Skip to main content

Rhizobium as Potential Biofertilizer of Eruca Sativa

  • Conference paper
  • First Online:
Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction

Abstract

Eruca sativa , commonly known as rocket salad, is one of the leading leafy vegetables, belonging to the Brassicaceae family that include other species of agricultural importance, such as broccoli, cabbage, cauliflower, and mustard, amongst others. It is widely cultivated and consumed, being its popularity due to its peculiar flavour and nutritional value. On the other hand, to maintain agricultural production, the indiscriminate use of chemical fertilizers, pesticides, and herbicides results in damage to soil and biodiversity reduction and may result in adverse health effects. An effective alternative is the use of biofertilizers based on plant growth-promoting rhizobacteria (PGPR). In this study, we evaluated the use of a Rhizobium sp. strain as biofertilizer for E. sativa , performing different assays to demonstrate its potential. According to the obtained results, the partial sequencing of 16S rRNA gene classified this strain into the genus Rhizobium. This strain is not able to solubilize phosphate under in vitro conditions. However, this strain was an excellent producer of indole-3-acetic acid (IAA) and its precursors. Moreover, this strain produced siderophores in a low concentration. In vitro inoculation of E. sativa plants with this strain resulted in a significative increase of the number of secondary roots at 6 and 8 days post-inoculation compared to the uninoculated treatment. Therefore, our results support the possible inclusion of this strain of Rhizobium sp. in formulations as potential biofertilizer for E. sativa crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander B, Zuberer D (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Al-Rajhi A (2013) Impact of biofertilizer Trichoderma harzianum Rifai and the biomarker changes in Eruca Sativa L. plant grown in metal-polluted soils. World Appl Sci J 22(2):171–180

    Google Scholar 

  • Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli G, Iori R, Valgimigli L (2005) Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J Agric Food Chem 53:2475–2482

    Article  CAS  PubMed  Google Scholar 

  • Barlas N, Irget M, Tepecil M (2011) Mineral content of the rocket plant (Eruca sativa). Afr J Biotechnol 10(64):14080–14082

    CAS  Google Scholar 

  • Bashan Y, Kamnev A, de-Bashan L (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465–479

    Article  CAS  Google Scholar 

  • Castillo G, Altuna B, Michelena G, Sánchez-Bravo J, Acosta M (2005) Cuantificación del contenido de ácido indolacético (AIA) en un caldo de fermentación microbiana. Anales de Biología 27:137–142

    Google Scholar 

  • Chabot R, Antoun H, Cescas M (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Chou M (2013): Soil bacterium Bacillus subtilis (GB03) augments plant growth and volatile emissions in Eruca sativa (Arugula). Unpublished master’s thesis, Texas Tech University

    Google Scholar 

  • Duca D, Lorv J, Patten C, Rose D, Glick B (2014) Indole-3-acetic acid in plant–microbe interactions. A Van Leeuw J Microb 106:85–125

    Article  CAS  Google Scholar 

  • Flores-Felix J-D, Menéndez E, Rivera L, Marcos-García M, Martínez-Hidalgo P, Mateos P, Martínez-Molina E, Velázquez M, García-Fraile P, Rivas R (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. Plant Nutr Soil Sci 176:876–882

    Article  CAS  Google Scholar 

  • Duhan JS, Dudeja SS, Khurana AL (1998) Siderophore production in relation to N2 fixation and iron uptake in pigeon pea-Rhizobium symbiosis. Folia Microbiol 43(4):421–426

    Article  CAS  Google Scholar 

  • García-Fraile P, Carro L, Robledo M, Ramírez-Bahena M-H, Flores-Félix J-D et al (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7(5)

    Google Scholar 

  • Gutiérrez-Zamora M, Martínez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    Article  PubMed  Google Scholar 

  • Halder A, Chakrabartty P (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38(4):325–330

    Article  CAS  Google Scholar 

  • Kamran M, Syed J, Eqani S, Munis M, Chaudhary H (2015) Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Environ Sci Pollut R 22(12):9275–9283

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169(1):2–17

    Article  PubMed  Google Scholar 

  • Mishra R, Singh R, Jaiswal H, Kumar V, Maurya S (2006) Rhizobium mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol 52:383–389

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa M, Maehara T, Kurose K (2002) Composition of the essential oil from the leaves of Eruca sativa. Flavour Fragr J 17:187–190

    Article  CAS  Google Scholar 

  • Moussa H (2006) Gamma irradiation regulation of nitrate level in rocket (Eruca vesicaria subsp. sativa) plants. J New Seeds 8(1):91–100

    Article  Google Scholar 

  • O’Hara G, Goss T, Dilworth M, Glenn A (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55(8):1870–1876

    PubMed  PubMed Central  Google Scholar 

  • Omirou M, Papastefanou C, Katsarou D, Papastylianou I, Passam H, Ehaliotis C, Papadopoulou K (2012) Relationships between nitrogen, dry matter accumulation and glucosinolates in Eruca sativa Mills. The applicability of the critical NO3-N levels approach. Plant Soil 354(1):347–358

    Article  CAS  Google Scholar 

  • Peix A, Rivas R, Mateos P, Martínez-Molina E, Rodríguez-Barrueco C, Velázquez E (2003) Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Syst Evol Micr 53:2067–2072

    Article  CAS  Google Scholar 

  • Selma M, Martínez-Sanchez A, Allende A, Ros M, Hernández M, Gil M (2010) Impact of organic soil amendments on phytochemicals and microbial quality of rocket leaves (Eruca sativa). J Agr Food Chem 58:8331–8337

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Joshi K, Mazumdar B (2012) Study of siderophore formation in nodule-forming bacterial species. Res J Chem Sci 2(11):26–29

    Google Scholar 

  • Zapata R, Romero A, Maseda P (2005) First report of white rust of arugula caused by Albugo candida in Argentina. Plant Dis 89(2):207

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Junta de Castilla y León (JCyL SA 169 U 14 project). XCG acknowledges a fellowship from the Fundación Kinesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Cruz-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rubio-Canalejas, A., Celador-Lera, L., Cruz-González, X., Menéndez, E., Rivas, R. (2016). Rhizobium as Potential Biofertilizer of Eruca Sativa . In: González-Andrés, F., James, E. (eds) Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction. Springer, Cham. https://doi.org/10.1007/978-3-319-32528-6_18

Download citation

Publish with us

Policies and ethics