Skip to main content

Abstract

Climate change with its escalating apparent widespread impacts is turning into a major environmental challenge in contemporary times as it poses a considerable threat to ecosystems, water resources, food security, and overall economic stability. The change in climate observed over the past 50 years is primarily attributed to unabated emissions of radiative gases. The implicit certainty about continuity of the changing climate trend in the future is likely to affect multifaceted sources of plant productivity, including level of temperature, atmospheric CO2, and precipitation conditions, making it amply clear that plants will have to face the prospect of this change which can be both beneficial and detrimental. Many crops will show positive responses to changed levels of these climatic variables, but extreme levels will often negatively affect growth and yields. Predictions of climate change under various emission scenarios are likely to increase the concentration of CO2 which will be associated with temperature increase and change in precipitation pattern and are likely to increase plant water stress in addition to the threat of increased pests and diseases, and can thereby engender adaptation challenges for plant productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A, Blum H, Nosberger J, Long SP (2003) Variation in acclimation of photosynthesis in Trifolium repens after eight years of exposure to free air CO2 enrichment (FACE). J Exp Bot 393:2769–2774

    Article  CAS  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2005) CO2-induced total phenolics in suspension cultures of Panax ginseng C.A. Mayer roots: role of antioxidants and enzymes. Plant Physiol Biochem 43: 449–457

    Article  CAS  PubMed  Google Scholar 

  • Allen LH Jr, Boote KJ, Jones JW, Jones PH, Valle RR, Acock B, Rogers HH, Dahlman RC (1987) Response of vegetation to rising carbon dioxide: photosynthesis, biomass and seed yield of soybean. Glob Biogeochem Cycles 1:1–14

    Article  CAS  Google Scholar 

  • Allison I, Bindoff NL, Bindschadler RA, Cox PM, de Noblet N, England MH, Francis JA, Gruber N, Haywood AM, Kaser G, Le Quere C, Lenton TM, Mann ME, McNeil BI, Pitman AJ, Rahmstorf E, Steffen K, Steig EJ, Visbeck M, Weaver AJ (2009) The Copenhagen diagnosis, 2009: updating the world on the latest climate science. University of New South Wales Climate Change Research Centre (CCRC), Sydney, 60 pp

    Google Scholar 

  • Anderson LJ, Maherali H, Johnson HB, Polley HW, Jackson RB (2001) Gas exchange and photosynthetic acclimation over sub-ambient to elevated CO2 in a C3–C4 grassland. Glob Change Biol 7:693–707

    Article  Google Scholar 

  • Aranjuelo I, Irigoyen JJ, Perez P, Martinez-Carrasco R, Sanchez-Diaz M (2005) The use of temperature gradient tunnels for studying the combined effect of CO2, temperature and water availability in N2 fixing alfalfa plants. Ann Appl Biol 146:51–60

    Article  Google Scholar 

  • Badeck FW, Bondeau A, Bottcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309

    Article  Google Scholar 

  • Baker JT, Allen LH (1993) Contrasting crop species responses to CO2 and temperature: rice, soybean and citrus. Vegetation 105:239–260

    Article  Google Scholar 

  • Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213(6): 980–994

    Article  CAS  PubMed  Google Scholar 

  • Bals C, Harmeling S, Windfuhr M (2008) Climate change, food security and the right to adequate food. DKH, Bread for the World and German Watch, Stuttgart

    Google Scholar 

  • Barbale D (1970) The influence of carbon dioxide on the yield and quality of cucumber and tomato in the covered areas. Augsne un Raza 16:66–73

    CAS  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. In: Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva

    Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21:167–196

    Article  Google Scholar 

  • Beaumont LJ, Gallagher R V, Thuiller W, Downey PO, Leishman MR, et al. (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions 15:409–420

    Google Scholar 

  • Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal conductance of soybean under open-air elevation of CO2 are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol 143:134–144

    Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bidart-Bouzat MG, Mithen R, Berenbaum MR (2005) Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia 145:415–424

    Article  PubMed  Google Scholar 

  • Bowes G (1993) Facing the inevitable: plants and increasing atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 44:309–332

    Article  CAS  Google Scholar 

  • Boxall ABA, Hardy A, Beulke S, Boucard T, Burgin L, Falloon PD, Haygarth PM, Hutchinson T, Kovats RS, Leonardi G, Levy LS, Nichols G, Parsons SA, Potts L, Stone D, Topp E, Turley DB, Walsh K, Wellington EMH, Williams RJ (2008) Impacts of climate change on the health risks of pathogens and chemicals from agriculture. Environ Health Perspect 117:508–514

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bradley BA (2009) Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Glob Chang Biol 15(1):196–208

    Article  Google Scholar 

  • Bradley BA, Blumenthal DM, Wilcove DS, Ziska LLH (2010a) Predicting plant invasions in an era of global change. Trends Ecol Evol 25(5):310–318

    Article  PubMed  Google Scholar 

  • Bradley BA, Wilcove DS, Oppenheimer M (2010b) Climate change increases risk of plant invasion in the eastern UnitedStates. Biol Invasions 12:1855–72

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (2006) Evolutionary response to rapid climate change. Science 312(5779):1477–1478

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2010) Insects at not so low temperature: climate change in the temperate zone and its biotic consequences. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Braga MR, Aidar MPM, Marabesi MA, de Godoy JRL (2006) Effects of elevated CO2 on the phytoalexin production of two soybean cultivars differing in the resistance to stem canker disease. Environ Exp Bot 58:85–92

    Article  CAS  Google Scholar 

  • Bray S, Reid DM (2002) The effect of salinity and CO2 enrichment on the growth and anatomy of the second trifoliate leaf of Phaseolus vulgaris. Can J Bot 80:349–359

    Article  Google Scholar 

  • Bridges DC (1992) Crop losses due to weeds in the United States. Weed Science Society of America, Champaign, IL, p 403

    Google Scholar 

  • Brouwer F, McCarl BA (2006) Agriculture and climate beyond 2015: a new perspective on future land use patterns. Springer, Dordrecht

    Book  Google Scholar 

  • Burkey KO, Booker FL, Pursley WA, Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut: II. Seed yield and quality. Crop Sci 47:1488–1497

    Article  CAS  Google Scholar 

  • Challinor AJ, Wheeler TR, Craufurd PQ, Slingo JM (2005) Simulation of the impact of high temperature stress on annual crop yields. Agric For Meteorol 135:180–189

    Article  Google Scholar 

  • Chaplot V (2007) Water and soil resources response to rising levels of atmospheric CO2 concentration and to changes in precipitation and air temperature. J Hydrol 337:159–171

    Article  Google Scholar 

  • Chiariello NR, Field CB, Mooney HA (1987) Midday wilting in a tropical pioneer tree. Funct Ecol 1:3–11

    Article  Google Scholar 

  • Conroy JP, Seneweera S, Basra AS, Rogers G, Nissen-Wooller B (1994) Influence of rising atmospheric CO2 concentrations and temperature on growth, yield and grain quality of cereal crops. Aust J Plant Physiol 21:741–758

    Article  Google Scholar 

  • Coviella CE, Trumble JT (2000) Effect of elevated atmospheric carbon dioxide on the use of foliar application of Bacillus thuringiensis. BioControl 45:325–336

    Article  CAS  Google Scholar 

  • Coviella CE, Morgan DJW, Trumble JT (2000) Interactions of elevated CO2 and nitrogen fertilization: effects on production of Bacillus thuringiensis toxins in transgenic plants. Environ Entomol 29:781–787

    Article  CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cruse RM, Herndl CG (2009) Balancing corn over harvest for biofuels with soil and water conservation. J Soil Water Conserv 64(4):286–291

    Article  Google Scholar 

  • Diez JM, D’Antonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJB (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10:249–257

