Skip to main content

The Morphoprocess and the Diversity of Evolutionary Mechanisms of Metastable Structures

  • Chapter
  • First Online:
Self-Organization as a New Paradigm in Evolutionary Biology

Part of the book series: Evolutionary Biology – New Perspectives on Its Development ((EBNPD,volume 5))

  • 609 Accesses

Abstract

This study is a long-overdue attempt to tackle the complexity of evolutionary problems by mutually complementary conceptual approaches rather than from the standpoint of a single dominating evolutionary hypothesis. As a first step, I identify the major problems preventing a clear understanding of evolutionary mechanisms. They are associated with three “uncertainties” accompanying the analysis of evolutionary phenomena: (1) Terminological ambiguity, bordering on a logical inconsistency, in the construction of evolutionary concepts, (2) The uncertainty of direct observation, associated with the difficulties of documenting the evolutionary process and (3) The uncertainty of applicability, arising from the complex multilevel nature of the living matter. Then I outline a fairly substantial approach to the consideration of living systems. The analysis of the uncertainty of applicability suggests that the most productive approach is to apply the notion of an “evolving system” to systems of the organismic rank, understood as an object–process or a morphoprocess. Such systems (highly integrated metastable structures–processes) are dissipative structures with a cyclic character of implementation. Once we have identified the evolving system, we can determine three different conceptual models of transformism of these structures. Importantly, the delimitation is based on a unique set of their characters rather than an affiliation with a particular historic scientific tradition. These models of microevolution are indirect adaptogenesis, direct adaptogenesis and constructional transformism. The logic of each of them has often been used in various evolutionary concepts in the course of the last two centuries. Finally, I present a general outlook on the diversity of mechanisms of transformism. They fall into two groups: combinatory mechanisms (transformation through combinations) and transformational mechanisms as such (transformation without combination). It is the transformational mechanisms that are encompassed by the three conceptual models mentioned above. It is becoming evident that the evolutionary process is based on mechanisms described by different models. A time has come for a careful examination of various transformistic possibilities and the identification of prevailing and accessory mechanisms. Different groups of organisms/types of morphoprocesses may be characterized by different leading mechanisms of transformism, which may belong to both “combinational” and “transformational” phenomena. We have to consider a broad kit of potential evolutionary tools and try to comprehend evolutionary phenomena at a new level of conceptual synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Not to be confused with a more abstract term “closure” (Mossio and Bich 2017; Kauffman 2019) denoting mutual dependence of flows of energy and matter (causal regime according to the authors) ensuring the existence of biological structures far from thermodynamic equilibrium.

  2. 2.

    Significantly, it is this feature (understood or intuited) of direct adaptogenesis that made scientists look for additional macroevolutionary mechanisms when constructing holistic concepts based on this logical scheme. These additional conditions were necessary to impart directivity to the evolutionary process, to represent it as a progressive advance. Such were the “gradation principle” of Lamarck (1955), the “principle of perfection” of morphological characters of C. Nägeli (1884, cit. ex. Nazarov 2005) and the “batmism” of E. Cope (1904).

  3. 3.

    Let us note, nevertheless, that all “phylogenetic schemes”, seemingly reconstructing evolutionary events and based on any character basis, are, strictly speaking, simply diagrams of “similarities and differences”. On the contrary, the means of their evolutionary interpretation (evolutionary hypothesis for a given group of organisms as such) would be radically different depending on the assumed model of transformism.

References

  • Alexandrov DV, Nizovtseva IG (2014) Nucleation and particle growth with fluctuating rates at the intermediate stage of phase transitions in metastable systems. Proc R Soc A 470(2162):20130647

    Article  Google Scholar 

  • Allis CD, Jenuwein T, Reinberg D, Caparros M-L (2007) Epigenetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Altukhov YP (2003) Genetic processes in populations. Akademkniga, Moscow

    Google Scholar 

  • Antonelli PL, Bevilacqua L, Rutz SF (2003) Theories and models in symbiogenesis. Nonlinear Anal Real World Appl 4(5):743–753

    Article  Google Scholar 

  • Aria C, Caron JB, Gaines R (2015) A large new leanchoiliid from the Burgess Shale and the influence of inapplicable states on stem arthropod phylogeny. Palaeontology 58(4):629–660

    Article  Google Scholar 

  • Artigiani R (1987) Revolution and evolution: applying Prigogine’s dissipative structures model. J Soc Biol Struct 10(3):249–264

    Article  Google Scholar 

  • Asis RA, Kondrashov EV, Koonin EV, Kondrashov FA (2008) Nested genes and increasing organisational complexity of metazoan genomes. Trends Genet 24:475–478

    Article  CAS  Google Scholar 

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4(1):289–331

    Article  CAS  PubMed  Google Scholar 

  • Baillie-Johnson P, Van den Brink SC, Balayo T, Turner DA, Arias AM (2015) Generation of aggregates of mouse embryonic stem cells that show symmetry breaking, polarization and emergent collective behaviour in vitro. J Vis Exp 105:e53252

    Google Scholar 

  • Bedzhov I, Bialecka M, Zielinska A, Kosalka J, Antonica F, Thompson AJ, Franze K, Zernicka-Goetz M (2015) Development of the anterior-posterior axis is a self-organizing process in the absence of maternal cues in the mouse embryo. Cell Res 25(12):1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Beklemishev VN (1970) On general principles of organization of life. In: Biocenological basics of comparative parasitology. Nauka, Moscow, pp 7–25

    Google Scholar 

  • Beklemishev VN (1994) Methodology of systematics. KMK Scientific Press, Moscow

    Google Scholar 

  • Benton MJ, Pearson PN (2001) Speciation in the fossil record. Trends Ecol Evol 16(7):405–411

    Article  PubMed  Google Scholar 

  • Berg LS (1969) Nomogenesis: or evolution, determined by law. In: Works on the theory of evolution, Leningrad, Nauka, pp 95–311. (orig. 1922)

    Google Scholar 

  • Bickford D, Lohman DL, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2006) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22(3):148–155

    Article  PubMed  Google Scholar 

  • Bizzarri M, Masiello MG, Giuliani A, Cucina A (2018) Gravity constraints drive biological systems toward specific organization patterns: commitment of cell specification is constrained by physical cues. BioEssays 40(1):1700138

    Article  Google Scholar 

  • Boschetti C, Pouchkina-Stantcheva N, Hoffmann P, Tunnacliffe A (2011) Foreign genes and novel hydrophilic protein genes participate in the desiccation response of the bdelloid rotifer Adineta ricciae. J Exp Biol 214(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Bowler P (1975) The changing meaning of “evolution”. J Hist Ideas 1975:95–114

    Article  Google Scholar 

  • Bowler PJ (2017) Alternatives to Darwinism in the early twentieth century. In: Delisle RG (ed) The Darwinian tradition in context. Springer, Cham, pp 195–217

    Google Scholar 

  • Brakefield PM (2010) Radiations of Mycalesine butterflies and opening up their exploration of Morphospace. Am Nat 176:77–87

    Article  Google Scholar 

  • Capy P, Gasperi G, Biémont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85(2):101

    Article  CAS  PubMed  Google Scholar 

  • Carazo-Salas RE, Nurse P (2006) Self-organization of interphase microtubule arrays in fission yeast. Nat Cell Biol 8(10):1102

    Article  CAS  PubMed  Google Scholar 

  • Chandler VL (2010) Paramutation’s properties and puzzles. Science 330(6004):628–629

    Article  CAS  PubMed  Google Scholar 

  • Chapman MJ, Margulis L (1998) Morphogenesis by symbiogenesis. Int Microbiol 1(4):319–326

    CAS  PubMed  Google Scholar 

  • Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42(10):6091–6105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke J, Zeeman EC (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58(2):455–476

    Article  CAS  PubMed  Google Scholar 

  • Cope ED (1904) The primary factors of organic evolution. Open Court, Chicago

    Book  Google Scholar 

  • Cortès S, Glade N, Chartier I, Tabony J (2006) Microtubule self-organisation by reaction–diffusion processes in miniature cell-sized containers and phospholipid vesicles. Biophys Chem 120(3):168–177

    Article  PubMed  CAS  Google Scholar 

  • Cramer F, Prigogine I (1993) Chaos and order: the complex structure of living systems. VCH, Weinheim

    Google Scholar 

  • Cuvier GJLNFD (1817) Le Règne animal distribué d'aprés son organisation pour servir de base a l'histoire naturelle des animaux et d'introduction a l'anatomie compare. Tome 1. De l'imprimerie de A. Belin, Paris

    Google Scholar 

  • Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12:475–486

    Article  CAS  PubMed  Google Scholar 

  • Darroch SAF, Smith EF, Laflamme M, Erwin DH (2018) Ediacaran extinction and Cambrian explosion. Trends Ecol Evol 33:653–663

    Article  PubMed  Google Scholar 

  • Dawkins R (1996) The blind watchmaker: why the evidence of evolution reveals a universe without design. W. W. Norton & Company, New York

    Google Scholar 

  • de Paoli H, van der Heide T, van den Berg A, Silliman BR, Herman PMJ, van de Koppel J (2017) Behavioral self-organization underlies the resilience of a coastal ecosystem. Proc Natl Acad Sci 114:8035–8040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delisle RG (2017) From Charles Darwin to the evolutionary synthesis: weak and diffused connections only. In: Delisle RG (ed) The Darwinian tradition in context. Springer, Cham, pp 133–167

    Google Scholar 

  • Delisle RG (2021) Natural selection as a mere auxiliary hypothesis in Charles Darwin’s origin of species. In: Delisle RG (ed) Natural selection - revisiting its explanatory role in evolutionary biology. Springer, Cham, pp 73–104

    Chapter  Google Scholar 

  • Denton MJ, Dearden PK, Sowerby SJ (2003) Physical law not natural selection as the major determinant of biological complexity in the subcellular realm: new support for the pre-Darwinian conception of evolution by natural law. Biosystems 71(3):297–303

    Article  PubMed  Google Scholar 

  • Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493

    Article  CAS  PubMed  Google Scholar 

  • Dye BR, Hill DR, Ferguson MAH et al (2015) Author response: in vitro generation of human pluripotent stem cell derived lung organoids. Elife 4. https://doi.org/10.7554/elife.05098.029

  • Echols H (1981) SOS functions, cancer and inducible evolution. Cell 25(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Esposito M (2017) The organismal synthesis: holistic science and developmental evolution in the English-speaking world, 1915–1954. In: Delisle RG (ed) The Darwinian tradition in context. Springer, Cham, pp 219–241

    Google Scholar 

  • Fedoroff N, Schläppi M, Raina R (1995) Epigenetic regulation of the maize Spm transposon. BioEssays 17:291–297

    Article  CAS  PubMed  Google Scholar 

  • Fussmann GF (2011) Rotifers: excellent subjects for the study of macro- and microevolutionary change. Hydrobiologia 662(1):11–18

    Article  Google Scholar 

  • Galhardo RS, Hastings PJ, Rosenberg SM (2007) Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42:399–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhart J, Kirschner M (1997) Cells, embryos, and evolution: toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability (No. 575.21). Blackwell science, Malden, MA

    Google Scholar 

  • Gierl A (1990) How maize transposable elements escape negative selection. Trends Genet 6:155–158

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173(2):357–372

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SF, Bosch TCG, Ledón-Rettig C (2015) Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet 16:611–622

    Article  CAS  PubMed  Google Scholar 

  • Gladyshev EA, Arkhipova IR (2010) Genome structure of Bdelloid rotifers: shaped by asexuality or desiccation? J Hered 101:S85–S93

    Article  CAS  PubMed  Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in Bdelloid Rotifers. Science 320:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Glick BS (2007) Let there be order. Nat Cell Biol 9(2):130–132

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • Golubovskii MD (2000) The age of genetics: evolution of ideas and concepts. Borei Art, Saint Petersburg

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Granovitch AI (2018) Is natural selection still have to be regarded a foundation stone of evolutionary process? J Evol Sci 1:14–30

    Article  Google Scholar 

  • Granovitch AI (2021) Natural selection, morphoprocess and a logical field of evolutionary concepts. In: Delisle RG (ed) Natural selection - revisiting its explanatory role in evolutionary biology. Springer, Cham, pp 391–418

    Chapter  Google Scholar 

  • Granovitch AI, Ostrovsky AN, Dobrovolsky AA (2010) Morphoprocess and life cycles of organisms. Zh Obshch Biol 71(6):514–522

    Google Scholar 

  • Grebel’ny SD (2008) Cloning in nature. Gelicon, Saint Petersburg

    Google Scholar 

  • Guye P, Ebrahimkhani MR, Kipniss N, Velazquez JJ, Schoenfeld E, Kiani S, Griffith LG, Weiss R (2016) Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun 7:10243. https://doi.org/10.1038/ncomms10243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haegeman A, Jones JT, Danchin EGJ (2011) Horizontal gene transfer in nematodes: a catalyst for plant parasitism? Mol Plant Microbe Interact 24:879–887

    Article  CAS  PubMed  Google Scholar 

  • Halley JD, Winkler DA (2008) Consistent concepts of self-organization and self-assembly. Complexity 14:10–17

    Article  Google Scholar 

  • Hausmann K, Hülsmann N, Radek R. (2003) Protistology. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart

    Google Scholar 

  • Hollick JB (2017) Paramutation and related phenomena in diverse species. Nat Rev Genet 18:5–23

    Article  CAS  PubMed  Google Scholar 

  • Horenko I, Dittmer E, Lankas F, Maddocks J, Metzner P, Schütte C (2008) Macroscopic dynamics of complex metastable systems: theory, algorithms, and application to B-DNA. SIAM J Appl Dyn Syst 7(2):532–560

    Article  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  • Husnik F, Nikoh N, Koga R et al (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153(7):1567–1578

    Article  CAS  PubMed  Google Scholar 

  • Inagaki N, Katsuno H (2017) Actin waves: origin of cell polarization and migration? Trends Cell Biol 27:515–526

    Article  CAS  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (2010) Transgenerational epigenetic inheritance. In: Pigliucci M, Muller GB (eds) Evolution. The extended synthesis. The MIT Press, Cambridge, MA, pp 137–174

    Chapter  Google Scholar 

  • Jakab K, Neagu A, Mironov V, Markwald RR, Forgacs G (2004) Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci 101(9):2864–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson BR, Lam SK (2010) Self-organization, natural selection, and evolution: cellular hardware and genetic software. Bioscience 60(11):879–885

    Article  Google Scholar 

  • Karpen GH, Hawley RS (2007) Epigenetic regulation of chromosome inheritance. Epigenetics 2007:265–289

    Google Scholar 

  • Karsenti E (2008) Self-organization in cell biology: a brief history. Nat Rev Mol Cell Biol 9(3):255

    Article  CAS  PubMed  Google Scholar 

  • Kauffman SA (2019) A world beyond physics: the emergence and evolution of life. Oxford University Press, Oxford

    Google Scholar 

  • Kaufman AJ (2018) The Ediacaran-Cambrian transition. Chemostratigraphy across major chronol boundaries, vol 240. Wiley, Boca Raton, FL, pp 115–142

    Google Scholar 

  • Kellogg VL (1907) Darwinism today. G. Bell & Sons, London

    Google Scholar 

  • Khesin RB (1984) The inconstancy of genome. Nauka, Moscow

    Google Scholar 

  • Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschner MW, Gerhart JC (2010) Facilitated variation. In: Pigliucci M, Muller GB (eds) Evolution. The extended synthesis. The MIT Press, Cambridge, MA, pp 253–280

    Chapter  Google Scholar 

  • Kivelson D, Reiss H (1999) Metastable systems in thermodynamics: consequences, role of constraints. J Phys Chem B 103:8337–8343

    Article  CAS  Google Scholar 

  • Koehler KR, Nie J, Longworth-Mills E, Liu X-P, Lee J, Holt JR, Hashino E (2017) Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat Biotechnol 35:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooijman SALM, Auger P, Poggiale JC, Kooi BW (2003) Quantitative steps in symbiogenesis and the evolution of homeostasis. Biol Rev 78:435–463

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV (2010) Taming of the shrewd: novel eukaryotic genes from RNA viruses. BMC Biol. https://doi.org/10.1186/1741-7007-8-2

  • Koonin EV (2011) Logic of chance, the nature and origin of biological evolution. Pearson Education, London

    Google Scholar 

  • Koonin EV, Wolf YI (2009) Is evolution Darwinian or/and Lamarckian? Biol Direct 4(1):42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koonin EV, Wolf YI (2010) Constraints and plasticity in genome and molecular-phenome evolution. Nat Rev Genet 11:487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalenko EE (1996a) Analysis of the Anura sacrum variability. 1. The method of analysis of the tailless amphibians sacrum variability. Zool Zh 75(1):52–66

    Google Scholar 

  • Kovalenko EE (1996b) Analysis of the Anura sacrum variability. Sacrum variability in the genus Rana. Zool Zh 75(2):222–236

    Google Scholar 

  • Kovalenko EE, Danilov IG (2006) Variety of sacro-urostile skeleton in the family Bufonidae (Amphibia, Anura). 2. Analysis of the diversity by the method of spectra. Zool Zh 85(6):725–740

    Google Scholar 

  • Kozo-Polyanskii BM, Raven PH (2010) Symbiogenesis: a new principle of evolution. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Kull K (2014) Adaptive evolution without natural selection. Biol J Linn Soc 112:287–294

    Article  Google Scholar 

  • Kurakin A (2005) Self-organization versus watchmaker: stochastic dynamics of cellular organization. Biol Chem 386:247–254

    Article  CAS  PubMed  Google Scholar 

  • Kurakin A (2007) Self-organization versus watchmaker: ambiguity of molecular recognition and design charts of cellular circuitry. J Mol Recognit 20:205–214

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U (2017) Symbiogenesis and cell evolution: an anti-Darwinian research agenda? In: Delisle RG (ed) The Darwinian tradition in context. Springer, Cham, pp 309–331

    Google Scholar 

  • Laland K, Uller T, Feldman M et al (2014) Does evolutionary theory need a rethink? Nature 514:161–164

    Article  CAS  PubMed  Google Scholar 

  • Lamarck JB (1955) Philosophy of zoology (1809). In: Selected works, vol 1. Academy of Science Print, Moscow

    Google Scholar 

  • Laos R, Thomson JM, Benner SA (2014) DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00565

  • Lenski RE (2017a) Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J 11:2181–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenski RE (2017b) What is adaptation by natural selection? Perspectives of an experimental microbiologist. PLoS Genet 13(4):e1006668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levis NA, Pfennig DW (2016) Evaluating ‘plasticity-first’ evolution in nature: key criteria and empirical approaches. Trends Ecol Evol 31:563–574

    Article  PubMed  Google Scholar 

  • Levis NA, Serrato-Capuchina A, Pfennig DW (2017) Genetic accommodation in the wild: evolution of gene expression plasticity during character displacement. J Evol Biol 30:1712–1723

    Article  CAS  PubMed  Google Scholar 

  • Levit GS, Hoßfeld U (2017) Major research traditions in twentieth-century evolutionary biology: the relations of Germany’s Darwinism with them. In: Delisle RG (ed) The Darwinian tradition in context. Springer, Cham, pp 169–193

    Google Scholar 

  • Levit GS, Scholz J (2002) The biosphere as a morphoprocess and a new look at the concepts of organism and individuality. Senckenb Lethaea 82:367–372

    Article  Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • Liao B-K, Oates AC (2017) Delta-notch signalling in segmentation. Arthropod Struct Dev 46:429–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Loison L, Herring E (2017) Lamarckian research programs in French biology (1900–1970). In: Delisle RG (ed) The Darwinian tradition in context. Springer, Cham, pp 243–269

    Google Scholar 

  • Loose M, Fischer-Friedrich E, Ries J, Kruse K, Schwille P (2008) Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320(5877):789–792

    Article  CAS  PubMed  Google Scholar 

  • Louis D (1893) Les Lois De L’évolution. Arno, New York

    Google Scholar 

  • Lynch M (2010) Evolution of the mutation rate. Trends Genet 26(8):345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyubishchev AA (1982) Problems of form, systematics and evolution of organisms. Nauka, Moscow

    Google Scholar 

  • Margulis L, Fester R (eds) (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. Mit Press

    Google Scholar 

  • Markov A (2010) The birth of complexity. Astrel, Moscow

    Google Scholar 

  • McCauley HA, Wells JM (2017) Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 144(6):958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGhee GR (2007) The geometry of evolution. Adaptive landscapes and theoretical morphospaces. Cambridge University Press, Cambridge

    Google Scholar 

  • McShea DW (2001) The hierarchical structure of organisms: a scale and documentation of a trend in the maximum. Paleobiology 27:405–423

    Article  Google Scholar 

  • Meyen SV (2007) The morphology of plants in the nomothetic aspect. In: Ignatiev IA (ed) S.V. Meyen: paleobotanist, evolutionist, thinker. Geos, Moscow, pp 162–222

    Google Scholar 

  • Misteli T (2001) The concept of self-organization in cellular architecture. J Cell Biol 155(2):181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800

    Article  CAS  PubMed  Google Scholar 

  • Mitchison TJ (1992) Self-organization of polymer-motor systems in the cytoskeleton. Philos Trans R Soc Lond B 336(1276):99–106

    Article  CAS  Google Scholar 

  • Mossio M, Bich L (2017) What makes biological organisation teleological? Synthese 194:1089–1114

    Article  Google Scholar 

  • Müller GB (2010) Epigenetic innovation. In: Pigliucci M, Müller GB (eds) Evolution. The extended synthesis. The MIT Press, Cambridge, MA, pp 307–332

    Chapter  Google Scholar 

  • Nägeli C (1884) Mechanistic-physiological theory of evolution (Mechanischphysiologische Theorie der Abstammungslehre). Druck und Verlag von R. Oldenbourg, Munich and Leipzig

    Google Scholar 

  • Nazarov VI (2005) Evolution is not according to Darwin: a change in the evolutionary model. KomKniga, Moscow

    Google Scholar 

  • Nédélec F, Surrey T, Karsenti E (2003) Self-organisation and forces in the microtubule cytoskeleton. Curr Opin Cell Biol 15(1):118–124

    Article  PubMed  Google Scholar 

  • Newman SA (2010) Dynamical patterning modules. In: Pigliucci M, Müller GB (eds) Evolution. The extended synthesis. The MIT Press, Cambridge, MA, pp 281–306

    Chapter  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304

    Article  CAS  PubMed  Google Scholar 

  • Onimaru K, Marcon L, Musy M, Tanaka M, Sharpe J (2016) The fin-to-limb transition as the re-organization of a Turing pattern. Nat Commun 7:11582. https://doi.org/10.1038/ncomms11582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborn HF (1929) The titanotheres of ancient Wyoming, Dakota, and Nebraska. United States Government Publishing Office, Washington. https://doi.org/10.5962/bhl.title.36431

    Book  Google Scholar 

  • Ozone C, Suga H, Eiraku M, Kadoshima T, Yonemura S, Takata N, Oiso Y, Tsuji T, Sasai Y (2016) Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun 7:10351. https://doi.org/10.1038/ncomms10351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palade GE (1983) Membrane biogenesis: an overview. Methods Enzymol 96:xxix–lv

    Article  CAS  PubMed  Google Scholar 

  • Papanikou E, Glick BS (2009) The yeast Golgi apparatus: insights and mysteries. FEBS Lett 583(23):3746–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pigliucci M (2010) Phenotypic plasticity. In: Pigliucci M, Muller GB (eds) Evolution. The extended synthesis. The MIT Press, Cambridge, MA, pp 281–306

    Chapter  Google Scholar 

  • Ponder RG, Fonville NC, Rosenberg SM (2005) A switch from high-Fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell 19(6):791–804

    Article  CAS  PubMed  Google Scholar 

  • Ponomarenko AG (2005) Paleontological data on the origin of arthropods. In: Vorobyova EI, Striganov (Eds) Evolutionary factors of animal diversity formation. KMK Scientific Press, Moscow, pp. 146–155

    Google Scholar 

  • Ponomarenko AG (2008) Early stages of the arthropods’ evolution. In: Mamkaev YV (ed) Evolutional morphology of animals. SPbSU Publishing, Saint Petersburg, pp 43–57

    Google Scholar 

  • Popov I (2018) Orthogenesis versus Darwinism. Springer. https://doi.org/10.1007/978-3-319-95144-7

  • Prigogine I (1978) Time, structure, and fluctuations. Science 201(4358):777–785

    Article  CAS  PubMed  Google Scholar 

  • Prigogine I, Stengers I (1984) Order out of chaos: man’s new dialogue with nature. Bantam, New York

    Google Scholar 

  • Radman M (1974) Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. In: Prakash L, Miller FSM, Lawrence C, Tabor HW (eds) Molecular and environmental aspects of mutagenesis. Charles C. Thomas, Springfield, IL, pp 128–142

    Google Scholar 

  • Raspopovic J, Marcon L, Russo L, Sharpe J (2014) Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345(6196):566–570

    Article  CAS  PubMed  Google Scholar 

  • Raup D (1966) Geometric analysis of shell coiling: general problems. J Paleontol 40:1178–1190

    Google Scholar 

  • Raup D (1967) Geometric analysis of shell coiling: coiling in ammonoids. J Paleontol 41:43–65

    Google Scholar 

  • Raup DM, Stanley SM (1978) Principles of paleontology. Macmillan, London

    Google Scholar 

  • Rissman EF, Adli M (2014) Minireview: transgenerational epigenetic inheritance: focus on endocrine disrupting compounds. Endocrinology 155:2770–2780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rozanov AY (1973) Morphological evolution of Archeocyathids and questions of the definition of lower Cambrian stages. Nauka, Moscow

    Google Scholar 

  • Rozhnov SV (2005) Morphological patterns of formation and evolution of higher taxa echinoderms. In: Vorobieva E, Striganov M (eds) Evolutionary factors of wildlife diversity. KMK Scientific Press, Мoscow, pp 156–170

    Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology. A functional evolutionary approach, 7th edn. Thomson Brooks/Cole, Pacific Grove, CA

    Google Scholar 

  • Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, Takahashi J, Eiraku M, Sasai Y (2015) Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun 6:8896. https://doi.org/10.1038/ncomms9896

    Article  CAS  PubMed  Google Scholar 

  • Sazer S, Schiessel H (2018) The biology and polymer physics underlying large-scale chromosome organization. Traffic 19:87–104

    Article  CAS  PubMed  Google Scholar 

  • Scharloo W (1991) Canalization: genetic and developmental aspects. Annu Rev Ecol Syst 22(1):65–93

    Article  Google Scholar 

  • Schindewolf OH (1993) Basic questions in paleontology: geologic time, organic evolution, and biological systematics. University of Chicago Press, Chicago

    Google Scholar 

  • Schmalhausen II (1982) The organism as a whole in its individual and historical development. Nauka, Moscow

    Google Scholar 

  • Serzhantov VF (1972) Introduction to the methodology of modern biology. Nauka, Leningrad

    Google Scholar 

  • Shapiro J (1995) Adaptive mutation: who’s really in the garden? Science 268(5209):373–374

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA (2009) Revisiting the Central Dogma in the 21st century. Ann N Y Acad Sci 1178(1):6–28

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA (2016) The basic concept of the read–write genome: mini-review on cell-mediated DNA modification. Biosystems 140:35–37

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA, von Sternberg R (2005) Why repetitive DNA is essential to genome function. Biol Rev 80:227–250

    Article  PubMed  Google Scholar 

  • Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA (2012) Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338(6113):1476–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simunovic M, Brivanlou AH (2017) Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development 144(6):976–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MR, Ortega-Hernández J (2014) Hallucigenia’s onychophoran-like claws and the case for Tactopoda. Nature 514(7522):363–366

    Article  CAS  PubMed  Google Scholar 

  • Spencer H (1864) The principles of biology, vol 1. Williams & Norgate, London

    Google Scholar 

  • Suter CM, Martin DIK (2010) Paramutation: the tip of an epigenetic iceberg? Trends Genet 26(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Svetina S (2009) Vesicle budding and the origin of cellular life. ChemPhysChem 10(16):2769–2776

    Article  CAS  PubMed  Google Scholar 

  • Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14(1):53–67

    Article  CAS  PubMed  Google Scholar 

  • Takasato M, Er PX, Chiu HS et al (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526(7574):564–568

    Article  CAS  PubMed  Google Scholar 

  • Tatarinov LP (1976) Morphological evolution of Theriodonts and general questions of phylogenetics. Nauka, Moscow

    Google Scholar 

  • Thomas RDK, Reif WE (1993) The skeleton space: a finite set of organic designs. Evolution (N Y) 47:341–360

    CAS  Google Scholar 

  • Thompson D (1961) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • Tikhodeyev ON (2018) The mechanisms of epigenetic inheritance: how diverse are they? Biol Rev 93:1987–2005

    Article  PubMed  Google Scholar 

  • Trontelj P, Fišer C (2009) Perspectives: cryptic species diversity should not be trivialised. Syst Biodivers 7(1):1–3

    Article  Google Scholar 

  • Tsiairis CD, Aulehla A (2016) Self-organization of embryonic genetic oscillators into spatiotemporal wave patterns. Cell 164(4):656–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turing AM (1952) The chemical theory of morphogenesis. Philos Trans R Soc B 237(641):37–72

    Google Scholar 

  • Turner DA, Baillie-Johnson P, Martinez Arias A (2016) Organoids and the genetically encoded self-assembly of embryonic stem cells. BioEssays 38(2):181–191

    Article  PubMed  Google Scholar 

  • Ubukata T (2005) Theoretical morphology of bivalve shell sculptures. Paleobiology 31:643–655

    Article  Google Scholar 

  • Van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis A-K, Nowotschin S, Turner DA, Martinez Arias A (2014) Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141(22):4231–4242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandel A (1964) Biospeleology. In: The biology of cave animals (Biospéologie. La biologie des Animaux Cavernicoles). Gauthier-Villars Éditeur, Paris. English edition: Vandel A (1965) biospeleology. The biology of cavernicolous animals. Pergamon Press, Oxford

    Google Scholar 

  • Vavilov NI (1987) Theoretical basis of selection. Nauka, Moscow

    Google Scholar 

  • Vorontsov NN (2004) The development of evolution idea in biology. KMK Scientific Press, Moscow

    Google Scholar 

  • Waddington CH (1957) The strategy of the genes: a discussion of some aspects of theoretical biology. Allen & Unwin, London

    Google Scholar 

  • Walton KD, Freddo AM, Wang S, Gumucio DL (2016) Generation of intestinal surface: an absorbing tale. Development 143(13):2261–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren G, Wickner W (1996) Organelle inheritance. Cell 84(3):395–400

    Article  CAS  PubMed  Google Scholar 

  • Werner S, Vu HT-K, Rink JC (2017) Self-organization in development, regeneration and organoids. Curr Opin Cell Biol 44:102–109

    Article  CAS  PubMed  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Acknowledgments

I am eternally grateful to Natalia Lentsman for her creative, thoughtful, generally invaluable contribution to the English translation of the manuscript. This study was supported by a grant from the Russian Science Foundation (RSF) no. 19-14-00321-П.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei I. Granovitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Granovitch, A.I. (2022). The Morphoprocess and the Diversity of Evolutionary Mechanisms of Metastable Structures. In: Dambricourt Malassé, A. (eds) Self-Organization as a New Paradigm in Evolutionary Biology. Evolutionary Biology – New Perspectives on Its Development, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-031-04783-1_9

Download citation

Publish with us

Policies and ethics