Google Scholar 

  • Holland TJB (1980) The reaction albite = jadeite + quartz determined experimentally in the range 600–1200 °C. Am Mineral 65:129–134

    Google Scholar 

  • Holland T, Powell R (1992) Plagioclase feldspars: activity-composition relations based upon Darken’s quadratic formalism and Landau theory. Am Mineral 77:53–61

    Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Petrol 16:309–343

    Article  Google Scholar 

  • Horstman AF (1877) Ueber ein dissociationsproblem, Aus den Verhandlungen d. Naturhist.-Med., Heidelberg. In: Ostwald’s Klassiker der Exakten Wissenschaften, Leipzig, Germany, vol 137. pp 42–55

    Google Scholar 

  • Howard J (1771) Observations on the heat of the ground on Mount Vesuvius. Philos Trans (1683–1775) 61:53–54

    Article  Google Scholar 

  • Huang RF, Audetat A (2012) The titanium-in-quartz (Ttani Q) thermobarometer: a critical examination and re-calibration. Geochim Cosmochim Acta 84:75–89

    Article  Google Scholar 

  • Iddings JP (1888) Obsidian Cliff, Yellowstone National Park. Government Printing Office, Washington, DC

    Google Scholar 

  • Jefferys WH, Berger JO (1992) Ockham’s razor and Bayesian analysis. Am Sci 80:64–72

    Google Scholar 

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Minerals and rocks, vol 22. Springer, Heidelberg, 335 p

    Google Scholar 

  • Joly J (1891) On the determination of the melting points of minerals. Part I. The uses of the meldometer. Proc R Ir Acad (1889–1901), 2:38–64

    Google Scholar 

  • Jones HC (1899) The modern theory of solutions: memoirs by Pfeffer, Van’t Hoff, Arrhenius, and Raoult. Harper and Brothers Publishers, New York. 133 p

    Google Scholar 

  • Klügel A, Klein F (2005) Complex magma storage and ascent at embryonic submarine volcanoes from the Madeira Archipelago. Geology 34:337–340

    Article  Google Scholar 

  • Kohn MJ (2014) “Thermoba-Raman-try”: calibration of spectroscopic barometers and thermometers for mineral inclusions. Earth Planet Sci Lett 388:187–196

    Article  Google Scholar 

  • Kohn MJ (2016) Metamorphic chronology – a tool for all ages: past achievements and future prospects. Am Mineral 101:25–42

    Article  Google Scholar 

  • Kohn MJ, Spear FS (1991a) Error propagation for barometers 1: accuracy and precision of experimentally located end-member reactions. Am Mineral 76:128–137

    Google Scholar 

  • Kohn MJ, Spear FS (1991b) Error propagation for barometers 2: application to rocks. Am Mineral 76:138–147

    Google Scholar 

  • Lange RA, Carmichael ISE (1987) Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2liquids: new measurements and derived partial molar properties. Geochim Cosmochim Acta 51:2931–2946

    Article  Google Scholar 

  • Lange RA, Navrotsky A (1992) Heat capacities of Fe2O3-bearing silicate liquids. Contrib Mineral Petrol 110:311–320

    Article  Google Scholar 

  • Lewis GN (1899) The development and application of a general equation for free energy and physio-chemical equilibrium. Contributions from the chemical laboratory of Harvard College. Proc Am Acad Arts Sci 35:3–38

    Article  Google Scholar 

  • Lewis GN (1901) The law of physico-chemical change. Proc Am Acad Arts Sci 37:49–69

    Article  Google Scholar 

  • Lewis GN (1907) Outlines of a new system of thermodynamics chemistry. Contributions from the research laboratory of physical chemistry of the Massachusetts Institute of Technology, no. 17. Proc Am Acad Arts Sci 43:259–293

    Article  Google Scholar 

  • Longhi J, Walker D, Hays JF (1976) Fe and Mg in plagioclase. Proc Lunar Sci Conf 7:1281–1300

    Google Scholar 

  • Lund EW (1965) Guldberg and Waage and the law of mass action. J Chem Educ 42:548–550

    Article  Google Scholar 

  • Mollo S, Putirka K, Iezzi G, Scarlato P (2013a) The control of cooling rate on titanomagnetite composition: implications for a geospeedometry model applicable to alkaline rocks from Mt. Etna volcano. Contrib Mineral Petrol 165:457–475

    Article  Google Scholar 

  • Mollo S, Putirka K, Misiti V, Soligo M, Scarlato P (2013b) A new test for equilibrium-based on clinopyroxene-melt pairs; clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. Chem Geol 352:92–100

    Article  Google Scholar 

  • Mysen BO (1991) Relations between structure, redox equilibria of iron, and properties of magmatic liquids. In: Perchuk LL, Kushiro I (eds) Physical chemistry of magmas. Advances in physical chemistry, Springer-Verlag, New York, vol 9. pp 41–98

    Google Scholar 

  • Navrtosky A (1995) Thermodynamic properties of minerals. Mineral physics and crystallography: a handbook of physical constants. AGU reference shelf 2. American Geophysical Union, Washington, DC, pp 18–28

    Google Scholar 

  • Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for Excel. Comp Geosci 28:597–604

    Article  Google Scholar 

  • Nielsen RL, Drake MJ (1979) Pyroxene-melt equilibria. Geochim Cosmochim Acta 43:1259–1272

    Article  Google Scholar 

  • Nielsen RL, Dungan MA (1983) Low pressure mineral-melt equilibria in natural anhydrous mafic systems. Contrib Mineral Petrol 84:310–326

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  Google Scholar 

  • Nordstrom DK, Munoz JL (1986) Geochemical thermodynamics. Blackwell, Palo Alto, p 477

    Google Scholar 

  • Ostapenko GT, Tarashchan AN, Mitsyuk BM (2007) Rutile-quartz geobarometer. Geochem Int 45:506–508

    Article  Google Scholar 

  • Powell, R (1985) Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. J Metam Geol 3:231–243

    Article  Google Scholar 

  • Powell R, Holland T (1994) Optimal geothermometry and geobarometry. Am Mineral 79:120–133

    Google Scholar 

  • Powell R, Holland TJB, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metamorph Geol 16:577–588

    Article  Google Scholar 

  • Putirka K (1997) Magma transport at Hawaii: inferences based on igneous thermobarometry. Geology 25:69–72

    Article  Google Scholar 

  • Putirka KD (1998) Garnet + liquid equilibrium. Contrib Mineral Petrol 131:273–288

    Article  Google Scholar 

  • Putirka K (2005) Igneous thermometers and barometers based on plagioclase + liquid equilibria: test of some existing models and new calibrations. Am Mineral 90:336–346

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley F (eds) Reviews in mineralogy and geochemistry, Mineralogical Society of America, Washington D.C. vol 69. pp 61–120

    Google Scholar 

  • Putirka K (2016a) Cooling rates and mantle potential temperatures (Tp) for Earth, Moon, Mars and Vesta, from new models for Tp, oxygen fugacity, ferric-ferrous ratios, and olivine-liquid Fe-Mg exchange. Am Mineral 101:819–840

    Google Scholar 

  • Putirka K (2016b) Amphibole thermometers and barometers for igneous systems, and some implications for eruption mechanisms of felsicmagmas at arc volcanoes. Am Mineral 101:841–858

    Google Scholar 

  • Putirka K, Condit CD (2003) Cross section of a magma conduit system at the margin of the Colorado Plateau. Geology 31:701–704

    Article  Google Scholar 

  • Putirka K, Johnson M, Kinzler R, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Mineral Petrol 123:92–108

    Article  Google Scholar 

  • Putirka K, Kuntz M, Unruh D, Vaid N (2009) Magma evolution and ascent at the Craters of the Moon and neighboring volcanic fields, southern ID, USA: implications for the evolution of polygenetic and monogenetic fields. J Petrol 50:1639–1665

    Article  Google Scholar 

  • Raoult FM (1884) The general law of the freezing of solvents. Ann Chim Phys 2:66–93

    Google Scholar 

  • Richardson SW, Gilbert MC, Bell PM (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminum silicate triple point. Am J Sci 267:259–272

    Article  Google Scholar 

  • Richet P, Bottinga Y (1986) Thermochemical properties of silicate glasses and liquids: a review. Rev Geogr 24:1–25

    Google Scholar 

  • Ridolfi, F, Renzulli A (2011) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometeric and chemometric empirical equations valid up to 1,130oC and 2.2 GPa. Contrib Mineral Petrol. doi:10.1007/s00410-011-0704-6

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) and at higher temperatures. U. S. Geological Survey bulletin, vol 1452. Government Printing Office, Washington, DC, 456 p

    Google Scholar 

  • Roedder E (1965) Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts. Am Mineral 50:1746–1782

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Roozeboom HWB (1891) Uber die loslichkeit von mischkrystallen, speziell zweier isomorpher korper. Z Phys Chem 8:504–530

    Google Scholar 

  • Ryerson FJ (1985) Oxide solution mechanisms in silicate melts: systematic variations in the activity coefficient of SiO2. Geochim Cosmochim Acta 49:637–650

    Article  Google Scholar 

  • Scaillet B, Evans BW (1999) The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P-T-fO 2 -fH 2 O conditions of the dacite magma. J Petrol 40:381–411

    Article  Google Scholar 

  • Spallanzani AL (1789) Travels in the two Sicilies and some are parts of the Apennines. Translated from the original Italian, vol II. G.G. and J. Robinson, Paternoster-Row.

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America monograph. Mineralogical Society of America, Washington, DC, 799 p

    Google Scholar 

  • Stebbins JF (2016) Glass structure, melt structure and dynamics: some concepts for petrology. Am Mineral 101:753

    Article  Google Scholar 

  • Thomas JB, Watson EB, Spear FS, Shmella PT, Nayak SK, Lanzirotti A (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib Mineral Petrol 160:743–759

    Article  Google Scholar 

  • Thomas JB, Watson EB (2012) Application of the Ti-in-quartz thermobarometer to rutile-free systems. Reply to: a comment on: ‘TitanQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz’ by Thomas et al. Contrib Mineral Petrol 164:369:374

    Article  Google Scholar 

  • Thomas JB, Watson EB, Spear FS, Wark DA (2015) TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations. Contrib Mineral Petrol 169. doi:10.1007/s00410-015-1120-0

    Google Scholar 

  • Thompson JB (1982) Composition space: an algebraic and geometric approach. Rev Mineral 10:1–31

    Google Scholar 

  • Van der Waals JD (1891) Die grosse des druckes bei koexistierenden phasen von mischungen, besonders bei salz- und saure-losungen. Z Phys Chem 8:189–214

    Google Scholar 

  • Van Laar JJ (1892) Zur thermodynamic der elektrolytischen dissociation. Z Phys Chem 10:242–254

    Google Scholar 

  • Van Laar JJ (1906) Uber den verlauf der schmezkurven bei festen losungen (oder isomorphen gemischen) in einem speziellen fall. Z Phys Chem 55:435–441

    Google Scholar 

  • Van’t Hoff JH (1887) Die Rolle des osmotischen Druckes in der Analogie zwischen Losungen und gasen. Z Phys Chem 1:481–508

    Google Scholar 

  • Van’t Hoff JH (1896) Studies in chemical dynamics (trans: Ewan T). Williams and Norgate, London, 286 p

    Google Scholar 

  • Von Crustschoff K (1885) Ueber ein neues typisches zirkonfiihrendes Gestein. Mineral Petrogr Mitt 6:172–177

    Google Scholar 

  • Von Crustschoff K, Hofmann A (1881) XXV Notizen. Mineral Petrogr Mitt 4:536–538

    Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petrol 152:743–754

    Article  Google Scholar 

  • Wark DA, Hildreth W, Spear FS, Cherniak DJ, Watson EB (2007) Pre-eruption recharge of the Bishop magma system. Geology 35:235–238

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Article  Google Scholar 

  • Weill DF, Stebbins JF, Hon R, Carmichael ISE (1980) The enthalpy of fusion of anorthite. Contrib Mineral Petrol 74:95–102

    Article  Google Scholar 

  • Wilson CJN, Seward TM, Allan ASR, Charlier BLA, Bello L (2012) A comment on: ‘TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz’ by Jay B. Thomas, E. Bruce Watson, Frank S. Spear, Philip T. Shemella, Saroj K. Nayak and Antonio Lanzirotti. Contrib Mineral Petrol 164:359–368

    Article  Google Scholar 

  • Wu CM (2015) Revised empirical garnet-biotite-muscovite-plagioclase geobarometer in metapelites. J Metamorph Petrol 33:167–176

    Article  Google Scholar 

  • Wu CM, Zhao GC (2007) The metapelitic garnet-biotite-muscovite-aluminosilicate-quartz (GBMAQ) geobarometer. Lithos 97:365–372

    Article  Google Scholar 

  • Wu CM, Wang X-S, Yang C-H, Geng Y-S, Liu F-L (2002) Empirical garnet-muscovite geothermometry in metapelites. Lithos 62:1–13

    Article  Google Scholar 

  • Young DA (2003) Mind over magma. Princeton University Press, Princeton. 686 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Putirka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Putirka, K. (2017). Geothermometry and Geobarometry. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_322-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_322-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics