Skip to main content

Discriminatory Power of MALDI-TOF Mass Spectrometry for Phylogenetically Closely Related Microbial Strains

  • Chapter
  • First Online:
Applications of Mass Spectrometry in Microbiology

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool for differentiation, identification and classification of microorganisms at the genus and the species levels. In this mini-review, we discuss the challenges and opportunities associated with the application of MALDI-TOF MS for bacterial strain typing below the species level. Based on three examples of important bacterial pathogens, Staphylococcus aureus, Enterococcus faecium and Bacillus cereus sensu lato we explore the strengths and weaknesses of the MS technique. It was found that the taxonomic resolution of MALDI-TOF MS is limited which often prevents reliable strain categorization, or strain identification/typing. Only in selected cases were we able to detect mass spectral biomarkers and fingerprints that allowed for reliable microbial typing and strain differentiation. It was found that typing below the species level requires rigorous standardization, high spectral quality and the application of adequate sample-processing methods, spectra acquisition procedures, and an optimized data analysis pipeline that includes multivariate fingerprinting approaches. However, these conditions cannot be expected in a routine setting. Therefore, future efforts to increase the taxonomic resolution should involve the application of alternative mass spectrometry technologies, ideally in combination with sample pre-processing methods, such as separation techniques. It is hoped that this will open new avenues to further improve the taxonomic resolution of MS-based technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACME:

Arginine catabolic mobile element

ANN:

Artificial neural network

BSL:

Biosafety level

BURP:

Based upon repeat pattern

CA:

Community-Acquired

CC:

Clonal complex

DHB:

2,5-dihydroxybenzoic acid

EntA:

Enterotoxin A

EntB:

Enterotoxin B

HCCA:

α-cyano-4-hydroxycinnamic acid

MALDI-TOF:

Matrix-assisted laser desorption/ionization—time of flight

MLST:

Multilocus sequence typing

MLVA:

Multiple-locus variable number tandem repeat analysis

MRSA:

Methicillin-resistant Staphylococcus aureus

MSSA:

Methicillin-sensitive Staphylococcus aureus

MS:

Mass spectrometry

MSP:

Main spectral projection

MW:

Molecular weight

PFGE:

Pulsed-field gel electrophoresis

PSM:

Phenol-soluble modulins

PVL:

Panton-valentine leukocidin

SASP:

Small, acid-soluble protein

SNR:

Signal-to-noise ratio

TFA:

Trifluoroacetic acid

TSST:

Toxic shock syndrome toxin

VRE:

Vancomycin-resistant Enterococcus

VREfm:

Vancomycin-resistant Enterococcus faecium

VSE:

Vancomycin-sensitive Enterococcus

VSEfm:

Vancomycin-sensitive Enterococcus faecium

UHCA:

Unsupervised hierarchical cluster analysis

References

  • Anderson NW, Buchan BW, Riebe KM, Parsons LN, Gnacinski S, Ledeboer NA. Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2012;50(3):1008–13. doi:10.1128/JCM.05209-11.

    Article  CAS  Google Scholar 

  • Arnold RJ, Reilly JP. Fingerprint matching of E. coli strains with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells using a modified correlation approach. Rapid Commu Mass Spectrom. 1998;12(10):630–36.

    Article  CAS  Google Scholar 

  • Auda G, Kamel M. Modular neural network classifiers: a comparative study. J Intell Robot Syst. 1998;21(2):117–29. doi:10.1023/A:1007925203918.

    Article  Google Scholar 

  • Balazova T, Makovcova J, Sedo O, Slany M, Faldyna M, Zdrahal Z. The influence of culture conditions on the identification of Mycobacterium species by MALDI-TOF MS profiling. FEMS Microbiol Lett. 2014. doi:10.1111/1574-6968.12408.

    Google Scholar 

  • Bartlett JG, Inglesby TV, Jr., Borio L. Management of anthrax. Clin Infect Dis. 2002;35(7):851–58.

    Article  Google Scholar 

  • Bavykin SG, Lysov YP, Zakhariev V, Kelly JJ, Jackman J, Stahl DA, Cherni A. Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. J Clin Microbiol. 2004;42(8) (37):11–30.

    Article  CAS  Google Scholar 

  • Bittar F, Ouchenane Z, Smati F, Raoult D, Rolain JM. MALDI-TOF-MS for rapid detection of staphylococcal Panton–Valentine leukocidin. Int J Antimicrob Agents. 2009;34 (5):467–70. doi:10.1016/j.ijantimicag.2009.03.017.

    Article  CAS  Google Scholar 

  • Blanco R, Tristan A, Ezpeleta G, Larsen AR, Bes M, Etienne J, Cisterna R, Laurent F. Molecular epidemiology of Panton-Valentine leukocidin-positive Staphylococcus aureus in Spain: emergence of the USA300 clone in an autochthonous population. J Clin Microbiol. 2011;49(1):433–36. doi:10.1128/JCM.02201-10.

    Article  CAS  Google Scholar 

  • Boggs SR, Cazares LH, Drake R. Characterization of a Staphylococcus aureus USA300 protein signature using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol. 2012;61(Pt 5):640–44. doi:10.1099/jmm.0.037978-0.

    Article  Google Scholar 

  • Bohme K, Fernandez-No IC, Pazos M, Gallardo JM, Barros-Velazquez J, Canas B, Calo-Mata P. Identification and classification of seafood-borne pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI-TOF MS fingerprinting. Electrophoresis. 2013;34(6):877–87. doi:10.1002/elps.201200532.

    Article  CAS  Google Scholar 

  • Brandt A. Die Untersuchung von mikrobiellen Wachstumsbedingungen mittels MALDI-TOF-Massenspektrometrie. Diploma Thesis Technical University Berlin, Germany; 2006.

    Google Scholar 

  • Cain TC, Lubman DM, Weber WJ, Vertes A. Differentiation of bacteria using protein profiles from matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1994;8(12):1026–30. doi:10.1002/rcm.1290081224

    Article  CAS  Google Scholar 

  • Callahan C, Castanha ER, Fox KF, Fox A. The Bacillus cereus containing sub-branch most closely related to Bacillus anthracis, have single amino acid substitutions in small acid-soluble proteins, while remaining sub-branches are more variable. Mol Cell Probes. 2008;22(3):207–11.

    Article  CAS  Google Scholar 

  • Callahan C, Fox K, Fox A. The small acid soluble proteins (SASP alpha and SASP beta) of Bacillus weihenstephanensis and Bacillus mycoides group 2 are the most distinct among the Bacillus cereus group. Mol Cell Probes. 2009;23(6):291–97. doi:10.1016/j.mcp.2009.07.003.

    Article  CAS  Google Scholar 

  • Castanha ER, Fox A, Fox KF. Rapid discrimination of Bacillus anthracis from other members of the B. cereus group by mass and sequence of “intact” small acid soluble proteins (SASPs) using mass spectrometry. J Microbiol Methods. 2006;67 (2):230–40.

    Article  CAS  Google Scholar 

  • Castanha ER, Vestal M, Hattan S, Fox A, Fox KF, Dickinson D. Bacillus cereus strains fall into two clusters (one closely and one more distantly related) to Bacillus anthracis according to amino acid substitutions in small acid-soluble proteins as determined by tandem mass spectrometry. Mol Cell Probes. 2007;21(3):190–201.

    Article  CAS  Google Scholar 

  • Chang YH, Shangkuan YH, Lin HC, Liu HW. PCR assay of the groEL gene for detection and differentiation of Bacillus cereus group cells. Appl Environ Microbiol. 2003;69(8):4502–10.

    Article  CAS  Google Scholar 

  • Chenau J, Fenaille F, Caro V, Haustant M, Diancourt L, Klee SR, Junot C, Ezan E, Goossens PL, Becher F. Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches. Mol Cell Proteomics. 2013. doi:10.1074/mcp.M113.032946.

    Google Scholar 

  • Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol. 1996;14(11):1584–86. doi:10.1038/nbt1196-1584.

    Article  CAS  Google Scholar 

  • Daffonchio D, Cherif A, Borin S. Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S-23S internal transcribed spacers describe genetic relationships in the “Bacillus cereus group”. Appl Environ Microbiol. 2000;66(12):5460–68.

    Article  CAS  Google Scholar 

  • Dauwalder O, Carbonnelle E, Benito Y, Lina G, Nassif X, Vandenesch F, Laurent F. Detection of Panton-Valentine toxin in Staphylococcus aureus by mass spectrometry directly from colony: time has not yet come. Int J Antimicrob Agents. 2010;36(2):193–94. doi:10.1016/j.ijantimicag.2010.04.005.

    Article  CAS  Google Scholar 

  • de Been M, van Schaik W, Cheng L, Corander J, Willems RJ. Recent recombination events in the core genome are associated with adaptive evolution in Enterococcus faecium. Genome Biol Evol. 2013;5(8):1524–35. doi:10.1093/gbe/evt111.

    Article  CAS  Google Scholar 

  • de Regt MJ, van Schaik W, van Luit-Asbroek M, Dekker HA, van Duijkeren E, Koning CJ, Bonten MJ, Willems RJ. Hospital and community ampicillin-resistant Enterococcus faecium are evolutionarily closely linked but have diversified through niche adaptation. PloS ONE.2012;7(2):e30319. doi:10.1371/journal.pone.0030319.

    Article  CAS  Google Scholar 

  • Demirev PA, Feldman AB, Kowalski P, Lin JS. Top-down proteomics for rapid identification of intact microorganisms. Anal Chem. 2005;77(22):7455–61. doi:10.1021/ac051419g.

    Article  CAS  Google Scholar 

  • Demirev PA, Ho YP, Ryzhov V, Fenselau C. Microorganism identification by mass spectrometry and protein database searches. Anal Chem. 1999;71(14):2732–38.

    Article  CAS  Google Scholar 

  • Demirev PA, Ramirez J, Fenselau C. Tandem mass spectrometry of intact proteins for characterization of biomarkers from Bacillus cereus T spores. Anal Chem. 2001;73(23):5725–31.

    Article  CAS  Google Scholar 

  • Dieckmann R, Helmuth R, Erhard M, Malorny B. Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2008;74(24):7767–78. doi:10.1128/AEM.01402–08.

    Article  CAS  Google Scholar 

  • Du Z, Yang R, Guo Z, Song Y, Wang J. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2002;74(21):5487–91.

    Article  CAS  Google Scholar 

  • Dybwad M, van der Laaken AL, Blatny JM, Paauw A. Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Appl Environ Microbiol. 2013;79(17):5372–83. doi:10.1128/AEM.01724–13.

    Article  CAS  Google Scholar 

  • Elhanany E, Barak R, Fisher M, Kobiler D, Altboum Z. Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(22):2110–16.

    Article  CAS  Google Scholar 

  • Fenselau C. Mass spectrometry for the characterization of microorganisms. ACS Symposium Series 541, American Chemical Society: Washington DC 541; 1994.

    Google Scholar 

  • Fernandez-No IC, Bohme K, Diaz-Bao M, Cepeda A, Barros-Velazquez J, Calo-Mata P. Characterisation and profiling of Bacillus subtilis, Bacillus cereus and Bacillus licheniformis by MALDI-TOF mass fingerprinting. Food Microbiol. 2013;33(2):235–42. doi:10.1016/j.fm.2012.09.022.

    Article  CAS  Google Scholar 

  • File TM, Jr., Wilcox MH, Stein GE. Summary of ceftaroline fosamil clinical trial studies and clinical safety. Clin Infect Dis. 2012;55(Suppl 3):S. 173–80. doi:10.1093/cid/cis559.

    Google Scholar 

  • Freitas AR, Tedim AP, Novais C, Ruiz-Garbajosa P, Werner G, Laverde-Gomez JA, Canton R, Peixe L, Baquero F, Coque TM. Global spread of the hyl(Efm) colonization-virulence gene in megaplasmids of the Enterococcus faecium CC17 polyclonal subcluster. Antimicrob Agents Chemother. 2010;54(6):2660–65. doi:10.1128/AAC.00134-10.

    Article  CAS  Google Scholar 

  • Gagnaire J, Dauwalder O, Boisset S, Khau D, Freydiere AM, Ader F, Bes M, Lina G, Tristan A, Reverdy ME, Marchand A, Geissmann T, Benito Y, Durand G, Charrier JP, Etienne J, Welker M, Van Belkum A, Vandenesch F. Detection of Staphylococcus aureus delta-toxin production by whole-cell MALDI-TOF mass spectrometry. PloS ONE. 2012;7(7):e40660. doi:10.1371/journal.pone.0040660.

    Article  CAS  Google Scholar 

  • Galloway-Pena JR, Nallapareddy SR, Arias CA, Eliopoulos GM, Murray BE. Analysis of clonality and antibiotic resistance among early clinical isolates of Enterococcus faecium in the United States. J Infect Dis. 2009;200(10):1566–73. doi:10.1086/644790.

    Article  CAS  Google Scholar 

  • Gilmore MS, Lebreton F, van Schaik W. Genomic transition of Enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol. 2013;16(1):10–16. doi:10.1016/j.mib.2013.01.006.

    Article  Google Scholar 

  • Goldstein JE, Zhang L, Borror CM, Rago JV, Sandrin TR. Culture conditions and sample preparation methods affect spectrum quality and reproducibility during profiling of Staphylococcus aureus with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Lett App Microbiol. 2013;57(2):144–50. doi:10.1111/lam.12092.

    Article  CAS  Google Scholar 

  • Goodacre R. Characterisation and quantification of microbial systems using pyrolysis mass spectrometry: introducing neural networks to analytical pyrolysis. Microbiol Eur. 1994;2(2):16–22

    Google Scholar 

  • Goodacre R, Timmins EM, Burton R, Kaderbhai N, Woodward AM, Kell DB, Rooney PJ. Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology. 1998;144(Pt 5):1157–1170.

    Article  CAS  Google Scholar 

  • Granum PE, Lund T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett. 1997;157(2):223–28.

    Article  CAS  Google Scholar 

  • Griffin PM, Price GR, Schooneveldt JM, Schlebusch S, Tilse MH, Urbanski T, Hamilton B, Venter D. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant Enterococci and investigate the epidemiology of an outbreak. J Clin Microbiol. 2012;50(9):2918–31. doi:10.1128/JCM.01000-12.

    Article  CAS  Google Scholar 

  • Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW, European Staphylococcal Reference Laboratory Working Group. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med. 2010;7(1):e1000215. doi:10.1371/journal.pmed.1000215.

    Article  Google Scholar 

  • Harmsen D, Claus H, Witte W, Rothganger J, Claus H, Turnwald D, Vogel U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol. 2003;41(12):5442–48.

    Article  CAS  Google Scholar 

  • Hathout Y, Demirev PA, Ho YP, Bundy JL, Ryzhov V, Sapp L, Stutler J, Jackman J, Fenselau C. Identification of Bacillus spores by matrix-assisted laser desorption ionization-mass spectrometry. Appl Environ Microbiol. 1999;65(10):4313–19

    CAS  Google Scholar 

  • Hathout Y, Setlow B, Cabrera-Martinez RM, Fenselau C, Setlow P. Small, acid soluble proteins as biomarkers in mass spectrometry analysis of Bacillus spores. Appl Environ Microbiol. 2003;69(2):1100–07.

    Article  CAS  Google Scholar 

  • Heikens E, van Schaik W, Leavis HL, Bonten MJ, Willems RJ. Identification of a novel genomic island specific to hospital-acquired clonal complex 17 Enterococcus faecium isolates. Appl Environ Microbiol. 2008;74(22):7094–97. doi:10.1128/AEM.01378-08.

    Article  CAS  Google Scholar 

  • Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolsto AB. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol. 2000;66(6):2627–30.

    Article  CAS  Google Scholar 

  • Helm D, Labischinski H, Schallehn G, Naumann D. Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol. 1991;137(1):69–79.

    Article  CAS  Google Scholar 

  • Hill KK, Ticknor LO, Okinaka RT, Asay M, Blair H, Bliss KA, Laker M, Pardington PE, Richardson AP, Tonks M, Beecher DJ, Kemp JD, Kolsto AB, Wong AC, Keim P, Jackson PJ. Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl Environ Microbiol. 2004;70(2):1068–1080.

    Article  CAS  Google Scholar 

  • Hiramatsu K, Ito T, Tsubakishita S, Sasaki T, Takeuchi F, Morimoto Y, Katayama Y, Matsuo M, Kuwahara-Arai K, Hishinuma T, Baba T. Genomic basis for methicillin resistance in Staphylococcus aureus. Infect Chemother. 2013;45(2):117–36. doi:10.3947/ic.2013.45.2.117.

    Article  CAS  Google Scholar 

  • Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO Jr. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1996;10(10):1227–32.

    Article  CAS  Google Scholar 

  • John PA, Catherine F. Identification of bacteria using mass spectrometry. Anal Chem. 1975;47(2):219–25

    Article  Google Scholar 

  • Josten M, Reif M, Szekat C, Al-Sabti N, Roemer T, Sparbier K, Kostrzewa M, Rohde H, Sahl HG, Bierbaum G. Analysis of the matrix-assisted laser desorption ionization-time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages. J Clin Microbiol. 2013;51(6):1809–1817. doi:10.1128/JCM.00518-13.

    Article  CAS  Google Scholar 

  • Jung JS, Eberl T, Sparbier K, Lange C, Kostrzewa M, Schubert S, Wieser A. Rapid detection of antibiotic resistance based on mass spectrometry and stable isotopes. Eur J Clin Microbiol Infect Dis. 2014;33(6):949–955. doi:10.1007/s10096-013-2031-5.

    Article  CAS  Google Scholar 

  • Kempka M, Sjodahl J, Bjork A, Roeraade J. Improved method for peak picking in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2004;18(11):1208–12. doi:10.1002/rcm.1467.

    Article  CAS  Google Scholar 

  • Kennedy H. Daschle letter bombshell—billions of anthrax spores. New York Daily News. 2001 Oct 31;5.

    Google Scholar 

  • Keys CJ, Dare DJ, Sutton H, Wells G, Lunt M, McKenna T, McDowall M, Shah HN. Compilation of a MALDI-TOF mass spectral database for the rapid screening and characterisation of bacteria implicated in human infectious diseases. Infect Genet Evol. 2004;4(3):221–42.

    Article  CAS  Google Scholar 

  • Klee SR, Brzuszkiewicz EB, Nattermann H, Bruggemann H, Dupke S, Wollherr A, Franz T, Pauli G, Appel B, Liebl W, Couacy-Hymann E, Boesch C, Meyer FD, Leendertz FH, Ellerbrok H, Gottschalk G, Grunow R, Liesegang H. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PloS ONE. 2010;5(7):e10986. doi:10.1371/journal.pone.0010986.

    Article  CAS  Google Scholar 

  • Klee SR, Ozel M, Appel B, Boesch C, Ellerbrok H, Jacob D, Holland G, Leendertz FH, Pauli G, Grunow R, Nattermann H. Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Cote d’Ivoire and Cameroon. J Bacteriol. 2006;188(15):5333–44. doi:10.1128/JB.00303–06.

    Article  CAS  Google Scholar 

  • Kolsto AB, Tourasse NJ, Okstad OA. What sets Bacillus anthracis apart from other Bacillus species? Ann Rev Microbiol. 2009;63:451–76. doi:10.1146/annurev.micro.091208.073255.

    Article  CAS  Google Scholar 

  • Kostrzewa M, Sparbier K, Maier T, Schubert S. MALDI-TOF MS: an upcoming tool for rapid detection of antibiotic resistance in microorganisms. Proteomics Clin Appl. 2013;(36):197–203. doi:10.1002/prca.201300042.

    Google Scholar 

  • Krishnamurthy T, Ross PL, Rajamani U. Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1996;10(8):883–8. doi:10.1002/(SICI)1097-0231(19960610)10:8<883::AID-RCM594>3.0.CO;2-V.

    Article  CAS  Google Scholar 

  • Kuch A, Willems RJ, Werner G, Coque TM, Hammerum AM, Sundsfjord A, Klare I, Ruiz-Garbajosa P, Simonsen GS, van Luit-Asbroek M, Hryniewicz W, Sadowy E. Insight into antimicrobial susceptibility and population structure of contemporary human Enterococcus faecalis isolates from Europe. J Antimicrob Chemother. 2012;67(3):551–8. doi:10.1093/jac/dkr544.

    Article  CAS  Google Scholar 

  • Lasch P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst. 2012;117:100–14.

    Article  CAS  Google Scholar 

  • Lasch P. MicrobeMS: a Matlab Toolbox for analysis of microbial MALDI-TOF mass spectra. 2015. http://www.microbe-ms.com

    Google Scholar 

  • Lasch P, Beyer W, Nattermann H, Stämmler M, Siegbrecht E, Grunow R, Naumann D. Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks. Appl Environ Microbiol. 2009;75(22):7229–42. doi:10.1128/AEM.00857-09.

    Article  CAS  Google Scholar 

  • Lasch P, Drevinek M, Nattermann H, Grunow R, Stammler M, Dieckmann R, Schwecke T, Naumann D. Characterization of Yersinia using MALDI-TOF mass spectrometry and chemometrics. Anal Chem. 2010;82(20):8464–75. doi:10.1021/ac101036s.

    Article  CAS  Google Scholar 

  • Lasch P, Fleige C, Stammler M, Layer F, Nübel U, Witte W, Werner G. Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates. J Microbiol Methods. 2014;100:58–69. doi:10.1016/j.mimet.2014.02.015.

    Article  CAS  Google Scholar 

  • Lasch P, Nattermann H, Erhard M, Stammler M, Grunow R, Bannert N, Appel B, Naumann D. MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores. Anal Chem. 2008;80(6):2026–34. doi:10.1021/ac701822j.

    Article  CAS  Google Scholar 

  • Lasch P, Naumann D. MALDI-TOF mass spectrometry for the rapid identification of highly pathogenic microorganisms. Proteomics, glycomics and antigenicity of BSL3 and BSL4 agents. First Edition Edited by Jiri Stulik, Rudolf Toman, Patrick Butaye, Robert G Ulrich 2011 Wiley-VCH Verlag GmbH & Co KGaA Published 2011 by Wiley-VCH Verlag GmbH & Co KGaA:219–2. 2011.

    Google Scholar 

  • Lasch P, Wahab T, Hufnagl P, Pályi B, Tomaso H, Zange S, Kiland Langerud B, Drevinek M, Kokotovic B, Wittwer M, Pflüger V, Di Caro A, Stämmler M, Grunow R, Jacob D. Identification of highly pathogenic microorganisms using MALDI-TOF mass spectrometry—results of an Inter-Laboratory Ring Trial. J Clin Microbiol. 2015;53(8):2632-40. doi:10.1128/JCM.00813-15.

    Google Scholar 

  • Laverde Gomez JA, van Schaik W, Freitas AR, Coque TM, Weaver KE, Francia MV, Witte W, Werner G. A multiresistance megaplasmid pLG1 bearing a hylEfm genomic island in hospital Enterococcus faecium isolates. Int J Med Microbiol. 2011;301(2):165–75. doi:10.1016/j.ijmm.2010.08.015.

    Article  CAS  Google Scholar 

  • Lay JO Jr. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev. 2001;20(4):172–94.

    Article  CAS  Google Scholar 

  • Leavis HL, Willems RJ, Top J, Bonten MJ. High-level ciprofloxacin resistance from point mutations in gyrA and parC confined to global hospital-adapted clonal lineage CC17 of Enterococcus faecium. J Clinical Microbiol. 2006;44(3):1059–64. doi:10.1128/JCM.44.3.1059-1064.2006.

    Article  CAS  Google Scholar 

  • Lebreton F, van Schaik W, McGuire AM, Godfrey P, Griggs A, Mazumdar V, Corander J, Cheng L, Saif S, Young S, Zeng Q, Wortman J, Birren B, Willems RJ, Earl AM, Gilmore MS. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio. 2013;4(4). doi:10.1128/mBio.00534-13.

    Google Scholar 

  • Leendertz FH, Ellerbrok H, Boesch C, Couacy-Hymann E, Matz-Rensing K, Hakenbeck R, Bergmann C, Abaza P, Junglen S, Moebius Y, Vigilant L, Formenty P, Pauli G. Anthrax kills wild chimpanzees in a tropical rainforest. Nature. 2004;430(6998):451–52. doi:10.1038/nature02722

    Article  CAS  Google Scholar 

  • Leendertz FH, Yumlu S, Pauli G, Boesch C, Couacy-Hymann E, Vigilant L, Junglen S, Schenk S, Ellerbrok H. A new Bacillus anthracis found in wild chimpanzees and a gorilla from West and Central Africa. PLoS Pathog. 2006;2(1):e8. doi:10.1371/journal.ppat.0020008.

    Article  CAS  Google Scholar 

  • Lester CH, Sandvang D, Olsen SS, Schonheyder HC, Jarlov JO, Bangsborg J, Hansen DS, Jensen TG, Frimodt-Moller N, Hammerum AM, DANRES Study Group. Emergence of ampicillin-resistant Enterococcus faecium in Danish hospitals. J Antimicrob Chemother. 2008;62(6):1203–06. doi:10.1093/jac/dkn360.

    Article  CAS  Google Scholar 

  • Maier T, Klepel S, Renner Z, Kostrzewa M. Fast and reliable MALDI-TOF MS-based microorganism identification. Nat Methods. 2006;3:324–34.

    Article  CAS  Google Scholar 

  • Makino S, Uchida I, Terakado N, Sasakawa C, Yoshikawa M. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J Bacteriol. 1989;171(2):722–30

    CAS  Google Scholar 

  • MALDI BioTyper 3.0 User Manual (2012). Bruker Daltonic GmbH

    Google Scholar 

  • Maquelin K, Choo-Smith LP, van Vreeswijk T, Endtz HP, Smith B, Bennett R, Bruining HA, Puppels GJ. Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Anal Chem. 2000;72(1):12–9

    Article  CAS  Google Scholar 

  • Marques de Sa JP. Pattern recognition: concepts, methods, and applications. Springer Science & Business Media; 2001. p. 318.

    Google Scholar 

  • Mellmann A, Weniger T, Berssenbrugge C, Rothganger J, Sammeth M, Stoye J, Harmsen D. Based upon repeat pattern (BURP): an algorithm to characterize the long-term evolution of Staphylococcus aureus populations based on spa polymorphisms. BMC Microbiol. 2007;7:98. doi:10.1186/1471-2180-7-98.

    Article  CAS  Google Scholar 

  • Mikalsen T, Pedersen T, Willems R, Coque TM, Werner G, Sadowy E, van Schaik W, Jensen LB, Francia MV, Sundsfjord A, Hegstad K. Investigating the mobilome in clinically important lineages of Entero-coccus faecium and Enterococcus faecalis. BMC Genomics. 2015;16:282. doi:10.1186/s12864-015-1407-6.

    Google Scholar 

  • Moeller R, Setlow P, Reitz G, Nicholson WL. Roles of small, acid-soluble spore proteins and core water content in survival of Bacillus subtilis spores exposed to environmental solar UV radiation. Appl Environ Microbiol. 2009;75(16):5202–8. doi:10.1128/AEM.00789-09.

    Article  CAS  Google Scholar 

  • Moon HW, Lee SH, Chung HS, Lee M, Lee K. Performance of the Vitek MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for identification of Gram-positive cocci routinely isolated in clinical microbiology laboratories. J Med Microbiol. 2013;62(Pt 9):1301–6. doi:10.1099/jmm.0.062950-0.

    Article  CAS  Google Scholar 

  • Nakano S, Matsumura Y, Kato K, Yunoki T, Hotta G, Noguchi T, Yamamoto M, Nagao M, Ito Y, Takakura S, Ichiyama S. Differentiation of vanA-positive Enterococcus faecium from vanA-negative E. faecium by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Int J Antimicrob Agents. 2014;44(3):256–9. doi:10.1016/j.ijantimicag.2014.05.006.

    Article  CAS  Google Scholar 

  • Nimmo GR. USA300 abroad: global spread of a virulent strain of community-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect. 2012;18(8):725–34. doi:10.1111/j.1469-0691.2012.03822.x.

    Article  CAS  Google Scholar 

  • O’Hara FP, Amrine-Madsen H, Mera RM, Brown ML, Close NM, Suaya JA, Acosta CJ. Molecular characterization of Staphylococcus aureus in the United States 2004–2008 reveals the rapid expansion of USA300 among inpatients and outpatients. Microbial Drug Resist. 2012;18(6):555–61. doi:10.1089/mdr.2012.0056.

    Article  Google Scholar 

  • Okinaka R, Cloud K, Hampton O, Hoffmaster A, Hill K, Keim P, Koehler T, Lamke G, Kumano S, Manter D, Martinez Y, Ricke D, Svensson R, Jackson P. Sequence, assembly and analysis of pX01 and pX02. J Appl Microbiol. 1999;87(2):261–2

    Article  CAS  Google Scholar 

  • Otto M. Community-associated MRSA: what makes them special? Int J Med Microbiol. 2013;303(6–7):324–30. doi:10.1016/j.ijmm.2013.02.007.

    Article  Google Scholar 

  • Pineda FJ, Antoine MD, Demirev PA, Feldman AB, Jackman J, Longenecker M, Lin JS. Microorganism identification by matrix-assisted laser/desorption ionization mass spectrometry and model-derived ribosomal protein biomarkers. Anal Chem. 2003;75(15):3817–22

    Article  CAS  Google Scholar 

  • Pineda FJ, Lin JS, Fenselau C, Demirev PA. Testing the significance of microorganism identification by mass spectrometry and proteome database search. Anal Chem. 2000;72(16):3739–44.

    Article  CAS  Google Scholar 

  • Quintela-Baluja M, Bohme K, Fernandez-No IC, Morandi S, Alnakip ME, Caamano-Antelo S, Barros-Velazquez J, Calo-Mata P. Characterization of different food-isolated Enterococcus strains by MALDI-TOF mass fingerprinting. Electrophoresis. 2013;34(15):2240–50. doi:10.1002/elps.201200699.

    Article  CAS  Google Scholar 

  • Radnedge L, Agron PG, Hill KK, Jackson PJ, Ticknor LO, Keim P, Andersen GL. Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol. 2003;69(5):2755–64

    Article  CAS  Google Scholar 

  • Rasko DA, Altherr MR, Han CS, Ravel J. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev. 2005;29 (2):303–29

    CAS  Google Scholar 

  • Renard BY, Kirchner M, Steen H, Steen JA, Hamprecht FA. NITPICK: peak identification for mass spectrometry data. BMC Bioinformatics. 2008;9:355. doi:10.1186/1471-2105-9-355.

    Article  CAS  Google Scholar 

  • Robert J, Tristan A, Cavalie L, Decousser JW, Bes M, Etienne J, Laurent F, Onerba. Panton-valentine leukocidin-positive and toxic shock syndrome toxin 1-positive methicillin-resistant Staphylococcus aureus: a French multicenter prospective study in 2008. Antimicrob Agents Chemother. 2011;55(4):1734–9. doi:10.1128/AAC.01221-10.

    Google Scholar 

  • Rösch P, Harz M, Schmitt M, Peschke KD, Ronneberger O, Burkhardt H, Motzkus HW, Lankers M, Hofer S, Thiele H, Popp J. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl Environ Microbiol. 2005;71(3):1626–37

    Article  CAS  Google Scholar 

  • Ruiz-Garbajosa P, Bonten MJ, Robinson DA, Top J, Nallapareddy SR, Torres C, Coque TM, Canton R, Baquero F, Murray BE, del Campo R, Willems RJ. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J Clin Microbiol. 2006;44(6):2220–28. doi:10.1128/JCM.02596-05.

    Article  CAS  Google Scholar 

  • Ryzhov V, Fenselau C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem. 2001;73(4):746–50.

    Article  CAS  Google Scholar 

  • Ryzhov V, Hathout Y, Fenselau C. Rapid characterization of spores of Bacillus cereus group bacteria by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Appl Environ Microbiol. 2000;66(9):3828–34.

    Article  CAS  Google Scholar 

  • Sandrin TR, Goldstein JE, Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom Rev. 2013;32(3):188–217. doi:10.1002/mas.21359.

    Article  CAS  Google Scholar 

  • Sauer S, Freiwald A, Maier T, Kube M, Reinhardt R, Kostrzewa M, Geider K. Classification and identification of bacteria by mass spectrometry and computational analysis. PloS ONE. 2008;3(7):e2843. doi:10.1371/journal.pone.0002843.

    Article  CAS  Google Scholar 

  • Sauer S, Kliem M. Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol. 2010;8(1):74–82. doi:10.1038/nrmicro2243.

    Article  CAS  Google Scholar 

  • Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36(8):1627–39.

    Article  CAS  Google Scholar 

  • Schmitt J, Udelhoven T, Löchte T, Flemming HC, Naumann D. Artificial neural network applied to FTIR and FT-Raman spectra in biomedical applications. AIP Conf Proc. 1998;430:260–63

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998;62(3):775–806

    CAS  Google Scholar 

  • Schulthess B, Brodner K, Bloemberg GV, Zbinden R, Bottger EC, Hombach M. Identification of Gram-positive cocci by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry: comparison of different preparation methods and implementation of a practical algorithm for routine diagnostics. J Clin Microbiol. 2013;51(6):1834–40. doi:10.1128/JCM.02654-12.

    Article  CAS  Google Scholar 

  • Sedo O, Vavrova A, Vad’urova M, Tvrzova L, Zdrahal Z. The influence of growth conditions on strain differentiation within the Lactobacillus acidophilus group using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling. Rapid Commun Mass Spectrom. 2013;27(24):2729–36. doi:10.1002/rcm.6741.

    Article  CAS  Google Scholar 

  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49(4):543–51.

    Article  CAS  Google Scholar 

  • Setlow P. Small, acid-soluble spore proteins of Bacillus species: structure, synthesis, genetics, function, and degradation. Ann Rev Microbiol. 1988;42:319–38. doi:10.1146/annurev.mi.42.100188.001535.

    Article  CAS  Google Scholar 

  • Shin H, Sampat MP, Koomen JM, Markey MK. Wavelet-based adaptive denoising and baseline correction for MALDI TOF MS. Omics. 2010;14(3):283–95. doi:10.1089/omi.2009.0119.

    Article  CAS  Google Scholar 

  • Strommenger B, Braulke C, Heuck D, Schmidt C, Pasemann B, Nübel U, Witte W. spa Typing of Staphylococcus aureus as a frontline tool in epidemiological typing. J Clin Microbiol. 2008;46(2):574–81

    Article  CAS  Google Scholar 

  • Szabados F, Becker K, von Eiff C, Kaase M, Gatermann S. The matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS)-based protein peaks of 4448 and 5302 Da are not associated with the presence of Panton-Valentine leukocidin. Int J Med Microbiol. 2011;301(1):58–63. doi:10.1016/j.ijmm.2010.05.005.

    Article  CAS  Google Scholar 

  • Szabados F, Kaase M, Anders A, Gatermann SG. Identical MALDI TOF MS-derived peak profiles in a pair of isogenic SCCmec-harboring and SCCmec-lacking strains of Staphylococcus aureus. J Infect. 2012;65(5):400–05. doi:10.1016/j.jinf.2012.06.010.

    Article  Google Scholar 

  • Tedim AP, Ruiz-Garbajosa P, Corander J, Rodriguez CM, Canton R, Willems R, Baquero F, Coque TM. Population biology of Enterococcus from intestinal colonization in hospitalized and non-hospitalized individuals in different age groups. Appl Environ Microbiol. 2014. doi:10.1128/AEM.03661-14

    Google Scholar 

  • Top J, Willems R, Bonten M. Emergence of CC17 Enterococcus faecium: from commensal to hospital-adapted pathogen. FEMS Immunol Med Microbiol. 2008;52(3):297–308. doi:10.1111/j.1574-695X.2008.00383.x.

    Article  CAS  Google Scholar 

  • Udelhoven T, Naumann D, Schmitt J. Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria. Appl Spectrosc. 2000;54(10):1471–9

    Article  CAS  Google Scholar 

  • Valentine N, Wunschel S, Wunschel D, Petersen C, Wahl K. Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Appl Environ Microbiol. 2005;71(1):58–64

    Article  CAS  Google Scholar 

  • van Schaik W, Top J, Riley DR, Boekhorst J, Vrijenhoek JE, Schapendonk CM, Hendrickx AP, Nijman IJ, Bonten MJ, Tettelin H, Willems RJ. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics. 2010;11:239. doi:10.1186/1471-2164-11-239.

    Article  CAS  Google Scholar 

  • van Schaik W, Willems RJ. Genome-based insights into the evolution of enterococci. Clin Microbiol Infect. 2010;16(6):527–32. doi:10.1111/j.1198-743X.2010.03201.x.

    Article  Google Scholar 

  • Vilas-Bôas GT, Peruca AP, Arantes OM. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Can J Microbiol. 2007;53(6):673–87

    Article  CAS  Google Scholar 

  • VITEK® MS User Manual (2011). bioMérieux SA.

    Google Scholar 

  • Wang YR, Chen Q, Cui SH, Li FQ. Characterization of Staphylococcus aureus isolated from clinical specimens by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Biomed Environ Sci. 2013;26(6):430–6. doi:10.3967/0895-3988.2013.06.003.

    Google Scholar 

  • Weisser M, Oostdijk EA, Willems RJ, Bonten MJ, Frei R, Elzi L, Halter J, Widmer AF, Top J. Dynamics of ampicillin-resistant Enterococcus faecium clones colonizing hospitalized patients: data from a prospective observational study. BMC Infect Dis. 2012;12:68. doi:10.1186/1471-2334-12-68.

    Article  Google Scholar 

  • Wenning M, Breitenwieser F, Konrad R, Huber I, Busch U, Scherer S. Identification and differentiation of food-related bacteria: a comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. J Microbiol Methods. 2014. doi:10.1016/j.mimet.2014.05.011

    Google Scholar 

  • Werner G, Fleige C, Ewert B, Laverde-Gomez JA, Klare I, Witte W. High-level ciprofloxacin resistance among hospital-adapted Enterococcus faecium (CC17). Int J Antimicrob Agents. 2010;35(2):119–25. doi:10.1016/j.ijantimicag.2009.10.012.

    Article  CAS  Google Scholar 

  • Werner G, Freitas AR, Coque TM, Sollid JE, Lester C, Hammerum AM, Garcia-Migura L, Jensen LB, Francia MV, Witte W, Willems RJ, Sundsfjord A. Host range of enterococcal vanA plasmids among Gram-positive intestinal bacteria. J Antimicrob Chemother. 2011;66(2):273–82. doi:10.1093/jac/dkq455.

    Article  CAS  Google Scholar 

  • Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P. The effects of the growth medium on matrix-assisted laser desorption/ionization time-of-flight mass spectra: a case study of acetic acid bacteria. Appl Environ Microbiol. 2013. doi:10.1128/AEM.03708-13.

    Google Scholar 

  • Willems RJ, Top J, van Schaik W, Leavis H, Bonten M, Siren J, Hanage WP, Corander J. Restricted gene flow among hospital subpopulations of Enterococcus faecium. MBio. 2012;3(4):e00151–00112. doi:10.1128/mBio.00151-12.

    Article  CAS  Google Scholar 

  • Willems RJ, van Schaik W. Transition of Enterococcus faecium from commensal organism to nosocomial pathogen. Future Microbiol. 2009;4(9):1125–35. doi:10.2217/fmb.09.82.

    Article  Google Scholar 

  • Williams B, Cornett S, Crecelius A, Caprioli R, Dawant B, Bodenheimer B. An algorithm for baseline correction of MALDI mass spectra. Proceedings of the 43rd annual Southeast regional conference New York, NY, USA 1:137–142; 2005.

    Google Scholar 

  • Wolters M, Rohde H, Maier T, Belmar-Campos C, Franke G, Scherpe S, Aepfelbacher M, Christner M. MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int J Med Microbiol. 2011;301(1):64–68. doi:10.1016/j.ijmm.2010.06.002.

    Article  CAS  Google Scholar 

  • Yang C, He Z, Yu W. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC Bioinformatics. 2009;10:4. doi:10.1186/1471-2105-10-4.

    Article  CAS  Google Scholar 

  • Yu W, Wu B, Lin N, Stone K, Williams K, Zhao H. Detecting and aligning peaks in mass spectrometry data with applications to MALDI. Comput Biol Chem. 2006;30(1):27–38. doi:10.1016/j.compbiolchem.2005.10.006.

    Article  CAS  Google Scholar 

  • Zhang X, Paganelli FL, Bierschenk D, Kuipers A, Bonten MJ, Willems RJ, van Schaik W. Genome-wide identification of ampicillin resistance determinants in Enterococcus faecium. PLoS Genetics. 2012;8(6):e1002804. doi:10.1371/journal.pgen.1002804.

    Article  CAS  Google Scholar 

  • Zhang X, Top J, de Been M, Bierschenk D, Rogers M, Leendertse M, Bonten MJ, van der Poll T, Willems RJ, van Schaik W. Identification of a genetic determinant in clinical Enterococcus faecium strains that contributes to intestinal colonization during antibiotic treatment. J Infect Dis. 2013;207(11):1780–6. doi:10.1093/infdis/jit076.

    Article  CAS  Google Scholar 

  • Zischka M, Künne CT, Blom J, Wobser D, Sakιnç T, Schmidt-Hohagen K, Dabrowski PW, Nitsche A, Hübner J, Hain T, Chakraborty T, Linke B, Goesmann A, Voget S, Daniel R, Schomburg D, Hauck R, Hafez HM, Tielen P, Jahn D, Solheim M, Sadowy E, Larsen J, Jensen LB, Ruiz-Garbajosa P, Quiñones Pérez D, Mikalsen T, Bender J, Steglich M, Nübel U, Witte W, Werner G. Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40. BMC Genomics. 2015;  16(1):175. doi: 10.1186/s12864-015-1367-x.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank B. Niederwöhrmeier (Bundeswehr Research Institute for Protective Technologies and NBC Protection in Munster, WIS), M. Ehling-Schulz (University of Veterinary Medicine Vienna), and W. Beyer (Institute for Environmental and Animal Hygiene and Veterinary Medicine at the University of Hohenheim) for providing Bacillus strains. The authors are furthermore grateful to T. Maier, M. Kostrzewa (Bruker Daltonik GmbH), T. Schwecke (RKI Berlin), and R. Dieckmann (Federal Institute for Risk Assessment, Department of Biological Safety) for fruitful discussions and support. Furthermore, the excellent technical assistance of P. Lochau, S. Becker, R. Heinrich, M. Stämmler, A. Brauer, A. Schneider, and S. Herfort (all RKI Berlin) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lasch, P., Jacob, D., Klee, S., Werner, G. (2016). Discriminatory Power of MALDI-TOF Mass Spectrometry for Phylogenetically Closely Related Microbial Strains. In: Demirev, P., Sandrin, T. (eds) Applications of Mass Spectrometry in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-26070-9_8

Download citation

Publish with us

Policies and ethics