Skip to main content

Solid-State NMR Studies of the Interactions and Structure of Antimicrobial Peptides in Model Membranes

  • Living reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Cationic antimicrobial peptides are part of the innate immune system of several organisms and represent great hope to fight against multidrug-resistant bacteria. Despite their structural diversity, they share common characteristics such as a short length, a net positive charge, and an amphiphilic character. However, the detailed mechanisms of action of these peptides are still unclear. In the literature, there is clear evidence that cationic antimicrobial peptides target the membrane of bacterial pathogens where they induce defects that will eventually kill bacteria by creating an electrochemical gradient imbalance. Therefore, to design more potent and selective antimicrobial peptides that are viable on a pharmacological point of view, a better understanding of the molecular determinants involved in the membrane interactions is required.

In this regard, the most suitable technique to study cationic antimicrobial peptides in their native environment, i.e., a lipid bilayer in a fluid phase, is solid-state NMR. Exploiting the different NMR interactions, this technique has proven to be useful to provide information on the mutual interactions between membrane-active peptides and phospholipids with an atomic-scale resolution. In particular, the conformation of the peptides in addition to their location in the membrane is an important feature of the mechanism of action that needs to be addressed. In this context, this chapter is devoted to present the most recent developments in the field of solid-state NMR for elucidating the conformation and membrane topology of these peptides reconstituted in lipid mimetic membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Schmidt FR. The challenge of multidrug resistance: actual strategies in the development of novel antibacterials. Appl Microbiol Biotechnol. 2004;63:335–43.

    Article  Google Scholar 

  2. Hancock REW, Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 1998;16:82–8.

    Article  Google Scholar 

  3. Hancock REW, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother. 1999;43:1317–23.

    Google Scholar 

  4. Hancock REW. Host defence (cationic) peptides. Drugs. 1999;57:469–73.

    Article  Google Scholar 

  5. Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta. 1999;1462:29–54.

    Article  Google Scholar 

  6. Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta. 1999;1462:71–87.

    Article  Google Scholar 

  7. Dathe M, Meyer J, Beyermann M, Maul B, Hoischen C, Bienert M. General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. Biochim Biophys Acta. 2002;1558:171–86.

    Article  Google Scholar 

  8. Epand RM, Shai Y, Segrest JP, Anantharamaiah GM. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers. 1995;37:319–38.

    Article  Google Scholar 

  9. Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta. 1758;2006:1184–202.

    Google Scholar 

  10. Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29:464–72.

    Article  Google Scholar 

  11. Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978;515:105–40.

    Article  Google Scholar 

  12. Epand RM, D’Souza K, Berno B, Schlame M. Membrane curvature modulation of protein activity determined by NMR. Biochim Biophys Acta. 1848;2015:220–8.

    Google Scholar 

  13. Lee DK, Bhunia A, Kotler SA, Ramamoorthy A. Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study. Biochemistry. 2015;54:1897–907.

    Article  Google Scholar 

  14. Chia CSB, Torres J, Cooper MA, Arkin IT, Bowie JH. The orientation of the antibiotic peptide maculatin 1.1 in DMPG and DMPC lipid bilayers. Support for a pore-forming mechanism. FEBS Lett. 2002;512:47–51.

    Article  Google Scholar 

  15. Bouchard M, Le Guernevé C, Auger M. Comparison between the dynamics of lipid/gramicidin A systems in the lamellar and hexagonal phases: a solid-state 13C NMR study. Biochim Biophys Acta. 1998;1415:181–92.

    Article  Google Scholar 

  16. Prenner EJ, Lewis RNAH, Neuman KC, Gruner SM, Kondejewski LH, Hodges RS, et al. Nonlamellar phases induced by the interaction of gramicidin S with lipid bilayers. A possible relationship to membrane-disrupting activity. Biochemistry. 1997;36:7906–16.

    Article  Google Scholar 

  17. Driessen AJM, van den Hooven HW, Kuiper W, van de Kamp M, Sahl H-G, Konings RNH, et al. Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry. 1995;34:1606–14.

    Article  Google Scholar 

  18. Fernandez DI, Le Brun AP, Whitwell TC, Sani MA, James M, Separovic F. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys Chem Chem Phys. 2012;14:15739–51.

    Article  Google Scholar 

  19. Gehman JD, Luc F, Hall K, Lee T-H, Boland MP, Pukala TL, et al. Effect of antimicrobial peptides from australian tree frogs on anionic phospholipid membranes. Biochemistry. 2008;47:8557–65.

    Article  Google Scholar 

  20. Picard F, Pézolet M, Bougis PE, Auger M. Hydrophobic and electrostatic cardiotoxin-phospholipid interactions as seen by solid-state 31P NMR spectroscopy. Can J Anal Sci Spectrosc. 2000;45:72–83.

    Google Scholar 

  21. Bonev BB, Chan WC, Bycroft BW, Roberts GCK, Watts A. Interaction of the lantibiotic nisin with mixed lipid bilayers: a 31P and 2H NMR study. Biochemistry. 2000;39:11425–33.

    Article  Google Scholar 

  22. Epand RF, Wang G, Berno B, Epand RM. Lipid segregation explains selective toxicity of a series of fragments derived from the human cathelicidin LL-37. Antimicrob Agents Chemother. 2009;53:3705–14.

    Article  Google Scholar 

  23. Cheng JT, Hale JD, Elliot M, Hancock RE, Straus SK. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys J. 2009;96:552–65.

    Article  Google Scholar 

  24. Ramamoorthy A, Thennarasu S, Tan A, Gottipati K, Sreekumar S, Heyl DL, et al. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and LPS selective binding. Biochemistry. 2006;45:6529–40.

    Article  Google Scholar 

  25. Bertelsen K, Dorosz J, Hansen SK, Nielsen NC, Vosegaard T. Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy. PLoS One. 2012;7:e47745.

    Article  Google Scholar 

  26. Wi S, Kim C. Pore structure, thinning effect, and lateral diffusive dynamics of oriented lipid membranes interacting with antimicrobial peptide protegrin-1: 31P and 2H solid-state NMR study. J Phys Chem B. 2008;112:11402–14.

    Article  Google Scholar 

  27. Davis JH. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta. 1983;737:117–71.

    Article  Google Scholar 

  28. Seelig J, Seelig A. Lipid conformation in model membrane and biological membranes. Q Rev Biophys. 1980;13:19–61.

    Article  Google Scholar 

  29. Salnikov ES, Mason AJ, Bechinger B. Membrane order perturbation in the presence of antimicrobial peptides by 2H solid-state NMR spectroscopy. Biochimie. 2009;91:734–43.

    Article  Google Scholar 

  30. Balla MS, Bowie JH, Separovic F. Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Eur Biophys J. 2004;33:109–16.

    Article  Google Scholar 

  31. Fernandez DI, Sani MA, Gehman JD, Hahm KS, Separovic F. Interactions of a synthetic Leu-Lys-rich antimicrobial peptide with phospholipid bilayers. Eur Biophys J. 2011;40:471–80.

    Article  Google Scholar 

  32. Misiewicz J, Afonin S, Grage SL, van den Berg J, Strandberg E, Wadhwani P, et al. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR. J Biomol NMR. 2015;61:287–98.

    Article  Google Scholar 

  33. Tardy-Laporte C, Arnold AA, Genard B, Gastineau R, Morançais M, Mouget J-L, et al. A 2H solid-state NMR study of the effect of antimicrobial agents on intact Escherichia coli without mutating. Biochim Biophys Acta. 1828;2013:614–22.

    Google Scholar 

  34. Pius J, Morrow MR, Booth V. 2H Solid-state nuclear magnetic resonance investigation of whole Escherichia coli interacting with antimicrobial peptide MSI-78. Biochemistry. 2012;51:118–25.

    Article  Google Scholar 

  35. Laadhari M, Arnold AA, Gravel AE, Separovic F, Marcotte I. Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by 2H solid-state NMR. Biochim Biophys Acta. 2016;1858:2959–64.

    Article  Google Scholar 

  36. Munowitz MG, Griffin RG, Bodenhausen G, Huang TH. Two-dimensional rotational spin-echo nuclear magnetic resonance in solids: correlation of chemical shift and dipolar interactions. J Am Chem Soc. 1981;103:2529–33.

    Article  Google Scholar 

  37. Tang M, Waring AJ, Hong M. Arginine dynamics in a membrane-bound cationic beta-hairpin peptide from solid-state NMR. ChemBioChem. 2008;9:1487–92.

    Article  Google Scholar 

  38. Doherty T, Waring AJ, Hong M. Dynamic structure of disulfide-removed linear analogs of tachyplesin-I in the lipid bilayer from solid-state NMR. Biochemistry. 2008;47:1105–16.

    Article  Google Scholar 

  39. Fillion M, Auger M. Oriented samples: a tool for determining the membrane topology and the mechanism of action of cationic antimicrobial peptides by solid-state NMR. Biophys Rev. 2015;7:311–20.

    Article  Google Scholar 

  40. Hallock KJ, Henzler Wildman K, Lee D-K, Ramamoorthy A. An innovative procedure using a sublimable solid to align lipid bilayers for solid-state NMR studies. Biophys J. 2002;82:2499–503.

    Article  Google Scholar 

  41. Prosser RS, Hunt SA, DiNatale JA, Vold RR. Magnetically aligned membrane model systems with positive order parameter: switching the sign of Szz with paramagnetic ions. J Am Chem Soc. 1996;118:269–70.

    Article  Google Scholar 

  42. Bechinger B, Sizun C. Alignment and structural analysis of membrane polypeptides by 15N and 31P solid-state NMR spectroscopy. Concepts Magn Reson. 2003;18A:130–45.

    Article  Google Scholar 

  43. Yamaguchi S, Hong T, Waring A, Lehrer RI, Hong M. Solid-state NMR investigations of peptide-lipid interaction and orientation of a β-sheet antimicrobial peptide. Biochemistry. 2002;41:9852–62.

    Article  Google Scholar 

  44. Tang M, Waring AJ, Lehrer RI, Hong M. Orientation of a β-hairpin antimicrobial peptide in lipid bilayers from two-dimensional dipolar chemical-shift correlation NMR. Biophys J. 2006;90:3616–24.

    Article  Google Scholar 

  45. Salnikov ES, Aisenbrey C, Balandin SV, Zhmak MN, Ovchinnikova TV, Bechinger B. Structure and alignment of the membrane-associated antimicrobial peptide arenicin by oriented solid-state NMR spectroscopy. Biochemistry. 2011;50:3784–95.

    Article  Google Scholar 

  46. Heinzmann R, Grage SL, Schalck C, Bürck J, Bánóczi Z, Toke O, et al. A kinked antimicrobial peptide from Bombina maxima. II. Behavior in phospholipid bilayers. Eur Biophys J. 2011;40:463–70.

    Article  Google Scholar 

  47. Strandberg E, Zerweck J, Wadhwani P, Ulrich AS. Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature. Biophys J. 2013;104:L9–11.

    Article  Google Scholar 

  48. Mason AJ, Bertani P, Moulay G, Marquette A, Perrone B, Drake AF, et al. Membrane interaction of chrysophsin-1, a histidine-rich antimicrobial peptide from red sea bream. Biochemistry. 2007;46:15175–87.

    Article  Google Scholar 

  49. Resende JM, Moraes CM, Munhoz VH, Aisenbrey C, Verly RM, Bertani P, et al. Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy. Proc Natl Acad Sci U S A. 2009;106:16639–44.

    Article  Google Scholar 

  50. Opella SJ, Marassi FM. Structure determination of membrane proteins by NMR spectroscopy. Chem Rev. 2004;104:3587–606.

    Article  Google Scholar 

  51. Marassi FM. NMR of peptides and proteins in oriented membranes. Concepts Magn Reson. 2002;14:212–24.

    Article  Google Scholar 

  52. Marassi FM. A simple approach to membrane protein secondary structure and topology based on NMR spectroscopy. Biophys J. 2001;80:994–1003.

    Article  Google Scholar 

  53. Jeong JH, Kim JS, Choi SS, Kim Y. NMR structural studies of antimicrobial peptides: LPcin analogs. Biophys J. 2016;110:423–30.

    Article  Google Scholar 

  54. Salnikov ES, Friedrich H, Li X, Bertani P, Reissmann S, Hertweck C, et al. Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy. Biophys J. 2009;96:86–100.

    Article  Google Scholar 

  55. Thennarasu S, Tan A, Penumatchu R, Shelburne CE, Heyl DL, Ramamoorthy A. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Biophys J. 2010;98:248–57.

    Article  Google Scholar 

  56. De Angelis AA, Grant Christopher V, Baxter Matthew K, McGavin Jason A, Opella Stanley J, Cotten ML. Amphipathic antimicrobial piscidin in magnetically aligned lipid bilayers. Biophys J. 2011;101:1086–94.

    Article  Google Scholar 

  57. Kumashiro KK, Schmidt-Rohr K, Murphy III OJ, Ouellette KL, Cramer WA, Thompson LK. A novel tool for probing membrane protein structure: solid-state NMR with proton spin diffusion and X-nucleus detection. J Am Chem Soc. 1998;120:5043–51.

    Article  Google Scholar 

  58. Mani R, Cady SD, Tang M, Waring AJ, Lehrer RI, Hong M. Membrane-dependent oligomeric structure and pore formation of a β-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Proc Natl Acad Sci U S A. 2006;103:16242–7.

    Article  Google Scholar 

  59. Su Y, Waring AJ, Ruchala P, Hong M. Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Biochemistry. 2011;50:2072–83.

    Article  Google Scholar 

  60. Doherty T, Waring AJ, Hong M. Membrane-bound conformation and topology of the antimicrobial peptide tachyplesin I by solid-state NMR. Biochemistry. 2006;45:13323–30.

    Article  Google Scholar 

  61. Zhang Y, Lu W, Hong M. Membrane-bound structure and topology of a human alpha defensin indicates a dimer pore mechanism for membrane disruption. Biochemistry. 2010;49:9770–82.

    Article  Google Scholar 

  62. Saito H. Conformation-dependent carbon-13 chemical shifts: a new means of conformational characterization as obtained by high-resolution solid-state carbon-13 NMR. Magn Reson Chem. 1986;24:835–52.

    Article  Google Scholar 

  63. Tsutsumi A, Javkhlantugs N, Kira A, Umeyama M, Kawamura I, Nishimura K, et al. Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation. Biophys J. 2012;103:1735–43.

    Article  Google Scholar 

  64. Nagao T, Mishima D, Javkhlantugs N, Wang J, Ishioka D, Yokota K, et al. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. Biochim Biophys Acta. 1848;2015:2789–98.

    Google Scholar 

  65. Auger M. Solid-state NMR, study of protein structure. Methods based on the measurement of internuclear distances. J Chem Phys. 1995;92:1751–60.

    Google Scholar 

  66. Gullion T. Introduction to rotational-echo double-resonance NMR. Concepts Magn Reson. 1998;10:277–89.

    Article  Google Scholar 

  67. Raleigh DP, Levitt MH, Griffin RG. Rotational resonance in solid state NMR. Chem Phys Lett. 1988;146:71–6.

    Article  Google Scholar 

  68. Porcelli F, Buck B, Lee D-K, Hallock KJ, Ramamoorthy A, Veglia G. Structure and orientation of pardaxin determined by NMR experiments in model membranes. J Biol Chem. 2004;279:45815–23.

    Article  Google Scholar 

  69. Toke O, Maloy WL, Kim SJ, Blazyk J, Schaefer J. Secondary structure and lipid contact of a peptide antibiotic in phospholipid bilayers by REDOR. Biophys J. 2004;87:662–74.

    Article  Google Scholar 

  70. Mani R, Tang M, Wu X, Buffy JJ, Waring AJ, Sherman MA, et al. Membrane-bound dimer structure of a β-hairpin antimicrobial peptide from rotational-echo double-resonance solid-state NMR. Biochemistry. 2006;45:8341–9.

    Article  Google Scholar 

  71. Lam Y-H, Wassall SR, Morton CJ, Smith R, Separovic F. Solid-state NMR structure determination of melittin in a lipid environment. Biophys J. 2001;81:2752–61.

    Article  Google Scholar 

  72. Takegoshi K, Nakamura S, Terao T. 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett. 2001;344:631–7.

    Article  Google Scholar 

  73. Hong M. Torsion angle determination by solid-state NMR. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer Netherlands; 2006. p. 727–33.

    Chapter  Google Scholar 

  74. Tang M, Waring AJ, Hong M. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR. J Am Chem Soc. 2007;129:11438–46.

    Article  Google Scholar 

  75. Barnes AB, Paëpe GD, van der Wel PCA, Hu KN, Joo CG, Bajaj VS, et al. High-field dynamic nuclear polarization for solid and solution biological NMR. Appl Magn Reson. 2008;34:237–63.

    Article  Google Scholar 

  76. Su Y, Andreas L, Griffin RG. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and 1H detection. Annu Rev Biochem. 2015;84:465–97.

    Article  Google Scholar 

  77. Salnikov ES, Sarrouj H, Reiter C, Aisenbrey C, Purea A, Aussenac F, et al. Solid-state NMR/dynamic nuclear polarization of polypeptides in planar supported lipid bilayers. J Phys Chem B. 2015;119:14574–83.

    Article  Google Scholar 

  78. Bechinger B, Salnikov ES. The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy. Chem Phys Lipids. 2012;165:282–301.

    Article  Google Scholar 

  79. Strandberg E, Ulrich AS. NMR methods for studying membrane-active antimicrobial peptides. Concepts Magn Reson. 2004;23A:89–120.

    Article  Google Scholar 

  80. Marassi FM, Opella SJ. A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson. 2000;144:150–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle Auger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Fillion, M., Ouellet, M., Auger, M. (2016). Solid-State NMR Studies of the Interactions and Structure of Antimicrobial Peptides in Model Membranes. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28275-6_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-28275-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics