Skip to main content

Drought Stress Memory and Drought Stress Tolerance in Plants: Biochemical and Molecular Basis

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 1

Abstract

Drought is one of the major environmental factors limiting plant growth and development. Drought stress tolerance in plants involves diverse and multiple physiological and molecular mechanisms. Priming and drought stress memory are key processes, by which plant may increase the tolerance to subsequent drought events. Stress memory involves multiple modifications at physiological, proteomic, transcriptional levels and epigenetic mechanisms. In this chapter, we summarized recent advancements in physiological, biochemical, and molecular studies related to drought priming and its effect on drought tolerance in plants. The mechanisms of drought stress memory and the possible priming-induced cross-tolerance to other abiotic stresses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Basra SMA, Hussain S, Hussain SA, Rehman HU, Rehman A, Ali A. Priming with ascorbic acid, salicylic acid and hydrogen peroxide improves seedling growth of spring maize at suboptimal temperature. J Environ Agr Sci. 2015;3:14–22.

    Google Scholar 

  • Ali M, Jensen CR, Mogensen VO. Early signals in field grown wheat in response to shallow soil drying. Funct Plant Biol. 1998;25:871–82.

    Google Scholar 

  • Alvarez-Venegas R, Abdallat AA, Guo M, Alfano JR, Avramova Z. Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics. 2014;2:106–13.

    Article  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubiś J. Interaction between polyamine and nitric oxide signaling in adaptive responses to drought in cucumber. J Plant Growth Regul. 2009;28:177–86.

    Article  CAS  Google Scholar 

  • Arnao MB, Hernandez-Ruiz J. Functions of melatonin in plants: a review. J Pineal Res. 2015;59:133–50.

    Article  CAS  PubMed  Google Scholar 

  • Ashoub A, Beckhaus T, Berberich T, Karas M, Brüggemann W. Comparative analysis of barley leaf proteome as affected by drought stress. Planta. 2013;237:771–81.

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Macherel D. The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot. 2009;103:581–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkin O, Scheurwater I, Pons T. High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Glob Chang Biol. 2006;12:500–15.

    Article  Google Scholar 

  • Atkin O, Scheurwater I, Pons T. Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures. New Phytol. 2007;174:367–80.

    Article  CAS  PubMed  Google Scholar 

  • Avramova Z. Transcriptional ‘memory’ of a stress; transient chromatin and memory (epigenetic) marks at stress response genes. Plant J. 2015;83:149–59.

    Article  CAS  PubMed  Google Scholar 

  • Baerenfaller K, Massonnet C, Walsh S, Baginsky S, Bühlmann P, Hennig L, Hirsch‐Hoffmann M, Howell KA, Kahlau S, Radziejwoski A. Systems‐based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol Syst Biol. 2012;8:606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Basra S, Farooq M, Tabassam R, Ahmad N. Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (Oryza sativa L.). Seed Sci Technol. 2005;33:623–8.

    Article  Google Scholar 

  • Berry S, Dean C. Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J. 2015;83:133–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blödner C, Skroppa T, Johnsen Ø, Polle A. Freezing tolerance in two Norway spruce (Picea abies L. Karst.) progenies is physiologically correlated with drought tolerance. J Plant Physiol. 2005;162:549–58.

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Frederick Meins J, Kovalchuk I. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-Like proteins. PLoS One. 2010;5, e9514.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA. Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci. 2007;173:603–8.

    Article  CAS  Google Scholar 

  • Chen K, Arora R. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Sci. 2011;180:212–20.

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Arora R. Priming memory invokes seed stress-tolerance. Environ Exp Bot. 2012;94:33–45.

    Article  CAS  Google Scholar 

  • Chen K, Fessehaie A, Arora R. Selection of reference genes for normalizing gene expression during seed priming and germination using qPCR in Zea mays and Spinacia oleracea. Plant Mol Biol Rep. 2012;30:478–87.

    Article  CAS  Google Scholar 

  • Chen K, Fessehaie A, Arora R. Aquaporin expression during seed osmopriming and post-priming germination in spinach. Biol Plantarum. 2013;57:193–8.

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu J-K. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol. 2009;12:133–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colaneri AC, Jones AM. Genome-wide quantitative identification of DNA differentially methylated sites in Arabidopsis seedlings growing at different water potential. PLoS One. 2013;8, e59878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U. Molecular aspects of defence priming. Trends Plant Sci. 2011;16:524–31.

    Article  CAS  PubMed  Google Scholar 

  • Ćuk K, Gogalo M, Tkalec M, Vidaković-Cifrek Ž. Transgenerational stress memory in Arabidopsis thaliana (L.) Heynh.: antioxidative enzymes and HSP70. Acta Bot Croat. 2010;69:183–97.

    Google Scholar 

  • Ding Y, Fromm M, Avramova Z. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat Commun. 2012;3:740.

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Virlouvet L, Liu N, Riethoven JJ, Fromm M, Avramova Z. Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana. BMC Plant Biol. 2014;14:141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos Trans R Soc Lond B Biol Sci. 2012;367:547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisvand H, Tavakkol-Afshari R, Sharifzadeh F, Maddah Arefi H, Hesamzadeh Hejazi S. Effects of hormonal priming and drought stress on activity and isozyme profiles of antioxidant enzymes in deteriorated seed of tall wheatgrass (Agropyron elongatum Host). Seed Sci Technol. 2010;38:280–97.

    Article  Google Scholar 

  • Eldem V, Akcay UC, Ozhuner E, Bakır Y, Uranbey S, Unver T. Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One. 2012;7(12):502–98.

    Google Scholar 

  • Elkoca E, Haliloglu K, Esitken A, Ercisli S. Hydro-and osmopriming improve chickpea germination. Acta Agric Scand Sect B Soil Plant Sci. 2007;57:193–200.

    Google Scholar 

  • Faghani E, Gharechahi J, Komatsu S, Mirzaei M, Khavarinejad RA, Najafi F, Farsad LK, Salekdeh GH. Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. J Proteomics. 2014;114:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Rehman H. Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci. 2009a;195:254–61.

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 2009b;29:185–212.

    Article  Google Scholar 

  • Farooq M, Basra SM, Wahid A, Ahmad N. Changes in nutrient-homeostasis and reserves metabolism during rice seed priming: consequences for seedling emergence and growth. Agr Sci China. 2010;9:191–8.

    Article  CAS  Google Scholar 

  • Franks PJ, Doheny‐Adams WT, Britton‐Harper ZJ, Gray JE. Increasing water‐use efficiency directly through genetic manipulation of stomatal density. New Phytol. 2015;207:188–95.

    Article  CAS  PubMed  Google Scholar 

  • Frazier TP, Sun G, Burklew CE, Zhang B. Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol. 2011;49:159–65.

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, Ji W, Guo D, Zhu Y. Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta. 2010;231:991–1001.

    Article  CAS  PubMed  Google Scholar 

  • Giri GS, Schillinger WF. Seed priming winter wheat for germination, emergence, and yield. Crop Sci. 2003;43:2135–41.

    Article  Google Scholar 

  • Guan Q, Haroon S, Bravo DG, Will JL, Gasch AP. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae. Genetics. 2012;192:495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan XK, Song L, Wang TC, Turner NC, Li FM. Effect of drought on the gas exchange, chlorophyll fluorescence and yield of six different-era spring wheat cultivars. J Agron Crop Sci. 2015;201:253–66.

    Article  CAS  Google Scholar 

  • Hackenberg M, Gustafson P, Langridge P, Shi BJ. Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J. 2015;13:2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH. Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res. 2007;6:1451–60.

    Article  CAS  PubMed  Google Scholar 

  • Hamanishi ET, Thomas BR, Campbell MM. Drought induces alterations in the stomatal development program in Populus. J Exp Bot. 2012;63:4969–71.

    Article  CAS  Google Scholar 

  • Hao P, Zhu J, Gu A, Lv D, Ge P, Chen G, Li X, Yan Y. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Proteomics. 2015;15:1544–63.

    Article  CAS  PubMed  Google Scholar 

  • Hepworth C, Doheny-Adams T, Hunt L, Cameron DD, Gray JE. Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytol. 2015. doi:10.1111/nph.13598.

    PubMed  Google Scholar 

  • Herms DA, Mattson WJ. The dilemma of plants: to grow or defend. Q Rev Biol. 1992;67:283–335.

    Article  Google Scholar 

  • Hu T, Jin Y, Li H, Amombo E, Fu J. Stress memory induced transcriptional and metabolic changes of perennial ryegrass (Lolium perenne) in response to salt stress. Physiol Plant. 2015a. doi:10.1111/ppl.12342.

    Google Scholar 

  • Hu T, Liu SQ, Amombo E, Fu JM. Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb.) in response to high-temperature stress. Front Plant Sci. 2015b;6:403–25.

    PubMed  PubMed Central  Google Scholar 

  • Ibáñez H, Ballester A, Muñoz R, José Quiles M. Chlororespiration and tolerance to drought, heat and high illumination. J Plant Physiol. 2010;167:732–8.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen S-E, Liu F, Jensen CR. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Sci Hortic. 2009;122:281–7.

    Article  CAS  Google Scholar 

  • Janmohammadi M, Dezfuli PM, Sharifzadeh F. Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. Genet Appl Plant Physiol. 2008;34:215–26.

    Google Scholar 

  • Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 2001;42:1265–73.

    Article  CAS  PubMed  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT. Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant. 2012;35:1381–96.

    Article  Google Scholar 

  • Kaminski KP, Kørup K, Kristensen K, Nielsen KL, Liu F, Topbjerg HB, Kirk HG, Andersen MN. Contrasting water-use efficiency (WUE) responses of a potato mapping population and capability of modified ball-berry model to predict stomatal conductance and WUE measured at different environmental conditions. J Agron Crop Sci. 2015;201:81–94.

    Article  CAS  Google Scholar 

  • Kang H-G, Kim J, Kim B, Jeong H, Choi SH, Kim EK, Lee H-Y, Lim PO. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci. 2011;180(4):634–41.

    Article  CAS  PubMed  Google Scholar 

  • Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y, Guo T. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res. 2012;11:6066–79.

    Article  CAS  PubMed  Google Scholar 

  • Kang G, Li G, Liu G, Xu W, Peng X, Wang C, Zhu Y, Guo T. Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol Plantarum. 2013;57:718–24.

    Article  CAS  Google Scholar 

  • Kaur S, Gupta A, Kaur N. Effect of osmo- and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regul. 2002;37:17–22.

    Article  CAS  Google Scholar 

  • Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J. 2015;81:505–18.

    Article  CAS  PubMed  Google Scholar 

  • Kim J-M, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol. 2008;49:1580–8.

    Google Scholar 

  • Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H. MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol. 2010a;51:1079–83.

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Lee HJ, Jung HJ, Maruyama K, Suzuki N, Kang H. Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. Planta. 2010b;232:1447–54.

    Article  CAS  PubMed  Google Scholar 

  • Kim J-M, To TK, Ishida J, Matsui A, Kimura H, Seki M. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol. 2012;53:847–56.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Seki M. Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol. 2014;55:1859–63.

    Article  PubMed  Google Scholar 

  • Kreyling J, Wiesenberg GLB, Thiel D, Wohlfart C, Huber G, Walter J, Jentsch A, Konnert M, Beierkuhnlein C. Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Environ Exp Bot. 2012;78:99–108.

    Article  Google Scholar 

  • Lalk I, Dörfling K. Hardening, abscisic acid, praline and freezing resistance in two winter wheat varieties. Physiol Plant. 1985;63:287–92.

    Article  CAS  Google Scholar 

  • Lee HY, Byeon Y, Tan D-X, Reiter RJ, Back K. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. J Pineal Res. 2015;58:291–9.

    Article  CAS  PubMed  Google Scholar 

  • Li W-X, Oono Y, Zhu J, He X-J, Wu J-M, Iida K, Lu X-Y, Cui X, Jin H, Zhu J-K. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell. 2008;20:2238–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Ren B, Yang X, Xu G, Shen Q, Guo S. Chloroplast downsizing under nitrate nutrition restrained mesophyll conductance and photosynthesis in rice (Oryza sativa L.) under drought conditions. Plant Cell Physiol. 2012;53:892–900.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Jiang H, Liu F, Cai J, Dai T, Cao W, Jiang D. Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regul. 2013;71:31–40.

    Article  CAS  Google Scholar 

  • Li X, Cai J, Liu F, Dai T, Cao W, Jiang D. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiol Biochem. 2014a;82:34–43.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cai J, Liu F, Dai T, Cao W, Jiang D. Exogenous abscisic acid application during grain filling in winter wheat improves cold tolerance of offspring’s seedlings. J Agron Crop Sci. 2014b;200:467–78.

    Article  CAS  Google Scholar 

  • Li X, Cai J, Liu F, Dai T, Cao W, Jiang D. Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Funct Plant Biol. 2014c;41:690–703.

    Article  CAS  Google Scholar 

  • Li C, Tan DX, Liang D, Chang C, Jia D, Ma F. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot. 2015a;66:669–80.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Topbjerg HB, Jiang D, Liu F. Drought priming at vegetative stage improves the antioxidant capacity and photosynthesis performance of wheat exposed to a short-term low temperature stress at jointing stage. Plant and Soil. 2015b;393:307–18.

    Article  CAS  Google Scholar 

  • Liao WB, Huang GB, Yu JH, Zhang ML. Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol. 2012;58:6–15.

    CAS  Google Scholar 

  • Liu F, Andersen MN, Jensen CR. Root signal controls pod growth in drought-stressed soybean during the critical, abortion-sensitive phase of pod development. Field Crops Res. 2004;85:159–66.

    Article  Google Scholar 

  • Liu F, Jensen CR, Andersen MN. A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Aust J Agric Res. 2005a;56:1245–52.

    Article  CAS  Google Scholar 

  • Liu F, Jensen CR, Shahanzari A, Andersen MN, Jacobsen S-E. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci. 2005b;168:831–6.

    Article  CAS  Google Scholar 

  • Liu F, Shahnazari A, Andersen MN, Jacobsen SE, Jensen CR. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. J Exp Bot. 2006;57(14):3727–35.

    Article  CAS  PubMed  Google Scholar 

  • Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008;14(5):836–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Cang J, Wang X, Huang R, Wang J, Yu J, Lu B. Effects of exogenous abscisic acid on carbohydrate metabolism and the expression levels of correlative key enzymes in winter wheat under low temperature. Biosci Biotech Biochem. 2013;77:516–25.

    Article  CAS  Google Scholar 

  • Liu N, Ding Y, Fromm M, Avramova Z. Different gene-specific mechanisms determine the ‘revised-response’ memory transcription patterns of a subset of A. thaliana dehydration stress responding genes. Nucleic Acids Res. 2014;42:5556–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Rubæk GH, Liu F, Andersen MN. Effect of partial root zone drying and deficit irrigation on nitrogen and phosphorus uptake in potato. Agric Water Manage. 2015;159:66–76.

    Article  Google Scholar 

  • Loveys B, Scheurwater I, Pons T, Fitter A, Atkin O. Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast‐and slow‐growing plant species. Plant Cell Environ. 2002;25:975–88.

    Article  Google Scholar 

  • Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005;444:139–58.

    Article  CAS  PubMed  Google Scholar 

  • Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015. doi:10.1111/jpi.12267.

    PubMed  Google Scholar 

  • Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J. Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem. 2008;46:189–95.

    Article  CAS  PubMed  Google Scholar 

  • Mata CG, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 2001;126:1196–204.

    Article  CAS  PubMed Central  Google Scholar 

  • Meena RP, Sendhil R, Tripathi S, Chander S, Chhokar R, Sharma R. Hydro-priming of seed improves the water use efficiency, grain yield and Net economic return of wheat under different moisture regimes. SAARC J Agr. 2014;11:149–59.

    Google Scholar 

  • Mishra KB, Iannacone R, Petrozza A, Mishra A, Armentano N, La Vecchia G, Trtílek M, Cellini F, Nedbal L. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci. 2012;182:79–86.

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J. 2013;73:91–104.

    Article  CAS  PubMed  Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B. Transgeneration memory of stress in plants. Nature. 2006;442.

    Google Scholar 

  • Munné-Bosch S, Alegre L. Cross-stress tolerance and stress “memory” in plants: an integrated view. Environ Exp Bot. 2013;94:1–2.

    Article  Google Scholar 

  • Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot. 2015;66:5467–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni Z, Hu Z, Jiang Q, Zhang H. Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun. 2012;427:330–5.

    Article  CAS  PubMed  Google Scholar 

  • Pandita V, Anand A, Nagarajan S, Seth R, Sinha S. Solid matrix priming improves seed emergence and crop performance in okra. Seed Sci Technol. 2010;38:665–74.

    Article  Google Scholar 

  • Pecinka A, Rosa M, Schikora A, Berlinger M, Hirt H, Luschnig C, Scheid OM. Transgenerational stress memory is not a general response in Arabidopsis. PLoS One. 2009;4, e5202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peuke A, Gessler A, Rennenberg H. The effect of drought on C and N stable isotopes in different fractions of leaves, stems and roots of sensitive and tolerant beech ecotypes. Plant Cell Environ. 2006;29:823–35.

    Article  CAS  PubMed  Google Scholar 

  • Plauborg F, Abrahamsen P, Gjettermann B, Mollerup M, Iversen BV, Liu F, Andersen MN, Hansen S. Modelling of root ABA synthesis, stomatal conductance, transpiration and potato production under water saving irrigation regimes. Agr Water Manage. 2010;98:425–39.

    Article  Google Scholar 

  • Quarrie S, Jones H. Effects of abscisic acid and water stress on development and morphology of wheat. J Exp Bot. 1977;28:192–203.

    Article  CAS  Google Scholar 

  • Rajashekar CB, Panda M. Water stress is a component of cold acclimation process essential for inducing full freezing tolerance in strawberry. Sci Hortic. 2014;174:54–9.

    Article  Google Scholar 

  • Ramírez DA, Rolando JL, Yactayo W, Monneveux P, Mares V, Quiroz R. Improving potato drought tolerance through the induction of long-term water stress memory. Plant Sci. 2015;238:26–32.

    Article  PubMed  CAS  Google Scholar 

  • Rivas-Ubach A, Sardans J, Perez-Trujillo M, Estiarte M, Penuelas J. Strong relationship between elemental stoichiometry and metabolome in plants. Proc Natl Acad Sci U S A. 2012;109:4181–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai N, Akiyama M, Kuraishi S. Irreversible effects of water stress on growth and stomatal development in cotyledons of etiolated squash seedlings. Plant Cell Physiol. 1986;27:1177–85.

    Google Scholar 

  • Sanchez-Martin J, Heald J, Kingston-Smith A, Winters A, Rubiales D, Sanz M, Mur LA, Prats E. A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ. 2015;38:1434–52.

    Article  CAS  PubMed  Google Scholar 

  • Sani E, Herzyk P, Perrella G, Colot V, Amtmann A. Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol. 2013;14:R59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shahrokhi M, Tehranifar A, Hadizadeh H, Selahvarzi Y. Effect of drought stress and paclobutrazol-treated seeds on physiological response of Festuca arundinacea L. master and Lolium perenne L. barrage. J Biol Environ Sci. 2011;5:77–85.

    Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J. Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Ann Appl Biol. 2015;166:171–82.

    Article  CAS  Google Scholar 

  • Silva EC, Nogueira RJ, Vale FH, Araújo FP, Pimenta MA. Stomatal changes induced by intermittent drought in four umbu tree genotypes. Brazil J Plant Physiol. 2009;21:33–42.

    Article  Google Scholar 

  • Silvente S, Sobolev AP, Lara M. Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS One. 2012;7(6), e38554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Dai Z, Li S, Xin H. A novel system for evaluating drought-cold tolerance of grapevines using chlorophyll fluorescence. BMC Plant Biol. 2015;15(1):82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Y, Yan F, Cui X, Liu F. Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes. J Plant Physiol. 2014;171:1248–55.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cui X, Liu F. Effect of irrigation regimes and phosphorus rates on water and phosphorus use efficiencies in potato. Sci Hortic. 2015;190:64–9.

    Article  CAS  Google Scholar 

  • Suseela V, Tharayil N, Xing B, Dukes JS. Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. Glob Chang Biol. 2015. doi:10.1111/gcb.13033.

    PubMed  Google Scholar 

  • Tavili A, Zare S, Moosavi SA, Enayati A. Effects of seed priming on germination characteristics of Bromus species under salt and drought conditions. Amer-Eurasian J Agric Environ Sci. 2011;10:163–8.

    Google Scholar 

  • Thellier M, Luttge U. Plant memory: a tentative model. Plant Biol. 2012;15:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Theocharis A, Clement C, Barka EA. Physiological and molecular changes in plants grown at low temperatures. Planta. 2012;235:1091–105.

    Article  CAS  PubMed  Google Scholar 

  • Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep. 2015;5:12449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Topbjerg HB, Kaminski KP, Kørup K, Nielsen KL, Kirk HG, Andersen MN, Liu F. Screening for intrinsic water use efficiency in a potato dihaploid mapping population under progressive drought conditions. Acta Agric Scand B Plant Sci. 2015. doi:10.1080/09064710.2015.1015439.

    Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang J-Y, Benedito V, Hofer JM, Chueng F. Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol. 2007;144:538–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K. ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol. 2010;13:132–8.

    Article  CAS  PubMed  Google Scholar 

  • Valdes AE, Irar S, Majada JP, Rodriguez A, Fernandez B, Pages M. Drought tolerance acquisition in Eucalyptus globulus (Labill.): a research on plant morphology, physiology and proteomics. J Proteomics. 2013;79:263–76.

    Article  CAS  PubMed  Google Scholar 

  • Varga B, Varga-László E, Bencze S, Balla K, Veisz O. Water use of winter cereals under well-watered and drought-stressed conditions. Plant Soil Environ. 2013;59:150–5.

    Google Scholar 

  • Varga B, Vida G, Varga-László E, Bencze S, Veisz O. Effect of simulating drought in various phenophases on the water use efficiency of winter wheat. J Agron Crop Sci. 2015;201:1–9.

    Article  Google Scholar 

  • Virlouvet L, Fromm M. Physiological and transcriptional memory in guard cells during repetitive dehydration stress. New Phytol. 2015;205:596–607.

    Article  CAS  PubMed  Google Scholar 

  • Walter J, Nagy L, Hein R, Rascher U, Beierkuhnlein C, Willner E, Jentsch A. Do plants remember drought? Hints towards a drought-memory in grasses. Environ Exp Bot. 2011;71:34–40.

    Article  Google Scholar 

  • Walter J, Jentsch A, Beierkuhnlein C, Kreyling J. Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environ Exp Bot. 2013;94:3–8.

    Article  Google Scholar 

  • Wang J, Vanlerberghe GC. A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress. Physiol Plant. 2013;149:461–73.

    Article  CAS  Google Scholar 

  • Wang Y, Suo B, Zhao T, Qu X, Yuan L, Zhao X, Zhao H. Effect of nitric oxide treatment on antioxidant responses and psbA gene expression in two wheat cultivars during grain filling stage under drought stress and rewatering. Acta Physiol Plant. 2011;33:1923–32.

    Article  CAS  Google Scholar 

  • Wang X, Liu Y, Jia Y, Gu H, Ma H, Yu T, Zhang H, Chen Q, Ma L, Gu A, Zhang J, Shi S. Transcriptional responses to drought stress in root and leaf of chickpea seedling. Mol Biol Rep. 2012a;39:8147–58.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu F, Jensen CR. Comparative effects of deficit irrigation and alternate partial root-zone irrigation on xylem pH, ABA and ionic concentrations in tomatoes. J Exp Bot. 2012b;63:1907–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Kang S, Jensen CR, Liu F. Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2 and enhances photosynthetic capacity in maize leaves. J Exp Bot. 2012c;63:1145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Liu F, Kang S, Jensen CR. Alternate partial root-zone drying irrigation improves nitrogen nutrition in maize (Zea mays L.) leaves. Environ Exp Bot. 2012d;75:36–40.

    Article  CAS  Google Scholar 

  • Wang M, Wang Q, Zhang B. Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene. 2013a;530:26–32.

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res. 2013b;54:292–302.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao Y, Reiter RJ, He CJ, Liu GS, Lei Q, Zuo BX, Zheng XD, Li QT, Kong J. Changes in melatonin levels in transgenic ‘Micro-Tom’ tomato overexpressing ovine AANAT and ovine HIOMT genes. J Pineal Res. 2014a;56:134–42.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Cai J, Liu F, Dai T, Cao W, Wollenweber B, Jiang D. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiol Biochem. 2014b;74:185–92.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Vignjevic M, Jiang D, Jacobsen S, Wollenweber B. Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett. J Exp Bot. 2014c;65:6441–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Vigjevic M, Liu F, Jacobsen S, Jiang D, Wollenweber B. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses during grain filling in spring wheat (Triticum aestivum L. cv. Vinjett). Plant Growth Regul. 2015;75:677–87.

    Article  CAS  Google Scholar 

  • Wei L, Zhang D, Xiang F, Zhang Z. Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci. 2009;170:979–89.

    Article  CAS  Google Scholar 

  • Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front Plant Sci. 2015;6:458.

    PubMed  PubMed Central  Google Scholar 

  • Whittle C, Otto S, Johnston M, Krochko J. Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany. 2009;87(6):650–7.

    Article  CAS  Google Scholar 

  • Windauer L, Altuna A, Benech-Arnold R. Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Ind Crops Products. 2007;25:70–4.

    Article  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 2008;148:1938–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie F, Stewart CN, Taki FA, He Q, Liu H, Zhang B. High‐throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnol J. 2014;12:354–66.

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zhou G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot. 2008;59:3317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci. 2005;10:88–94.

    Article  CAS  PubMed  Google Scholar 

  • Yuan-Yuan S, Yong-Jian S, Ming-Tian W, Xu-Yi L, Xiang G, Rong H, Jun M. Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agron Sin. 2010;36:1931–40.

    Article  Google Scholar 

  • Zadraznik T, Hollung K, Egge-Jacobsen W, Meglic V, Sustar-Vozlic J. Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics. 2013;78:254–72.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B. MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot. 2015;66:1749–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Davies W. Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ. 1990;13:277–85.

    Article  CAS  Google Scholar 

  • Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett. 2011;33:403–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Liu X, Wang X, Zhou M, Zhou X, Ye X, Wei X. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytol. 2012;196:1155–70.

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Cruz DECMH, Torres-Jerez I, Kang Y, Allen SN, Huhman DV, Tang Y, Murray J, Sumner LW, Udvardi MK. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant Cell Environ. 2014;37:2553–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD. Roles of melatonin in abiotic stress resistance in plants. J Exp Bot. 2015;66:647–56.

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Wang G, Zhang W. UV‐B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol. 2007;3:103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot. 2010;61:4157–68.

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 2013;161:1375–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Li M, Guan Q, Liu F, Zhang S, Chen W, Yin L, Qin Y, Ma F. Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in Malus. Plant Sci. 2015;236:44–60.

    Article  CAS  PubMed  Google Scholar 

  • Zuo B, Zheng X, He P, Wang L, Lei Q, Feng C, Zhou J, Li Q, Han Z, Kong J. Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. J Pineal Res. 2014;57:408–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Villum Foundation (107903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, X., Liu, F. (2016). Drought Stress Memory and Drought Stress Tolerance in Plants: Biochemical and Molecular Basis. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_2

Download citation

Publish with us

Policies and ethics