Skip to main content

Infrasonic and Seismic Communication in the Vertebrates with Special Emphasis on the Afrotheria: An Update and Future Directions

  • Chapter
  • First Online:
Vertebrate Sound Production and Acoustic Communication

Abstract

Infrasonic and seismic communication in terrestrial vertebrates is generally poorly known. Moreover, studies of these communication modalities have been restricted to relatively few vertebrate groups. In this chapter we begin with the non-Afrotherian vertebrates and review what is known about their infrasonic (including birds and mammals) and seismic (including amphibians, reptiles, birds, and mammals) communication. We then devote special sections to the Afrotherian vertebrates, concentrating on (1) infrasonic communication in elephants, (2) seismic communication in elephants, and (3) seismic communication in golden moles (Chrysocloridae). Motivated by the lack of detailed knowledge of vibration communication in chrysochlorids, we furnish a blueprint for a set of experiments that would provide novel and interesting data to fill the lacunae in our understanding of seismic signal detection and localization by these enigmatic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnason, B. T., Hart, L. A., & O’Connell-Rodwell, C. E. (2002). The properties of geophysical fields and their effects on elephants and other animals. Journal of Comparative Psychology, 116(2), 123–132.

    Google Scholar 

  • Au, W. W. L. (1993). The sonar of dolphins. New York: Springer.

    Google Scholar 

  • Baotic, A., Sicks, F., & Stoeger, A. S. (2015). Nocturnal “humming“ vocalizations: Adding a piece to the puzzle of giraffe vocal communication. BMC Research Notes, 8, 425.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barklow, W. E. (2004). Amphibious communication with sound in hippos, Hippopotamus amphibious. Behaviour, 68, 1125–1132.

    Article  Google Scholar 

  • Barnes, L. G., Domning, D. P., & Ray, C. E. (1985). Status of studies on fossil marine mammals. Marine Mammal Science, 1(1), 15–53.

    Article  Google Scholar 

  • Barnett, K. E., Cocroft, R. B., & Fleishman, L. J. (1999). Possible communication by substrate vibration in a chameleon. Copeia, 1999(1), 225–228.

    Article  Google Scholar 

  • Beranek, L. L. (1988). Acoustical measurements. Melville, NY: American Institute of Physics.

    Google Scholar 

  • Berlin, C. I., Hood, L. J., Barlow, E. K., Morehouse, C. R., & Smith, E. G. (1991). Derived guinea pig compound VIIIth nerve action potentials to continuous pure tones. Hearing Research, 52, 271–280.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, A. M., Denton, P., Pomeroy, P., & Twiss, S. (2015). Good vibrations by the beach boys: Magnitude of substrate vibrations is a reliable indicator of male grey seal size. Animal Behaviour, 100, 74–82.

    Article  Google Scholar 

  • Bolanowski, S., & Zwislocki, J. J. (1984). Intensity and frequency characteristics of Pacinian corpuscle. II. Receptor potentials. Journal of Neurophysiology, 51, 812–830.

    PubMed  Google Scholar 

  • Bouley, D. M., Alarcon, C., Hildebrandt, T., & O’Connell-Rodwell, C. E. (2007). The distribution, density and three-dimensional histomorphology of Pacinian corpuscles in the foot of the Asian elephant (Elephas maximus) and their potential role in seismic communication. Journal of Anatomy, 211(4), 428–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury, J. W., & Vehrencamp, S. L. (2011). Principles of animal communication (2nd ed.). Sunderland, MA: Sinauer.

    Google Scholar 

  • Budde, C., & Klump, G. M. (2003). Vocal repertoire of the black rhino Diceros bicornis ssp. And possibilities of individual identification. Mammalian Biology, 68, 42–47.

    Google Scholar 

  • Caldwell, M. S., Johnston, G. R., McDaniel, J. G., & Warkentin, K. M. (2010a). Vibrational signaling in the agonistic interactions of red-eyed treefrogs. Current Biology, 20, 1012–1017.

    Article  CAS  PubMed  Google Scholar 

  • Caldwell, M. S., McDaniel, J. G., & Warkentin, K. M. (2010b). Is it safe? Red-eyed treefrog embryos assessing predation risk use two features of rain vibrations to avoid false alarms. Animal Behaviour, 79, 255–260.

    Article  Google Scholar 

  • Capranica, R. R., & Moffat, A. J. M. (1983). Neurobehavioral correlates of sound communication in anurans. In J.-P. Ewert, R. R. Capranica, & D. J. Ingle (Eds.), Advances in vertebrate neuroethology (pp. 701–730). London: Plenum Press.

    Chapter  Google Scholar 

  • Catania, K. C. (1995). Structure and innervation of the sensory organs on the snout of the star-nosed mole. Journal of Comparative Neurology, 351, 536–548.

    Article  CAS  PubMed  Google Scholar 

  • Charif, R. A., Ramey, R. R., Langbauer, W. R., Payne, K. B., Martin, R. B., & Brown, L. M. (2005). Spatial relationships and matrilineal kinship in African savanna elephant (Loxodonta africana) clans. Behavioural Ecology and Sociobiology, 57(4), 327–338.

    Article  Google Scholar 

  • Christensen, C. B., Christensen-Dalsgaard, J., Brandt, C., & Masden, P. T. (2012). Hearing with an atympanic ear: Good vibration and poor sound-pressure detection in the royal python, Python regius. Journal of Experimental Biology, 215, 331–342.

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., Brandt, C., Wilson, M., Wahlberg, M., & Teglberg, P. M. (2011). Hearing in the African lungfish (Protopterus annectens): Pre-adaptation for pressure hearing in tetrapods? Biology Letters, 7, 139–141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen-Dalsgaard, J., & Jørgensen, M. B. (1988). The response characteristics of vibration-sensitive saccular fibers in the grassfrog, Rana temporaria. Journal of Comparative Physiology, 162, 633–638.

    Article  CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., & Jørgensen, M. B. (1996). Sound and vibration sensitivity of VIIIth nerve fibers in the grassfrog, Rana temporaria. Journal of Comparative Physiology, 179, 437–445.

    CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., Ludwig, T. A., & Jørgensen, M. B. (2002). Call diversity in an old world treefrog: Level dependence and latency of acoustic responses. Bioacoustics, 13, 21–35.

    Article  Google Scholar 

  • Christensen-Dalsgaard, J., & Narins, P. M. (1993). Sound and vibration sensitivity of VIIIth nerve fibers in the frogs Leptodactylus albilabris and Rana pipiens pipiens. Journal of Comparative Physiology, 172, 653–662.

    CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., & Walkowiak, W. (1999). In vitro and in vivo responses of saccular and caudal nucleus neurons in the grass frog (Rana temporaria). European Journal of Morphology, 37(2–3), 206–210.

    Article  CAS  PubMed  Google Scholar 

  • Cocroft, R. B., Gogala, M., Hill, P. S. M., & Wessel, A. (2014). Studying vibrational communication. Heidelberg, Germany: Springer.

    Book  Google Scholar 

  • Coles, R. B., Gower, D. M., Boyd, P. J., & Lewis, D. B. (1982). Acoustic transmission through the head of the common mole, Talpa europaea. Journal of Experimental Biology, 101, 337–341.

    CAS  PubMed  Google Scholar 

  • Corfield, J. R., Krilow, J. M., Vande Ligt, M. N., & Iwaniuk, A. N. (2013). A quantitative morphological analysis of the inner ear of galliform birds. Hearing Research, 304, 111–127.

    Article  PubMed  Google Scholar 

  • de Silva, S. (2010). Acoustic communication in the Asian elephant, Elephas maximus. Behaviour, 147, 825–852.

    Article  Google Scholar 

  • Doody, J. S., Stewart, B., Camacho, C., & Christian, K. (2012). Good vibrations? Sibling embryos expedite hatching in a turtle. Animal Behaviour, 83, 645–651.

    Article  Google Scholar 

  • Dorward, P. K., & McIntyre, A. K. (1980). Responses of vibration-sensitive receptors in the interosseous region of the duck’s hind limb. Journal of Physiology, 219, 77–87.

    Article  Google Scholar 

  • Ferrara, C. R., Vogt, R. C., Sousa-Lima, R. S., Tardio, B. M. R., & Bernardes, V. C. D. (2014). Sound communication and social behavior in an Amazonian river turtle (Podocnemis expansa). Herpetologica, 70(2), 149–156.

    Article  Google Scholar 

  • Fielden, L. J., Perrin, M. R., & Hickman, G. C. (1990). Feeding ecology and foraging behaviour of the Namib Desert golden mole, Eremitalpa granti namibensis (Chrysochloridae). Journal of Zoology (London), 220, 367–389.

    Article  Google Scholar 

  • Fischer, M. S. (1990). Un trait unique de l’oreille des elephants et des sireniens (Mammalia): Un paradoxe phylogenetique. Comptes Rendus de l’Académie des Sciences, 311(4), 157–162.

    Google Scholar 

  • Fitch, W. T. (2006). Production of vocalizations in mammals. In K. Brown (Ed.), Encyclopedia of language and linguistics (pp. 115–212). Oxford, England: Elsevier.

    Chapter  Google Scholar 

  • Forster Cooper, C. (1928). On the ear region of certain of the Chrysochloridae. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 216, 265–283.

    Article  Google Scholar 

  • Francescoli, G. (2000). Sensory capabilities and communication in subterranean rodents. In E. A. Lacey, J. L. Patton, & G. N. Cameron (Eds.), Life underground: The biology of subterranean rodents (pp. 111–144). Chicago: The University of Chicago Press.

    Google Scholar 

  • Freeman, A. R., & Hare, J. F. (2015). Infrasound in mating displays: A peacock’s tale. Animal Behaviour, 102, 241–250.

    Article  Google Scholar 

  • Gaeth, A. P., Short, R. V., & Renfree, M. B. (1999). The developing renal, reproductive, and respiratory systems of the African elephant suggest an aquatic ancestry. Proceedings of the National Academy of Sciences of the USA, 96, 5555–5558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garstang, M. (2004). Long-distance, low-frequency elephant communication. Journal of Comparative Physiology, 190, 791–805.

    Article  PubMed  Google Scholar 

  • Garstang, M., Larom, D., Raspet, R., & Lindeque, M. (1995). Atmospheric controls on elephant communication. Journal of Experimental Biology, 198, 939–951.

    CAS  PubMed  Google Scholar 

  • Gerstein, E. R., Gerstein, L., Forsythe, S. E., & Blue, J. E. (1999). The underwater audiogram of the West Indian manatee (Trichechus manatus). Journal of the Acoustical Society of America, 105, 3575–3583.

    Article  CAS  PubMed  Google Scholar 

  • Giles, J. C., Davis, J. A., McCauley, X., & Kuchling, G. (2009). Voice of the turtle: The underwater acoustic repertoire of the long-necked freshwater turtle, Chelodina oblonga. Journal of the Acoustical Society of America, 126, 434–443.

    Article  PubMed  Google Scholar 

  • Greenwood, D. (1961). Critical bandwidth and the frequency coordinates of the basilar membrane. Journal of the Acoustical Society of America, 33(484), 1344–1356.

    Article  Google Scholar 

  • Gridi-Papp, M., & Narins, P. M. (2010). Seismic detection and communication in amphibians. In C. E. O’Connell-Rodwell (Ed.), The use of vibrations in communication: Properties, mechanisms and function across taxa (pp. 69–83). Trivandrum, India: Transworld Research Network.

    Google Scholar 

  • Gunther, R. H., O’Connell-Rodwell, C. E., & Klemperer, S. L. (2004). Seismic waves from elephant vocalizations: A possible communication mode? Geophysical Research Letters, 31(L11602), 1–4.

    Google Scholar 

  • Hagstrum, J. T. (2000). Infrasound and the avian navigational map. The Journal of Experimental Biology, 203, 1103–1111.

    CAS  PubMed  Google Scholar 

  • Hamilton, P. M. (1957). Noise-masked thresholds as a function of tonal duration and masking noise bandwidth. Journal of the Acoustical Society of America, 29, 506–511.

    Article  Google Scholar 

  • Hart, B. L., Hart, L. A., McCoy, M., & Sarath, C. R. (2001). Cognitive behaviour in Asian elephants: Use and modification of branches for fly switching. Animal Behaviour, 62(5), 839–847.

    Article  Google Scholar 

  • Hartline, P. H. (1971). Physiological basis for detection of sound and vibration in snakes. Journal of Experimental Biology, 54, 349–371.

    CAS  PubMed  Google Scholar 

  • Hartman, W. M. (1999). How we localize sound. Physics Today, 52, 24.

    Article  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1980). Hearing in the elephant (Elephas maximus). Science, 208(4443), 518–520.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1982). Hearing in the elephant (Elephas maximus): Absolute sensitivity, frequency discrimination, and sound localization. Journal of Comparative Physiology and Psychology, 96(6), 926–944.

    Article  CAS  Google Scholar 

  • Heffner, R. S., Heffner, H. E., & Stichman, N. (1982). Role of the elephant pinna in sound localization. Animal Behaviour, 30(2), 628–630.

    Article  Google Scholar 

  • Heffner, H. E., Koay, G., Hill, E. M., & Heffner, R. S. (2013). Conditioned suppression/avoidance as a procedure for testing hearing in birds: The domestic pigeon (Columba livia). Behavioural Research, 45, 383–392.

    Article  Google Scholar 

  • Heil, P., & Neubauer, H. (2003). A unifying basis of auditory thresholds based on temporal summation. Proceedings of the National Academy of Sciences of the USA, 100(10), 6151–6156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henson, O. W. (1974). Comparative anatomy of the middle ear. In W. D. Keidel & W. D. Neff (Eds.), Handbook of sensory physiology (Auditory system, Vol. V/1, pp. 39–110). Berlin, Germany: Springer.

    Google Scholar 

  • Herbst, C. T., Stoeger, A. S., Frey, R., Lohscheller, J., Titze, I. R., Gumpenberger, M., et al. (2012). How low can you go? Physical production mechanism of elephant infrasonic vocalization. Science, 337(6094), 595–599.

    Article  CAS  PubMed  Google Scholar 

  • Herculano-Houzel, S., Avelino-de-Souza, K., Neves, K., Porfírio, J., Messeder, D., Mattos Feijó, L., et al. (2014). The elephant brain in numbers. Frontiers in Neuroanatomy, 8, 46. doi:10.3389/fnana.2014.00046.

    PubMed  PubMed Central  Google Scholar 

  • Heth, G., Frankenberg, E., & Nevo, E. (1986). Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia, 42, 1287–1289.

    Article  CAS  PubMed  Google Scholar 

  • Hetherington, T. E. (1989). The use of vibratory cues for detection of insect prey by the sandswimming lizard Scincus scincus. Animal Behaviour, 37, 290–297.

    Article  Google Scholar 

  • Hill, P. S. M. (2008). Vibration communication in animals. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Hill, P. S. M. (2009). How do animals use substrate-borne vibrations as an information source? Naturwissenshaften, 96, 1355–1371.

    Article  CAS  Google Scholar 

  • Hill, E. M., Koay, G., Heffner, R. S., & Heffner, H. E. (2014). Audiogram of the chicken (Gallus gallus domesticus) from 2 Hz to 9 kHz. Journal of Comparative Physiology, 200, 863–870.

    Article  PubMed  Google Scholar 

  • Hörster, W. (1990). Vibrational sensitivity of the wing of the pigeon (Columba livia)—A study using heart rate conditioning. Journal of Comparative Physiology, 167, 545–549.

    Google Scholar 

  • Ishimoto, M., & Idia, K. (1936). Determinations of elastic constants of soil by means of vibration methods. Part I. Young’s modulus. Bulletin of Earthquake Research of the Institute Tokyo, 14, 632–657.

    Google Scholar 

  • Jackson, L. L., Heffner, R. S., & Heffner, H. E. (1999). Free-field audiogram of the Japanese macaque (Macaca fuscata). Journal of the Acoustical Society of America, 106, 3017–3023.

    Article  CAS  PubMed  Google Scholar 

  • Ketten, D. R. (2000). Cetacean ears. In W. W. L. Au, A. N. Popper, & R. R. Fay (Eds.), Hearing by whales and dolphins (pp. 43–108). New York: Springer.

    Chapter  Google Scholar 

  • Ketten, D. R., Odell, D. K., & Domning, D. P. (1992). Structure and adaptation of the manatee ear. In J. Thomas et al. (Eds.), Marine mammal sensory systems (pp. 77–95). New York: Plenum Press.

    Chapter  Google Scholar 

  • Kimchi, T., Reshef, M., & Terkel, J. (2005). Evidence for the use of reflected self-generated seismic waves for spatial orientation in a blind subterranean mammal. Journal of Experimental Biology, 208, 647–659.

    Article  PubMed  Google Scholar 

  • King, L. E., Soltis, J., Douglas-Hamilton, I., Savage, A., & Vollrath, F. (2010). Bee threat elicits alarm call in African elephants. PloS One, 5(4), e10346. doi:10.1371/journal.pone.0010346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koyama, H., Lewis, E. R., Leverenz, E. L., & Baird, R. A. (1982). Acute seismic sensitivity in the bullfrog ear. Brain Research, 250, 168–172.

    Article  CAS  PubMed  Google Scholar 

  • Kreithen, M. L., & Quine, D. B. (1979). Infrasound detection by the homing pigeon: A behavioral audiogram. Journal of Comparative Physiology, 129, 1–4.

    Article  Google Scholar 

  • Langbauer, W. R. (2000). Elephant communication. Zoo Biology, 19(5), 425–445.

    Article  Google Scholar 

  • Langbauer, W. R., Payne, K. B., Charif, R. A., Rapaport, L., & Osborn, F. (1991). African elephants respond to distant playbacks of low-frequency calls. The Journal of Experimental Biology, 157(1), 35–46.

    Google Scholar 

  • Larom, D., Garstang, M., Payne, K., Raspet, R., & Lindeque, M. (1997). The influence of surface atmospheric conditions on the range and area reached by animal vocalizations. The Journal of Experimental Biology, 200(3), 421–434.

    CAS  PubMed  Google Scholar 

  • Leong, K. M., Ortolani, A., Burks, K. D., Mellen, J. D., & Savage, A. (2003). Quantifying acoustic and temporal characteristics of vocalizations for a group of captive African elephants (Loxodonta africana). Bioacoustics, 13(3), 213–232.

    Article  Google Scholar 

  • Lewis, E. R., & Narins, P. M. (1985). Do frogs communicate with seismic signals? Science, 227, 187–189.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, E. R., Narins, P. M., Cortopassi, K. A., Yamada, W. M., Poinar, E. H., Moore, S. W., et al. (2001). Do male white-lipped frogs use seismic signals for intraspecific communication? American Zoologist, 41, 1185–1199.

    Google Scholar 

  • Lewis, E. R., Narins, P. M., Jarvis, J. U. M., Bronner, G., & Mason, M. J. (2006). Preliminary evidence for the use of microseismic cues for navigation by the Namib golden mole. Journal of the Acoustical Society of America, 119, 1260–1268.

    Article  PubMed  Google Scholar 

  • Lieberman, P., & Blumstein, S. E. (1988). Speech physiology, speech perception, and acoustic phonetics. Cambridge, England: Cambridge University Press.

    Book  Google Scholar 

  • Lombard, R. E., & Hetherington, T. E. (1993). Structural basis of hearing and sound transmission. In J. Haken & B. K. Hall (Eds.), The skull (Vol. 3, pp. 241–302). London: University of Chicago Press.

    Google Scholar 

  • Lopez, P. T., Narins, P. M., Lewis, E. R., & Moore, S. W. (1988). Acoustically-induced call modification in the white-lipped frog, Leptodactylus albilabris. Animal Behaviour, 36, 1295–1308.

    Article  Google Scholar 

  • Mack, A. L., & Jones, J. (2003). Low-frequency vocalizations by cassowaries (Casuarius spp.). The Auk, 120(4), 1062–1068.

    Article  Google Scholar 

  • Maier, V. (1982). Acoustic communication in the Guinea fowl (Numida meleagris): Structure and use of vocalizations, and the principles of message coding. Zeitschrift für Tierpsychologie, 59(1), 28–83.

    Google Scholar 

  • Makous, J. C., Friedman, R. M., & Vierck, C. J., Jr. (1995). A critical band filter in touch. Journal of Neuroscience, 15(4), 2808–2818.

    CAS  PubMed  Google Scholar 

  • Manley, G. A., & Kraus, J. E. M. (2010). Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. Journal of Experimental Biology, 213, 1876–1885.

    Article  PubMed  Google Scholar 

  • Marasco, P. D., & Catania, K. C. (2007). Response properties of primary afferents supplying Eimer’s organ. Journal of Experimental Biology, 213, 765–780.

    Google Scholar 

  • Maseko, B. C., Spocter, M. A., Haagensen, M., & Manger, P. R. (2012). Elephants have relatively the largest cerebellum size of mammals. The Anatomical Record, 295, 661–672.

    Google Scholar 

  • Maseko, B. C., Patzke, N., Fuxe, K., & Manger, P. R. (2013). Architectural organization of the African elephant diencephalon and brainstem. Brain, Behaviour and Evolution, 82(2), 83–128.

    Article  Google Scholar 

  • Mason, M. J. (2003a). Morphology of the middle ear of golden moles (Chrysochloridae). Journal of Zoology (London), 260, 391–403.

    Article  Google Scholar 

  • Mason, M. J. (2003b). Bone conduction and seismic sensitivity in golden moles (Chrysochloridae). Journal of Zoology (London), 260, 405–413.

    Article  Google Scholar 

  • Mason, M. J. (2004). Functional morphology of the middle ear in Chlorotalpa golden moles (Mammalia, Chrysochloridae): Predictions from three models. Journal of Morphology, 261, 162–174.

    Article  PubMed  Google Scholar 

  • Mason, M. J. (2007a). Pathways for sound transmission to the inner ear in amphibians. In P. M. Narins, A. S. Feng, R. R. Fay, & A. N. Popper (Eds.), Hearing and sound communication in amphibians (pp. 147–183). New York: Springer.

    Google Scholar 

  • Mason, M. J. (2007b). Massive mallei in moles: Middle ear adaptations subserving seismic sensitivity. Proceedings of the Institute of Acoustics, 29, 69–76.

    Google Scholar 

  • Mason, M. J. (2014). Internally coupled ears in mammals. Abstract of presentation for the symposium internally coupled ears: Evolutionary origins, mechanisms, and neuronal processing from a biomimetic perspective, T.-U. Garching, Germany, 7.

    Google Scholar 

  • Mason, M. J., & Narins, P. M. (2001). Seismic signal use by fossorial mammals. American Zoologist, 41, 1171–1184.

    Google Scholar 

  • Mason, M. J., & Narins, P. M. (2002). Vibrometric studies of the middle ear of the bullfrog (Rana catesbeiana). II: The operculum. Journal of Experimental Biology, 205, 3167–3176.

    PubMed  Google Scholar 

  • Mason, M. J., & Narins, P. M. (2010). Seismic sensitivity and communication in subterranean mammals. In C. E. O’Connell-Rodwell (Ed.), The use of vibrations in communication: Properties, mechanisms and function across taxa (pp. 121–139). Trivandrum, India: Transworld Research Network.

    Google Scholar 

  • McComb, K., Moss, C., Sayialel, S., & Baker, L. (2000). Unusually extensive networks of vocal recognition in African elephants. Animal Behaviour, 59(6), 1103–1109.

    Article  PubMed  Google Scholar 

  • McComb, K., Reby, D., Baker, L., Moss, C., & Sayialel, S. (2003). Long-distance communication of acoustic cues to social identity in African elephants. Animal Behaviour, 65(2), 317–329.

    Article  Google Scholar 

  • McIntyre, A. K. (1980). Biological seismography. Trends in Neuroscience, 3(9), 202–205.

    Article  Google Scholar 

  • Merzenich, M. M., Kitzes, L., & Aitkin, L. (1973). Anatomical and physiological evidence for auditory specialization in the mountain beaver (Aplodontia rufa). Brain Research, 58, 331–344.

    Article  CAS  PubMed  Google Scholar 

  • Moss, C. J. (1983). Oestrous behaviour and female choice in the African elephant. Behaviour, 86, 167–196.

    Article  Google Scholar 

  • Narins, P. M. (1990). Seismic communication in anuran amphibians. Bioscience, 40, 268–274.

    Article  Google Scholar 

  • Narins, P. M. (2001). Vibration communication in vertebrates. In F. Barth & A. Schmidt (Eds.), Ecology of sensing (pp. 127–148). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Narins, P. M. & Clark, G. A. (2016). Principles of matched filtering with auditory examples from selected vertebrates. In G. von der Emde, E. Warrant (Eds.).The Ecology of Animal Senses: Matched Filtering for Economical Sensing (pp. 111-140). Heidelberg: Springer-Verlag.

    Google Scholar 

  • Narins, P. M., Feng, A. S., Yong, H.-S., & Christensen-Dalsgaard, J. (1998). Morphological, behavioral, and genetic divergence of sympatric morphotypes of the treefrog Polypedates leucomystax in Peninsula Malaysia. Herpetologica, 54, 129–142.

    Google Scholar 

  • Narins, P. M., & Lewis, E. R. (1984). The vertebrate ear as an exquisite seismic sensor. Journal of the Acoustical Society of America, 76, 1384–1387.

    Article  CAS  PubMed  Google Scholar 

  • Narins, P. M., Lewis, E. R., Jarvis, J. U. M., & O’Riain, J. (1997). The use of seismic signals by fossorial southern African mammals: A neuroethological gold mine. Brain Research Bulletin, 44, 641–646.

    Article  CAS  PubMed  Google Scholar 

  • Narins, P. M., Losin, N., & O’Connell-Rodwell, C. E. (2009). Seismic and vibrational signals in animals. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 555–559). Amsterdam: Elsevier.

    Google Scholar 

  • Narins, P. M., Reichman, O. J., Jarvis, J. U. M., & Lewis, E. R. (1992). Seismic signal transmission between burrows of the Cape mole-rat, Georychus capensis. Journal of Comparative Physiology, 170, 13–21.

    CAS  PubMed  Google Scholar 

  • Nevo, E. (1961). Observations on Israeli populations of the mole rat Spalax E. ehrenbergi Nehring 1898. Mammalia, 25, 127–144.

    Article  Google Scholar 

  • Norris, K. S. (1968). The evolution of acoustic mechanisms in odontocete cetaceans. In E. T. Drake (Ed.), Evolution and environment (pp. 297–324). New Haven, CT: Yale University Press.

    Google Scholar 

  • Nowak, R. M. (1999). Walker’s mammals of the world (6th ed.). Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Nummela, S. (1995). Scaling of the mammalian middle ear. Hearing Research, 85(1–2), 18–30.

    Article  CAS  PubMed  Google Scholar 

  • O’Connell, C. E., Hart, L. A., & Arnason, B. (1999). Response to “Elephant hearing” [see comments]. Journal of the Acoustical Society of America 104, 1122–3 (1998). Journal of the Acoustical Society of America, 105, 2051–2052.

    Article  PubMed  Google Scholar 

  • O’Connell-Rodwell, C. E. (2007). Keeping an “ear” to the ground: Seismic communication in elephants. Physiology, 22(4), 287–294.

    Article  PubMed  Google Scholar 

  • O’Connell-Rodwell, C. E. (Ed.). (2010). The use of vibrations in communication: Properties, mechanisms and function across taxa. Trivandrum, India: Transworld Research Network.

    Google Scholar 

  • O’Connell-Rodwell, C. E., Arnason, B., & Hart, L. A. (2000). Seismic properties of elephant vocalizations and locomotion. Journal of the Acoustical Society of America, 108(6), 3066–3072.

    Article  PubMed  Google Scholar 

  • O’Connell-Rodwell, C. E., Erckie, R., Kilian, W., Wood, J. D., Kinzley, C., Rodwell, T. C., et al. (2011). Exploring the use of acoustics as a tool in male elephant/human conflict mitigation. Journal of the Acoustical Society of America, 130(4 Pt 2), 2459.

    Article  Google Scholar 

  • O’Connell-Rodwell, C. E., Hart, L. A., & Arnason, B. T. (2001). Exploring the potential use of seismic waves as a communication channel by elephants and other large mammals. American Zoologist, 41(5), 1157–1170.

    Google Scholar 

  • O’Connell-Rodwell, C. E., & Wood, J. D. (2010). Vibration generation, propagation and detection in elephants. In C. E. O’Connell-Rodwell (Ed.), The use of vibrations in communication: Properties, mechanisms and function across taxa (pp. 121–139). Trivandrum, India: Transworld Research Network.

    Google Scholar 

  • O’Connell-Rodwell, C. E., Wood, J. D., Kinzley, C., Rodwell, T. C., Poole, J. H., & Puria, S. (2007). Wild African elephants (Loxodonta Africana) discriminate between familiar and unfamiliar conspecific seismic alarm calls. Journal of the Acoustical Society of America, 122(2), 823–830.

    Article  PubMed  Google Scholar 

  • O’Connell-Rodwell, C. E., Wood, J. D., Rodwell, T. C., Puria, S., Partan, S. R., Keefe, R., et al. (2006). Wild elephant (Loxodonta africana) breeding herds respond to artificially transmitted seismic stimuli. Behavioural Ecology and Sociobiology, 59(6), 842–850.

    Article  Google Scholar 

  • O’Connell-Rodwell, C. E., Wood, J. D., Wyman, M., Redfield, S., Hart, L. A., & Puria, S. (2012). Antiphonal vocal bouts associated with departures in free-ranging African elephant family groups (Loxodonta africana). Bioacoustics, 21(3), 215–224.

    Article  Google Scholar 

  • Patzke, N., Olaleye, O., Haagensen, M., Hof, P. R., Ihunwo, A. O., & Manger, P. R. (2013a). Organization and chemical neuroanatomy of the African elephant (Loxodonta africana) hippocampus. Brain Structure and Function, 219(5), 1587–601. doi:10.1007/s00429-013-0587-6.

    Article  PubMed  Google Scholar 

  • Patzke, N., Spocter, M. A., Karlsson, K. Æ., Bertelsen, M. F., Haagensen, M., Chawana, R., et al. (2013b). In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain, Structure and Function, 220(1), 361–83. doi:10.1007/s00429-013-0660-1.

    Article  Google Scholar 

  • Payne, K. B., Langbauer, W. R., & Thomas, E. M. (1986). Infrasonic calls of the Asian elephant (Elephas maximus). Behavioural Ecology and Sociobiology, 18(4), 297–301.

    Article  Google Scholar 

  • Peterson, G. E., & Barney, H. (1952). Control methods used in a study of the vowels. Journal of the Acoustical Society of America, 24(175), 175–184.

    Article  Google Scholar 

  • Poole, J. H. (1989). Mate guarding, reproductive success and female choice in African elephants. Animal Behaviour, 37(5), 842–849.

    Article  Google Scholar 

  • Poole, J. H. (1999). Signals and assessment in African elephants: Evidence from playback experiments. Animal Behaviour, 58(1), 185–193.

    Article  PubMed  Google Scholar 

  • Poole, J. H. (2011). Behavioral contexts of elephant acoustic communication. In C. J. Moss, H. Croze, & P. C. Lee (Eds.), The Amboseli elephants: A long-term perspective on a long-lived mammal (pp. 125–161). Chicago: The University of Chicago Press.

    Chapter  Google Scholar 

  • Poole, J. H., & Moss, C. J. (1981). Musth in the African elephant, Loxodonta africana. Nature, 292(5826), 830–831.

    Article  CAS  PubMed  Google Scholar 

  • Poole, J. H., Payne, K., Langbauer, W. R., & Moss, C. J. (1988). The social contexts of some very low frequency calls of African elephants. Behavioural Ecology and Sociobiology, 22(5), 385–392.

    Article  Google Scholar 

  • Pye, J. D., & Langbauer, W. R. (1998). Ultrasound and infrasound. In S. L. Hopp & M. J. Owren (Eds.), Animal acoustic communication: Sound analysis and research methods (pp. 221–245). Berlin: Springer.

    Chapter  Google Scholar 

  • Rado, R., Himelfarb, M., Arensburg, B., Terkel, J., & Wollberg, Z. (1989). Are seismic communication signals transmitted by bone conduction in the blind mole-rat? Hearing Research, 41, 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Rado, R., Terkel, J., & Wollberg, Z. (1998). Seismic communication signals in the blind mole rat (Spalax ehrenbergi): Electrophysiological and behavioral evidence for their processing by the auditory system. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 183(4), 503–511.

    Article  CAS  Google Scholar 

  • Randall, J. A. (2010). Drummers and stompers: Vibrational communication in mammals. In C. E. O’Connell-Rodwell (Ed.), The use of vibrations in communication: Properties, mechanisms and function across taxa (pp. 99–120). Trivandrum, India: Transworld Research Network.

    Google Scholar 

  • Rasmussen, L. E. L., & Munger, B. L. (1996). The sensorineural specialization of the trunk tip (finger) of the Asian elephant (Elephas maximus). Anatomical Record, 246, 127–134.

    Article  CAS  PubMed  Google Scholar 

  • Reby, D., & McComb, K. (2003). Anatomical constraints generate honesty acoustic cues to age and weight in the roars of red deer stags. Animal Behaviour, 65(3), 519–530.

    Article  Google Scholar 

  • Recanzone, G. H., Jenkins, W. M., Hradek, G. T., & Merzenich, M. M. (1992). Progressive improvement in discriminative abilities in adult owl monkeys performing a tactile frequency discrimination task. Journal of Neurophysiology, 67(5), 1015–1030.

    CAS  PubMed  Google Scholar 

  • Reuter, T., Nummela, S., & Hemilea, S. (1998). Elephant hearing. Journal of the Acoustical Society of America, 104, 1122–1123.

    Article  CAS  PubMed  Google Scholar 

  • Rosowski, J. J. (1994). Outer and middle ears. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Mammals (pp. 172–247). New York: Springer.

    Chapter  Google Scholar 

  • Rujirawan, A., Stuart, B. L., & Aowphol, A. (2013). A new tree frog in the genus Polypedates (Anura: Rhacophoridae) from southern Thailand. Zootaxa, 3702(6), 545–565.

    Article  PubMed  Google Scholar 

  • Saxod, R. (1996). Ontogeny of the cutaneous sensory organs. Microscopy Research and Technique, 34(4), 313–333.

    Article  CAS  PubMed  Google Scholar 

  • Schermuly, L., & Klinke, R. (1990). Infrasound sensitive neurons in the pigeon cochlear ganglion. Journal of Comparative Physiology, 166, 355–363.

    CAS  PubMed  Google Scholar 

  • Shen, J.-X. (1983). A behavioral study of vibrational sensitivity in the pigeon (Columba livia). Journal of Comparative Physiology, 152, 251–255.

    Article  Google Scholar 

  • Shipley, C., Stewart, B. S., & Bass, J. (1992). Seismic communication in northern elephant seals. In J. A. Thomas, R. A. Kastelein, & A. Y. Supin (Eds.), Marine mammal sensory systems (pp. 553–562). New York: Plenum Press.

    Chapter  Google Scholar 

  • Shoshani, J. (1998). Understanding proboscidean evolution: A formidable task. Trends in Ecology and Evolution, 13, 480–487.

    Article  CAS  PubMed  Google Scholar 

  • Shoshani, J., Kupsky, W. J., & Marchant, G. H. (2006). Elephant brain. 1. Gross morphology, functions, comparative anatomy, and evolution. Brain Research Bulletin, 70(2), 124–157.

    Article  PubMed  Google Scholar 

  • Sikes, S. K. (1971). The natural history of the African elephant. New York: Elsevier.

    Google Scholar 

  • Smotherman, M., & Narins, P. M. (2004). Evolution of the amphibian ear. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 164–199). New York: Springer.

    Chapter  Google Scholar 

  • Soltis, J. (2010). Vocal communication in African elephants (Loxodonta africana). Zoo Biology, 29(2), 192–209.

    PubMed  Google Scholar 

  • Soltis, J., King, L. E., Douglas-Hamilton, I., Vollrath, F., & Savage, A. (2014). African elephant alarm calls distinguish between threats from humans and bees. PLoS One, 9(2), e89403. doi:10.1371/journal.pone.0089403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soltis, J., Leighty, K. A., Wesolek, C. M., & Savage, A. (2009). The expression of affect in African elephants (Loxodonta africana) rumble vocalizations. Journal of Comparative Psychology, 123(2), 222–225.

    Article  PubMed  Google Scholar 

  • Soltis, J., Leong, K., & Savage, A. (2005). African elephant vocal communication II: Rumble variation reflects individual identity and emotional state of callers. Animal Behaviour, 70(3), 589–599.

    Article  Google Scholar 

  • Springer, M. S., Cleven, G. C., Madsen, O., de Jong, W. W., Waddell, V. G., Amrine, H. M., et al. (1997). Endemic African mammals shake the phylogenetic tree. Nature, 388, 61–64.

    Article  CAS  PubMed  Google Scholar 

  • Stanhope, M. J., Waddell, V. G., Madsen, O., de Jong, W., Hedges, S. B., Cleven, G. C., et al. (1998). Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proceedings of the National Academy of Sciences of the USA, 95, 9967–9972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenfelt, S., Wild, T., Hato, N., & Goode, R. L. (2003). Factors contributing to bone conduction: The outer ear. Journal of the Acoustical Society of America, 113(2), 902–913.

    Article  PubMed  Google Scholar 

  • Stoeger, A. S., Heilmann, G., Zeppelzauer, M., Hensman, S., & Charlton, B. D. (2012). Visualizing sound emission of elephant vocalizations: Evidence for two rumble production types. PloS One, 7(11), e48907. doi:10.1371/journal.pone.0048907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeger, A., Zeppelzauer, M., & Baotic, A. (2014). Age-group estimation in free-ranging African elephants based on acoustic cues of low-frequency rumbles. Bioacoustics, 23(3), 231–46. doi:10.1080/09524622.2014.888375.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoeger-Horwath, A. S., Stoeger, S., Schwammer, H. M., & Kratochvil, H. (2007). Call repertoire of infant African elephants: First insights into the early vocal ontogeny. Journal of the Acoustical Society of America, 121(6), 3922–3931.

    Article  PubMed  PubMed Central  Google Scholar 

  • Theurich, M., Langner, G., & Scheich, H. (1984). Infrasound responses in the midbrain of the guinea fowl. Neuroscience Letters, 49, 81–86.

    Article  CAS  PubMed  Google Scholar 

  • van der Merwe, N. J., Bezuidenhout, A. J., & Seegers, C. D. (1995). The skull and mandible of the African elephant (Loxodonta africana). Onderstepoort Journal of Veterinary Research, 62, 245–260.

    PubMed  Google Scholar 

  • Varanasi, U., Feldman, H. R., & Malin, D. C. (1975). Molecular basis for formation of lipid sound lens in echolocating cetaceans. Nature, 255, 340–343.

    Article  CAS  Google Scholar 

  • Varanasi, U., & Malin, D. C. (1971). Unique lipids of the porpoise (Tursiops gilli): Differences in triacylglycerols and wax esters of acoustic (mandibular canal and melon) and blubber tissues. Biochemica Biophysica Acta, 231, 415–418.

    Article  CAS  Google Scholar 

  • von Békésy, G. (1944/1960). Frequency analysis in the cochleas of various animals. In E. G. Wever (Ed.), Experiments in hearing (pp. 500–510), New York: McGraw-Hill

    Google Scholar 

  • von Mayer, A., O’Brien, G., & Sarmiento, E. E. (1995). Functional and systematic implications of the ear in golden moles (Chrysochloridae). Journal of Zoology, 236(3), 417–430. doi:10.1111/j.1469-7998.1995.tb02722.x/abstract.

    Article  Google Scholar 

  • Warkentin, K. M. (2005). How do embryos assess risk? Vibrational cues in predator-induced hatching in red-eyed treefrogs. Animal Behaviour, 70, 59–71.

    Article  Google Scholar 

  • Warkentin, K. M., & Caldwell, M. S. (2009). Assessing risk: Embryos, information, and escape hatching. In R. Dukas & J. Ratcliffe (Eds.), Cognitive ecology II. The evolutionary ecology of learning, memory, and information use (pp. 177–200). Chicago: University of Chicago Press.

    Google Scholar 

  • Warkentin, K. M., Caldwell, M. S., & McDaniel, J. G. (2006). Temporal pattern cues in vibrational risk assessment by embryos of the red-eyed treefrog, Agalychnis callidryas. Journal of Experimental Biology, 209, 1376–1384.

    Article  PubMed  Google Scholar 

  • Warkentin, K. M., Caldwell, M. S., Siok, T. D., D’Amato, A. T., & McDaniel, J. G. (2007). Flexible information sampling in vibrational assessment of predation risk by red-eyed treefrog embryos. Journal of Experimental Biology, 210, 614–619.

    Article  PubMed  Google Scholar 

  • Webb, G. J. W., Choquenot, D., & Whitehead, P. J. (1986). Nests, eggs, and embryonic development of Carettochelys insculpta (Chelonia: Carettochelidae) from Northern Australia. Journal of Zoology, 1, 521–550.

    Article  Google Scholar 

  • Weissengruber, G. E., Egger, G. F., Hutchinson, J. R., Groenewald, H. B., Elsasser, L., Famini, D., et al. (2006). The structure of the cushion in the feet of African elephants (Loxodonta africana). Journal of Anatomy, 209, 181–192.

    Article  Google Scholar 

  • Wever, E. G. (1973). The ear and hearing in the frog, Rana pipiens. Journal of Morphology, 141, 461–478.

    Article  CAS  PubMed  Google Scholar 

  • Willi, U. B., Bronner, G. N., & Narins, P. M. (2006a). Ossicular differentiation of airborne and seismic stimuli in the Cape golden mole (Chrysochloris asiatica). Journal of Comparative Physiology, 192, 267–277.

    Article  CAS  PubMed  Google Scholar 

  • Willi, U. B., Bronner, G. N., & Narins, P. M. (2006b). Middle ear dynamics in response to seismic stimuli in the Cape golden mole (Chrysochloris asiatica). Journal of Experimental Biology, 209, 302–313.

    Article  CAS  PubMed  Google Scholar 

  • Yodlowski, M. L., Kreithen, M. L., & Keeton, W. T. (1977). Detection of atmospheric infrasound by homing pigeons. Nature, 265, 725–726.

    Article  CAS  PubMed  Google Scholar 

  • Young, B. A., & Morain, M. (2002). The use of ground-borne vibrations for prey localization in the Sahara sand vipers (Cerastes). The Journal of Experimental Biology, 205, 661–665.

    PubMed  Google Scholar 

  • Yu, X.-L., Lewis, E. R., & Feld, D. (1991). Seismic and auditory tuning curves from bullfrog saccular and amphibian papillar axons. Journal of Comparative Physiology, 169, 241–248.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Narins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Narins, P.M., Stoeger, A.S., O’Connell-Rodwell, C. (2016). Infrasonic and Seismic Communication in the Vertebrates with Special Emphasis on the Afrotheria: An Update and Future Directions. In: Suthers, R., Fitch, W., Fay, R., Popper, A. (eds) Vertebrate Sound Production and Acoustic Communication. Springer Handbook of Auditory Research, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-27721-9_7

Download citation

Publish with us

Policies and ethics