Skip to main content

Shaping Theoretic Foundations of Holobiont-Like Systems

  • Chapter
  • First Online:
Progress in Botany 77

Part of the book series: Progress in Botany ((BOTANY,volume 77))

Abstract

Acknowledging the fact that organisms never evolve in isolation, Zilber-Rosenberg and Rosenberg emphasized the concept of the holobiont, comprising a host organism together with all of its associated microorganisms. Considering the holobiont as being a unit of selection, the hologenome theory of evolution then leads to incorporate Lamarckian aspects into the cycle of adaptation and selection. Nevertheless, the concept of the holobiont carries an implicit temporal dependency. Similar contingencies can be identified for other ideas, e.g., the notion of a supraorganism. Building on ideas from computational thermodynamics and information theory leads to the concept of a holobiont-like system. This notion aims at capturing the essentials of a system of interacting biological agents, being driven by an evolutionary algorithm. The concept can be applied upon several scales, allowing to consider the holobiont sensu stricto as well as full ecosystems. It nicely frames within the metaphor of the adaptive cycle and, thus, leads to deeper insights into sustainability of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the word “symbiotic” in the original sense of de Bary, i.e., in a neutral sense. Thus, symbiotic relations include mutualistic, commensalistic, and parasitic relationships.

  2. 2.

    Note that etymologically, the Latin word “supra” means “higher” in the sense of ordination, whereas “super” implies a spatial order. Thus, in contrast to the mainly used notion of “superorganism,” we prefer to stay with the notion of a “supraorganism.”

  3. 3.

    Therefore, “natural adaptation” in the genetic context of the theory of evolution is one example of adaptation of a system.

  4. 4.

    “Function” to be understood in the (abstract) mathematical/physical sense not as biological function. To be precise, the term “function of a variable” is used for a mapping of the variable into some space, without the need to further specify the concrete nature of the mapping.

  5. 5.

    The landscape is “coupled” since it results from the superposition of the local fitness landscapes of each individual organism.

  6. 6.

    Note in passing that self-similarity is one of the defining properties of fractals.

  7. 7.

    In contrast to volatile.

  8. 8.

    Holland uses the notion of constrained generating procedures.

  9. 9.

    “Self-similarity” in the sense that the agents in both their states and their rules adapt as well as the system as a whole adapts in its composition of agents and their interactions.

  10. 10.

    In the sense of adaptation through absorption of information (i.e., experience).

  11. 11.

    The authors argue for the invention of a new term: “Since the word hierarchy is so burdened by the rigid, top-down nature of its common meaning, we prefer to invent another term that captures the adaptive and evolutionary nature of adaptive cycles that are nested one within the other across space and time scales. We call them panarchies, drawing on the image of the Greek god Pan—the universal god of nature” (Gunderson and Holling 2002, p. 74).

References

  • Alexander HM, Foster BL, Ballantyne F IV, Collins CD, Antonovics J, Holt RD (2012) Metapopulations and metacommunities: combining spatial and temporal perspectives in plant ecology. J Ecol 100:88–103

    Article  Google Scholar 

  • Aoki I (1995) Entropy production in living systems: from organisms to ecosystems. Thermochim Acta 250:359–370

    Article  CAS  Google Scholar 

  • Axelrod R (1997) The complexity of cooperation. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Baguette M (2004) The classical metapopulation theory and the real, natural world: a critical appraisal. Basic Appl Ecol 5:213–224

    Article  Google Scholar 

  • Bar-Yam Y (1997) Dynamics of complex systems. Addison-Wesley, Reading, MA

    Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246

    Article  CAS  PubMed  Google Scholar 

  • Benjdia A, Martens EC, Gordon JI, Berteau O (2011) Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron. J Biol Chem 286:25973–25982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trend Ecol Evol 9:191–193

    Article  CAS  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JM, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Porey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34

    Article  Google Scholar 

  • Buiatti M, Buiatti M (2008) Chance vs. necessity in living systems, a false antinomy. Biol Forum 101:29–66

    Google Scholar 

  • Buiatti M (2011) Plants: individuals or epigenetic cell populations? In: Gissis SB, Jablonka E (eds) Transformations of Lamarckism. From subtle fluids to molecular biology. MIT Press, Cambridge, MA, pp 251–260

    Chapter  Google Scholar 

  • Buiatti M, Longo G (2013) Randomness and multilevel interactions in biology. Theory Biosci 132:139–158

    Article  PubMed  Google Scholar 

  • Buffie CG, Pamer EG (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13:790–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhard B, Fath BD, Müller F (2011) Adapting the adaptive cycle: Hypotheses on the development of ecosystem properties and services. Ecol Model 222:2878–2890

    Article  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • Dennett D (1996) Darwin’s dangerous idea: evolution and the meanings of life. Simon & Schuster, London

    Google Scholar 

  • Dennett D (2009) Darwin’s “strange inversion of reasoning”. Proc Natl Acad Sci USA 106:10061–10065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dheilly NM (2014) Holobiont-holobiont interactions: redefining host-parasite interactions. PLoS Pathog 10, e1004093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia Press, New York, NY

    Google Scholar 

  • Eberl G (2010) A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol 3(5):450–460

    Article  CAS  PubMed  Google Scholar 

  • Ellenberg H, Mayer R, Schauermann JH (eds) (1986) Ökosystemforschung—Ergebnisse des Sollingprojekts 1966–1986. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Epstein JM (1999) Agent-based computational models and generative social science. Complexity 4(5):41–60

    Article  Google Scholar 

  • Fath BD, Jørgensen SE, Patten BC, Straškraba M (2004) Ecosystem growth and development. Biosystems 77:213–228

    Article  PubMed  Google Scholar 

  • Fath BD, Patten BC (1999) Review of the foundations of network environ analysis. Ecosystems 2(2):167–179

    Article  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Book  Google Scholar 

  • Gardner M (1970) Mathematical games—the fantastic combinations of John Conway’s new solitaire game “life”. Sci Am 223:120–123

    Article  Google Scholar 

  • Gell-Mann M (1994) Complex adaptive systems. In: Cowan G, Pines D, Mellzer D (eds) Complexity: metaphors, models, and reality. SFI Studies in the sciences of complexity. Proc Vol XIX. Addison-Wesley, Boston, MA, pp 17–45

    Google Scholar 

  • Gershenson C, Heylighen F (2003) When can we call a system self-organizing? In: Banzhaf W, Ziegler J, Christeller T, Dittrich P, Kim JT (eds) Advances in artificial life. Springer, Heidelberg, pp 606–614

    Chapter  Google Scholar 

  • Gershenson C, Heylighen F (2005) How can we think the complex? In: Richardson K (ed) Managing organizational complexity: philosophy, theory and application. Information Age Publishing, Charlotte, NC, pp 47–61

    Google Scholar 

  • Gilbert SF (2011) Symbionts as an epigenetic source of heritable variation. In: Gissis SB, Jablonka E (eds) Transformations of Lamarckism. From subtle fluids to molecular biology. MIT Press, Cambridge, MA, pp 283–293

    Chapter  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • Gunderson L, Holling CS (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, DC

    Google Scholar 

  • Haldane JBS (1955) Population genetics. New Biol 18:34–51

    Google Scholar 

  • Hamilton WD (1963) The evolution of altruistic behaviour. Am Nat 97:354–356

    Article  Google Scholar 

  • Hamilton WD (1964) The genetical theory of social behaviour I, II. J Theor Biol 7:1–52

    Article  CAS  PubMed  Google Scholar 

  • Hanski I (2004) Metapopulation theory, its use and misuse. Basic Appl Ecol 5:225–229

    Article  Google Scholar 

  • Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–490

    Article  CAS  PubMed  Google Scholar 

  • Harwell MA, Gentile JH (2006) Ecological significance of residual exposures and effects from the Exxon Valdez oil spill. Integr Environ Assess Manag 2(3):204–246

    Article  PubMed  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49–53

    Article  PubMed  Google Scholar 

  • Heylighen F (2013) Self-organization in communicating groups: the emergence of coordination, shared references and collective intelligence. In: Massip-Bonet À, Bastardas-Boada A (eds) Complexity perspectives on language. Communication and society. Springer, New York, NY, pp 117–149

    Chapter  Google Scholar 

  • Hogeweg P, Hesper B (1983) The ontogeny of the interaction structure in bumble bee colonies. Behav Ecol Sociobiol 12:271–283

    Article  Google Scholar 

  • Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge, MA

    Google Scholar 

  • Holland JH (1995) Hidden order. How adaptation builds complexity. Addison-Wesley, Reading, MA

    Google Scholar 

  • Holling CS (1986) The resilience of terrestrial ecosystems: local surprise and global change. In: Clark WC, Munn RE (eds) Sustainable development of the biosphere. Cambridge University Press, Cambridge, MA, pp 292–320

    Google Scholar 

  • Holling CS (2001) Understanding the complexity of economic, ecological, and social systems. Ecosystems 4:390–405

    Article  Google Scholar 

  • Intrieri MC, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol Phylogenet Evol 20:100–110

    Article  CAS  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (2005) Evolution in four dimensions. MIT Press, Cambridge, MA

    Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York, NY

    Google Scholar 

  • Jørgensen SE, Müller F (eds) (2000) Handbook of ecosystem theories and management. CRC Publishers, New York, NY

    Google Scholar 

  • Jørgensen SE, Svirezhev YM (2004) Towards a thermodynamic theory for ecological systems. Elsevier, Amsterdam

    Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38(6):651–664

    Article  CAS  PubMed  Google Scholar 

  • Kauffman SA, Johnsen S (1991) Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. J Theor Biol 149:467–505

    Article  CAS  PubMed  Google Scholar 

  • Kay JJ (2008) Framing the situation: developing a system description. In: Waltner-Toews D, Kay JJ, Lister NME (eds) The ecosystem approach. Complexity, uncertainty, and managing for sustainability. Columbia University Press, Chichester, NY, pp 15–35

    Google Scholar 

  • Levin AS (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431–436

    Article  Google Scholar 

  • Lewontin RC (1970) The units of selection. Annu Rev Ecol Syst 1:1–18

    Article  Google Scholar 

  • Lüttge U (2016) Plants shape the terrestrial environment on Earth—challenges of management for sustainability. In: Cánovas FM, Lüttge U, Matyssek R (eds) Progress in botany, vol 77. Springer, Heidelberg

    Google Scholar 

  • Lüttge U, Souza GM, Bertolli SC (2016) Hierarchy and information in a system approach to plant biology. In: Cánovas FM, Lüttge U, Matyssek R (eds) Progress in botany, vol 77. Springer, Heidelberg

    Chapter  Google Scholar 

  • Lüttge U, Thellier M (2016) Roles of memory and the circadian clock in the ecophysiological performance of plants. In: Cánovas FM, Lüttge U, Matyssek R (eds) Progress in botany, vol 77. Springer, Heidelberg

    Chapter  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Margulis L (1993) Symbiosis in cell evolution: microbial communities in the Archean and Proterozoic Eons. W.H. Freeman, New York, NY

    Google Scholar 

  • Matyssek R, Gayler S, zu Castell W, Oßwald W, Ernst D, Pretzsch H, Schnyder H, Munch JC (2012a) Predictability of plant resource allocation: new theory needed? In: Matyssek R, Schnyder H, Osswald W, Ernst D, Munch JC, Pretzsch H (eds) Growth and defence in plants—resource allocation at multiple scales, vol 220, Ecological studies. Springer, Berlin, pp 433–449

    Chapter  Google Scholar 

  • Matyssek R, Koricheva J, Schnyder H, Ernst D, Munch JC, Osswald W, Pretzsch H (2012b) The balance between resource sequestration and retention: a challenge in plant science. In: Matyssek R, Schnyder H, Osswald W, Ernst D, Munch JC, Pretzsch H (eds) Growth and defence in plants—resource allocation at multiple scales, vol 220, Ecological studies. Springer, Berlin, pp 3–24

    Chapter  Google Scholar 

  • Matyssek R, Lüttge U (2013) Gaia: the planet holobiont. Nova Acta Leopoldina NF 114(391):325–344

    Google Scholar 

  • Mayr E (1942) Systematics and the origin of species from a viewpoint of a zoologist. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Mayr E (2002) What evolution is. Orion Books, London

    Google Scholar 

  • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    CAS  Google Scholar 

  • Meysman FJR, Bruers S (2007) A thermodynamic perspective on food webs: quantifying entropy production within detrital-based ecosystems. J Theor Biol 249:124–139

    Article  PubMed  Google Scholar 

  • Nikolic I, Kasmire J (2013) Theory. In: Dam KH, Nikolic I, Lukszo Z (eds) Agent-based modelling of socio-technical systems. Springer, Dordrecht, pp 11–71

    Chapter  Google Scholar 

  • Okada H, Kuhn C, Feillet H, Bach J-F (2010) The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exper Immun 160:1–9

    Article  CAS  Google Scholar 

  • Palmer RG, Arthur WB, Holland JH, LeBaron B, Tayler P (1994) Artificial economic life: a simple model of a stockmarket. Physica D 75:264–274

    Article  Google Scholar 

  • Pena R, Offermann C, Simon J, Maumann PS, Geßler A, Holst J, Dannenmann M, Mayer H, Kögel-Knabner I, Rennenberg H, Polle A (2010) Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Appl Environ Microbiol 76:1831–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepper JW, Herron MD (2008) Does biology need an organism concept? Biol Rev 83:621–627

    Article  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Prigogine I, Nicolis G, Babloyants A (1972) Thermodynamics of evolution. Phys Today. Part I 15:23–28, Part II 25:38–44

    Google Scholar 

  • Rennenberg H, Dannenmann M, Gessler A, Kreuzwieser J, Simon J, Papen H (2009) Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biol 11(Suppl 1):4–23

    Article  CAS  PubMed  Google Scholar 

  • Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. ACM SIGGRAPH Comp. Graphics 21(4):25–34

    Article  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–401

    Article  CAS  PubMed  Google Scholar 

  • Rook GAW, Brunet LR (2005) Microbes, immunoregulation, and the gut. Gut 54:317–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Sharon G, Zilber-Rosenberg I (2009) The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ Microbiol 11(12):959–2962

    Article  Google Scholar 

  • Rosenberg E, Sharon G, Atad I, Zilber-Rosenberg I (2010) The evolution of animals and plants via symbiosis with microorganisms. Environ Microbiol Rep 2(4):500–506

    Article  PubMed  Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concepts for prokaryotes. FEMS Microbiol Rev 25(1):39–67

    Article  PubMed  Google Scholar 

  • Ruse M (1989) Do organisms exist? Am Zool 29(3):1061–1066

    Article  Google Scholar 

  • Şahin E, Winfield A (2008) Special issue on swarm robotics. Swarm Intell 2:69–72

    Article  Google Scholar 

  • Sapp J (2011) Lamarckian leaps in the microbial world. In: Gissis SB, Jablonka E (eds) Transformations of Lamarckism. From subtle fluids to molecular biology. MIT Press, Cambridge, MA, pp 271–282

    Chapter  Google Scholar 

  • Schrödinger E (1944) What is life? Cambridge University Press, Cambridge

    Google Scholar 

  • Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16:284–307

    Article  Google Scholar 

  • Thellier M, Lüttge U (2013) Plant memory: a tentative model. Plant Biol 15:1–12

    Article  CAS  PubMed  Google Scholar 

  • Turner MG, Rommer WH, Tinker DB (2003) Surprises and lessons from the 1988 Yellowstone fires. Front Ecol Environ 1(7):351–358

    Article  Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85(2):183–206

    Article  PubMed  Google Scholar 

  • Weiss BL, Wang J, Aksoy S (2011) Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol 9, e1000619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DS, Sober E (1989) Reviving the superorganism. J Theor Biol 136:337–356

    Article  CAS  PubMed  Google Scholar 

  • Wilson DS, Sober E (1994) Reintroducing group selection to the human behavioral sciences. Behav Brain Sci 17(4):585–654

    Article  Google Scholar 

  • Wilson DS, Wilson EO (2008) Evolution ‘for the good of the group’. Am Sci 96(5):380–389

    Article  Google Scholar 

  • Wooldridge M (2002) Introduction to multiagent systems. Wiley, Chichester

    Google Scholar 

  • Wynne-Edwards VC (1962) Animal dispersion in relation to social behaviors. Hafner Publishing, New York, NY

    Google Scholar 

  • Wynne-Edwards VC (1986) Evolution through group selection. Blackwell, New York, NY

    Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zenil H, Gershenson C, Marshall JAR, Rosenblueth DA (2012) Life as thermodynamic evidence of algorithmic structure in natural sciences. Entropy 14:2173–2191

    Article  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorgnisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol 32:723–735

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang zu Castell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

zu Castell, W., Fleischmann, F., Heger, T., Matyssek, R. (2016). Shaping Theoretic Foundations of Holobiont-Like Systems. In: Lüttge, U., Cánovas, F., Matyssek, R. (eds) Progress in Botany 77. Progress in Botany, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-25688-7_7

Download citation

Publish with us

Policies and ethics