    Article  Google Scholar 

  • Dodd IC, Davies WJ (2004) Hormones and the regulation of water balance. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! 3rd edn. Kluwer Academic Publishers, Dordrecht, pp 493–512

    Google Scholar 

  • Douglas BC (1997) Global sea rise: a redetermination. Surv Geophys 18:279–292

    Article  Google Scholar 

  • Downton WJS, Bjorkman O, Pike C (1980) Consequences of increased atmospheric concentrations of carbon dioxide for growth and photosynthesis of higher plants. In: Pearman GI (ed) Carbon dioxide and climate: Australian research. Australian Academy of Sciences, Canberra, pp 143–151

    Google Scholar 

  • Eamus D (1991) The interaction of rising CO2 and temperatures with water use efficiency. Plant Cell Environ 14:843–852

    Article  Google Scholar 

  • Economic and Social Commission for Asia and the Pacific (ESCAP) (2009) Economic and social survey of Asia and the Pacific 2009: addressing the triple threats to development. United Nation, New York

    Google Scholar 

  • Falloon PD, Betts RA (2006) The impact of climate change on global river flow in HadGEMI simulations. Atmos Sci Lett 7:62–68

    Article  Google Scholar 

  • FAO (2008a) Climate change and food security: a framework document. FAO, Rome

    Google Scholar 

  • FAO (2008b) Soaring food prices: facts, perspectives, impacts and actions required. Background paper prepared for the high-level conference on world food security: the challenges of climate change and bioenergy, Rome, 3–5 June 2008

    Google Scholar 

  • FAO (2011) The state of food insecurity in the world. How does international price volatility affect domestic economies and food security? FAO, Rome

    Google Scholar 

  • Farrar JF, Williams ML (1991) The effects of increased atmospheric carbon-dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant Cell Environ 14:819–830

    Article  CAS  Google Scholar 

  • Fauchereau N, Trzaska M, Rouault M, Richard Y (2003) Rainfall variability and changes in Southern Africa during the 20th century in the global warming context. Nat Hazards 29:139–154

    Article  Google Scholar 

  • Fleischmann F, Raidl S, Osswald WF (2010) Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Environ Pollut 158:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Fussel HM (2009) An updated assessment of the risks from climate change based on research published since the IPCC Fourth Assessment Report. Clim. Change 97:469–482

    Google Scholar 

  • Gamper H, Peter M, Jansa J, Luscher A, Hartwig UA, Leuann A (2004) Arbuscular mycorrhizal fungi benefit from 7 years of free air CO2 enrichment in well-fertilized grass and legume monocultures. Glob Chang Biol 10:189–199

    Article  Google Scholar 

  • Ghannoum O, Von Caemmerer S, Ziska LH, Conroy JP (2000) The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant Cell Environ 23:931–942

    Article  CAS  Google Scholar 

  • Gifford RM (2004) The CO2 fertilising effect—does it occur in the real world? New Phytol. 163: 221–225

    Google Scholar 

  • Gliessman SR (1998) Agroecology: ecological processes in sustainable agriculture. Sleeping Bear Press, Chelsea, MI

    Google Scholar 

  • Gutierrez A, Ponti L, Cossu Q (2009) Effects of climate warming on olive and olive fly (Bactrocera oleae) in California and Italy. Clim Chang 95(1):195–217

    Article  Google Scholar 

  • Hardy JT (2003) Climate change: causes, effects, and solutions. Wiley, Chichester

    Google Scholar 

  • Hartley SE, Jones CG, Couper GC (2000) Biosynthesis of plant phenolic compounds in elevated atmospheric CO2. Glob Chang Biol 6:497–506

    Article  Google Scholar 

  • Haase J, Brandl R, Scheu S, Schaedler M (2008) Above- and belowground interactions are mediated by nutrient availability. Ecology 89:3072–3081

    Google Scholar 

  • Hatfield J, Boote K, Fay P, Hahn L, Izaurralde C, Kimball BA, Mader T, Morgan J, Ort D, Polley W, Thomson A, Wolfe D (2008) Agriculture. In: Backlund P, Janetos A, Schimel D, Hatfield J, Boote K, Fay P, Hahn L, Izaurralde C, Kimball BA, Mader T et al (eds) The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. Synthesis and assessment product 4.3. U.S. Department of Agriculture, Washington, DC, pp 21–74

    Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Hawkins BA, Holyoak M (1998) Transcontinental crashes of insect populations? Am Nat 162(3): 480–484

    Article  Google Scholar 

  • Hibberd JM, Whitbread R, Farrar JF (1996a) Effect of 700 μmol mol ̄¹ CO2 and infection with powdery mildew on the growth and carbon partitioning of barley. New Phytologist 134: 309–315

    Google Scholar 

  • Hibberd JM, Whitbread R, Farrar JF (1996b) Effect of elevated concentrations of CO2 on infection of barley by Erysiphe graminis. Physiol Mol Plant Pathol 48:37–53

    Article  CAS  Google Scholar 

  • Holm L, Doll J, Holm E, Pancho J, Herberger J (1997) World weeds: natural histories and distribution. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Ibanez I, Silander JA, Wilson AM, LaFleur N, Tanaka N, Tsuyama I (2009) Multivariate forecasts of potential distributions of invasive plant species. Ecol Appl 19:259–275

    Article  Google Scholar 

  • Idso KE, Idso SB (1994) Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research. Agric For Meteorol 69:153–203

    Article  Google Scholar 

  • IPCC (2001) Climate Change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • IPCC (2007a) Summary for policymakers. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007b) Climate change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jablonski LM, Wang X, Curtis PS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156:9–26

    Article  Google Scholar 

  • Jackson RB, Reynolds HL (1996) Nitrate and ammonium uptake for single and mixed species communities grown at elevated CO2. Oecologia 105:74–80

    Article  Google Scholar 

  • Jarnevich CS, Reynolds LV (2011) Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree. Biol Invasions 13: 153–163

    Article  Google Scholar 

  • Jarnevich CS, Stohlgren TJ (2009) Near term climate projections for invasive species distributions. Biol Invasions 11:1373–1379

    Article  Google Scholar 

  • Jimenez-Moreno G, Anderson RS, Atudorei V, Toney J (2011) A high-resolution record of climate, vegetation and fire regimes in the mixed conifer forest of northern Colorado (USA). Geol Soc Am Bull 123:240–254

    Article  CAS  Google Scholar 

  • Jin CW, Du ST, Chen WW, Li GX, Zhang YS, Zheng SJ (2009) Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Plant Physiol 150:272–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joutei AB, Roy J, Van Impe G, Lebrun P (2000) Effect of elevated CO2on the demography of a leaf sucking mite feeding on bean. Oecologia 123:75–81

    Article  Google Scholar 

  • Karl TR, Melillo JM, Petersen TC (eds) (2009) Global climate change impacts in the United States. Cambridge University Press, Cambridge

    Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yields: an assemblage and analyses of 430 prior observations. Agronomy 75:779–788

    Article  Google Scholar 

  • Krupa SV, Groth JV (1999) Global climate change and crop responses: uncertainties associated with the current methodologies. In: Agrawal SB, Agrawal M (eds) Environmental pollution and plant responses. CRC Press, Boca Raton, FL, pp 1–18

    Google Scholar 

  • La GX, Fang P, Teng Y, Li YJ, Lin XY (2009) Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.). J Zhejiang Univ Sci B 10:454–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New York, NY

    Book  Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Lawlor DW (2005) Plant responses to climate change: impacts and adaptation. In: Omasa K, Nouchi I, De Kok LJ (eds) Plant Responses to Air Pollution and Global Change. Springer- Verlag, Tokyo, Japan, pp. 81–88

    Google Scholar 

  • Lee-Ho E, Walton LJ, Reid DM, Yeung EC, Kurepin LV (2007) Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy. Can J Bot 85:324–330

    Article  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    Article  CAS  PubMed  Google Scholar 

  • Macleod CJA, Falloon PD, