Skip to main content

Plant Surface Lipids and Epidermis Development

  • Chapter
  • First Online:
Lipids in Plant and Algae Development

Part of the book series: Subcellular Biochemistry ((SCBI,volume 86))

Abstract

The epidermis has a strategic position at the interface between the plant and the environment. In order to control exchanges with the environment as well as to protect the plant from external threats, the epidermis synthesises and secretes surface lipids to form a continuous, transparent and hydrophobic layer known as the cuticle. Cuticle formation is a strictly epidermal property in plants and all aerial epidermal cells produce some sort of cuticle on their surface. Conversely, all cuticularized plant surfaces are of epidermal origin. This seemingly anodyne observation has surprisingly profound implications in terms of understanding the function of the plant cuticle, since it underlies in part, the difficultly of functionally separating epidermal cell fate specification from cuticle biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts MGM, Keijzer CJ, Stiekema WJ et al (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abe M, Takahashi T, Komeda Y (2001) Identification of a cis-regulatory element for L1 layer-specific gene expression, which is targeted by an L1-specific homeodomain protein. Plant J 26:487–494

    Article  CAS  PubMed  Google Scholar 

  • Abe M, Katsumata H, Komeda Y et al (2003) Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130:635–643

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Dixit S, Jetter R et al (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K et al (2003) A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol Biol 53:107–116

    Article  CAS  PubMed  Google Scholar 

  • Bach L, Michaelson LV, Haslam R et al (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci U S A 105:14727–14731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudoin F, Wu X, Li F et al (2009) Functional characterization of the Arabidopsis β-ketoacyl-Coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol 150:1174–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becraft PW, Stinard PS, McCarty DR (1996) CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273:1406–1409

    Article  CAS  PubMed  Google Scholar 

  • Beisson F, Li-Beisson Y, Pollard M (2012) Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15:329–337

    Article  CAS  PubMed  Google Scholar 

  • Bernard A, Joubès J (2013) Arabidopsis cuticular waxes: advances in regulation, synthesis, export and functions. Prog Lipid Res 52:110–129

    Article  CAS  PubMed  Google Scholar 

  • Bernard A, Domergue F, Pascal S et al (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24:3106–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessire M, Borel S, Fabre G et al (2011) A member of the PLEIOTROPIC DRUG RESISTANCE family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis. Plant Cell 23:1958–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird SM, Gray JE (2003) Signals from the cuticle affect epidermal cell differentiation. New Phytol 157:9–23

    Article  CAS  Google Scholar 

  • Bird D, Beisson F, Brigham A et al (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498

    Article  CAS  PubMed  Google Scholar 

  • Bonaventure G, Beisson F, Ohlrogge J et al (2004) Analysis of the aliphatic monomer composition of polyesters associated with Arabidopsis epidermis: occurrence of octadeca-cis-6, cis-9-diene-1,18-dioate as the major component. Plant J 40:920–930

    Article  CAS  PubMed  Google Scholar 

  • Bourdenx B, Bernard A, Domergue F et al (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156:29–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broun P, Poindexter P, Osborne E et al (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci U S A 101:4706–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Goodwin SM, Boroff VL et al (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng JB, Russell DW (2004) Mammalian wax biosynthesis-I: identification of two fatty acyl-Coenzyme A reductases with different substrate specificities and tissue distributions. J Biol Chem 279:37789–37797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S et al (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBono A, Yeats TH, Rose JKC et al (2009) Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21:1230–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denay G, Creff A, Moussu S et al (2014) Endosperm breakdown in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI and INDUCER OF CBP EXPRESSION 1. Development 141:1222–1227

    Article  CAS  PubMed  Google Scholar 

  • Depege-Fargeix N, Javelle M, Chambrier P et al (2011) Functional characterization of the HD-ZIP IV transcription factor OCL1 from maize. J Exp Bot 62:293–305

    Article  CAS  PubMed  Google Scholar 

  • Faure JD, Vittorioso P, Santoni V et al (1998) The PASTICCINO genes of Arabidopsis thaliana are involved in the control of cell division and differentiation. Development 125:909–918

    CAS  PubMed  Google Scholar 

  • Fauth M, Schweizer P, Buchala A et al (1998) Cutin monomers and surface wax constituents elicit H2O2 in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2 elicitors. Plant Physiol 117:1373–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiebig A, Mayfield JA, Miley NL et al (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke R, Briesen I, Wojciechowski T et al (2005) Apoplastic polyesters in Arabidopsis surface tissues – a typical suberin and a particular cutin. Phytochemistry 66:2643–2658

    Article  CAS  PubMed  Google Scholar 

  • Gifford ML, Robertson FC, Soares DC et al (2005) ARABIDOPSIS CRINKLY4 function, internalization, and turnover are dependent on the extracellular crinkly repeat domain. Plant Cell 17:1154–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard L, Mounet F, Lemaire-Chamley M et al (2012) Tomato GDSL1 is required for cutin deposition in the fruit cuticle. Plant Cell 24:3119–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray JE, Holroyd GH, van der Lee FM et al (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408:713–716

    Article  CAS  PubMed  Google Scholar 

  • Greer S, Wen M, Bird D et al (2007) The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol 145:653–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslam TM, Kunst L (2013) Extending the story of very-long-chain fatty acid elongation. Plant Sci 210:93–107

    Article  CAS  PubMed  Google Scholar 

  • Haslam TM, Manas-Fernandez A, Zhao L et al (2012) Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol 160:1164–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslam TM, Haslam R, Thoraval D et al (2015) CER2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiol 167:682–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann-Benning S, Kende H (1994) Cuticle biosynthesis in rapidly growing internodes of deepwater rice. Plant Physiol 104:719–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javelle M, Vernoud V, Depège-Fargeix N et al (2010) Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor Outer Cell Layer1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. Plant Physiol 154:273–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javelle M, Klein-Cosson C, Vernoud V et al (2011a) Genome-wide characterization of the HD-ZIP IV transcription factor family in maize: preferential expression in the epidermis. Plant Physiol 157:790–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javelle M, Vernoud V, Rogowsky PM et al (2011b) Epidermis: the formation and functions of a fundamental plant tissue. New Phytol 189:17–39

    Article  CAS  PubMed  Google Scholar 

  • Jenks MA, Tuttle HA, Eigenbrode SD et al (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol 108:369–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jessen D, Olbrich A, Knüfer J et al (2011) Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J 68:715–726

    Article  CAS  PubMed  Google Scholar 

  • Joubès J, Raffaele S, Bourdenx B et al (2008) The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67:547–566

    Article  PubMed  CAS  Google Scholar 

  • Kanaoka MM, Pillitteri LJ, Fujii H et al (2008) SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation. Plant Cell 20:1775–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannangara R, Branigan C, Liu Y et al (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Lee SB, Kim HJ et al (2012) Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol 53:1391–1403

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Jung JH, Lee SB et al (2013) Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162:567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolattukudy PE (1971) Enzymatic synthesis of fatty alcohols in Brassica oleracea. Arch Biochem Biophys 142:701–709

    Article  CAS  PubMed  Google Scholar 

  • Kondou Y, Nakazawa M, Kawashima M et al (2008) RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth. Plant Physiol 147:1924–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krolikowski K, Victor JL, Wagler TN et al (2003) Isolation and characterization of the Arabidopsis organ fusion gene HOTHEAD. Plant J 35:501–511

    Article  CAS  PubMed  Google Scholar 

  • Kurata T, Kawabata-Awai C, Sakuradani E et al (2003) The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis. Plant J 36:55–66

    Article  CAS  PubMed  Google Scholar 

  • Kurdyukov S, Faust A, Trenkamp S et al (2006a) Genetic and biochemical evidence for involvement of HOTHEAD in the biosynthesis of long-chain a-, x-dicarboxylic fatty acids and formation of extracellular matrix. Planta 224:315–329

    Article  CAS  PubMed  Google Scholar 

  • Kurdyukov S, Faust A, Nawrath C et al (2006b) The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell 18:321–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai C, Kunst L, Jetter R (2007) Composition of alkyl esters in the cuticular wax on inflorescence stems of Arabidopsis thaliana cer mutants. Plant J 50:189–196

    Article  CAS  PubMed  Google Scholar 

  • Lardizabal KD, Metz JG, Sakamoto T et al (2000) Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis. Plant Physiol 122:645–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le BH, Cheng C, Bui AQ et al (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci U S A 107:8063–8070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SB, Go YS, Bae H-J et al (2009) Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol 150:42–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Beisson F, Koo AJK et al (2007) Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci U S A 104:18339–18344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Wu X, Lam P et al (2008) Identification of the wax ester synthase/acyl-CoenzymeA:diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Pollard M, Sauveplane V et al (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci U S A 106:22008–22013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lolle SJ, Berlyn GP, Engstrom EM et al (1997) Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle. Dev Biol 189:311–321

    Article  CAS  PubMed  Google Scholar 

  • Lü S, Song T, Kosma DK et al (2009) Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J 59:553–564

    Article  PubMed  CAS  Google Scholar 

  • Marks MD, Wenger JP, Gilding E et al (2009) Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development. Mol Plant 2009:803–822

    Article  CAS  Google Scholar 

  • McFarlane HE, Shin JJH, Bird DA et al (2010) Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. Plant Cell 22:3066–3075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFarlane HE, Watanabe Y, Yang W et al (2014) Golgi- and trans-Golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiol 164:1250–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millar AA, Clemens S, Zachgo S et al (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Jin JB, Lee J et al (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussu S, San-Bento R, Galletti R et al (2013) Embryonic cuticle establishment: the great (apoplastic) divide. Plant Signal Behav 8, e27491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nadakuduti SS, Pollard M, Kosma DK et al (2012) Pleiotropic phenotypes of the sticky peel mutant provide new insight into the role of CUTIN DEFICIENT2 in epidermal cell function in tomato. Plant Physiol 159:945–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura M, Katsumata H, Abe M et al (2006) Characterization of the class IV homeodomain-Leucine Zipper gene family in Arabidopsis. Plant Physiol 141:1363–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrath C, Schreiber L, Franke RB et al (2013) Apoplastic diffusion barriers in Arabidopsis. Arabidopsis Book. doi:10.1199/tab.0167

    PubMed  PubMed Central  Google Scholar 

  • Nobusawa T, Okushima Y, Nagata N et al (2013a) Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation. PLoS Biol 11(4), e1001531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobusawa T, Okushima Y, Nagata N et al (2013b) Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation. PLoS Biol. doi:10.1371/journal.pbio.1001531

    PubMed  PubMed Central  Google Scholar 

  • Oshima Y, Shikata M, Koyama T et al (2013) MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell 25:1609–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panikashvili D, Savaldi-Goldstein S, Mandel T et al (2007) The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol 145:1345–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panikashvili D, Shi JX, Schreiber L et al (2009) The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiol 151:1773–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panikashvili D, Shi JX, Bocobza S et al (2010) The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol Plant 3:563–575

    Article  CAS  PubMed  Google Scholar 

  • Panikashvili D, Shi JX, Schreiber L et al (2011) The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytol 190:113–124

    Article  CAS  PubMed  Google Scholar 

  • Pascal S, Bernard A, Sorel M et al (2013) The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very-long-chain fatty acid elongation process. Plant J 73:733–746

    Article  CAS  PubMed  Google Scholar 

  • Peterson KM, Shyu C, Burr CA et al (2013) Arabidopsis homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis. Development 140:1924–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pighin JA, Zheng H, Balakshin LJ et al (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704

    Article  CAS  PubMed  Google Scholar 

  • Pruitt RE, Vielle-Calzada JP, Ploense SE et al (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci U S A 97:1311–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu CX, Ma Y, Wang J et al (2012) Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation. Plant J 70:940–953

    Article  CAS  PubMed  Google Scholar 

  • Rautengarten C, Ebert B, Ouellet M et al (2012) Arabidopsis deficient in cutin ferulate encodes a transferase required for feruloylation of ω-hydroxy fatty acids in cutin polyester. Plant Physiol 158:654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reina-Pinto JJ, Yephremov A (2009) Surface lipids and plant defenses. Plant Physiol Biochem 47:540–549

    Article  CAS  PubMed  Google Scholar 

  • Roeder AH, Cunha A, Ohno CK et al (2012) Cell cycle regulates cell type in the Arabidopsis sepal. Development 139:4416–4427

    Article  CAS  PubMed  Google Scholar 

  • Rombola-Caldentey B, Rueda-Romero P, Iglesias-Fernández R et al (2014) Arabidopsis DELLA and two HD-ZIP transcription factors regulate GA signaling in the epidermis through the L1 box cis-element. Plant Cell 26:2905–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland O, Domergue F (2012) Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci 193–194:28–38

    Article  PubMed  CAS  Google Scholar 

  • Rowland O, Zheng H, Hepworth SR et al (2006) CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142:866–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland O, Lee R, Franke R et al (2007) The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett 581:3538–3544

    Article  CAS  PubMed  Google Scholar 

  • San-Bento R, Farcot E, Galletti R et al (2014) Epidermal identity is maintained by cell-cell communication via a universally active feedback loop in Arabidopsis thaliana. Plant J 77:46–58

    Article  CAS  PubMed  Google Scholar 

  • Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446:199–202

    Article  CAS  PubMed  Google Scholar 

  • Schnurr J, Shockey J, Browse J (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer P, Felix G, Buchala A et al (1996) Perception of free cutin monomers by plant cells. Plant J 10:331–341

    Article  CAS  Google Scholar 

  • Sessions A, Weigel D, Yanofsky MF (1999) The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J 20:259–263

    Article  CAS  PubMed  Google Scholar 

  • Shi JX, Malitsky S, De Oliveira S et al (2011) SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLoS Genet 7, e1001388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirakawa M, Ueda H, Nagano AJ et al (2014) FAMA is an essential component for the differentiation of two distinct cell types, Myrosin cells and guard cells, in Arabidopsis. Plant Cell 26:4039–4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieber P, Schorderet M, Ryser U et al (2000) Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell 12:721–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoveken T, Kalscheuer R, Malkus U et al (2005) The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. Strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol 187:1369–1376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suh MC, Samuels AL, Jetter R et al (2005) Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol 139:1649–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada S, Jurgens G (2007) Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo. Development 134:1141–1150

    Article  CAS  PubMed  Google Scholar 

  • Takada S, Takada N, Yoshida A (2013) ATML1 promotes epidermal cell differentiation in Arabidopsis shoots. Development 140:1919–1923

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Shimada T, Kondo M et al (2010) Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol 51:123–131

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Onouchi H, Kondo M et al (2001) A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 128:4681–4689

    CAS  PubMed  Google Scholar 

  • Tanaka T, Tanaka H, Machida C et al (2004) A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. Plant J 37:139–146

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Watanabe M, Sasabe M et al (2007) Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis in Arabidopsis. Development 134:1643–1652

    Article  CAS  PubMed  Google Scholar 

  • Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130

    Article  CAS  PubMed  Google Scholar 

  • Tsuwamoto R, Fukuoka H, Takahata Y (2008) GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for the normal development of the epidermal surface in Arabidopsis embryos. Plant J 54:30–42

    Article  CAS  PubMed  Google Scholar 

  • Vernoud V, Laigle G, Rozier F et al (2009) The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J 59:883–894

    Article  CAS  PubMed  Google Scholar 

  • von Wettstein-Knowles P (1982) Elongase and epicuticular wax biosynthesis. Physiol Vég 20:797–809

    Google Scholar 

  • Waters A, Creff A, Goodrich J et al (2013) “What we’ve got here is failure to communicate”: zou mutants and endosperm cell death in seed development. Plant Signal Behav 8, e24368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wellesen K, Durst F, Pinot F et al (2001) Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid ω-hydroxylation in development. Proc Natl Acad Sci U S A 98:9694–9699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng H, Molina I, Shockey J et al (2010) Organ fusion and defective cuticle function in a lacs1lacs2 double mutant of Arabidopsis. Planta 231:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Li S, He S et al (2011) CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell 23:3392–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao F, Goodwin SM, Xiao Y et al (2004) Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J 23:2903–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Q, Creff A, Waters A et al (2013) ZHOUPI controls embryonic cuticle formation via a signalling pathway involving the subtilisin protease ABNORMAL LEAF-SHAPE1 and the receptor kinases GASSHO1 and GASSHO2. Development 140:770–779

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Johnston N, Talideh E et al (2008) The endosperm-specific ZHOUPI gene of Arabidopsis thaliana regulates endosperm breakdown and embryonic epidermal development. Development 135:3501–3509

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Pollard M, Li-Beisson Y et al (2010) A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proc Natl Acad Sci U S A 107:12040–12045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Simpson JP, Li-Beisson Y et al (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160:638–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeats TH, Martin LBB, Viart HM-F et al (2012) The identification of cutin synthase: formation of the plant polyester cutin. Nat Chem Biol 8:609–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeats TH, Huang W, Chatterjee S et al (2014) Tomato cutin deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants. Plant J 77:667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yephremov A et al (1999) Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11:2187–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence Nationale de la Recherche through the INASEED grant (ANR-13-BSV2-0002 to G.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Domergue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Delude, C., Moussu, S., Joubès, J., Ingram, G., Domergue, F. (2016). Plant Surface Lipids and Epidermis Development. In: Nakamura, Y., Li-Beisson, Y. (eds) Lipids in Plant and Algae Development. Subcellular Biochemistry, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-25979-6_12

Download citation

Publish with us

Policies and ethics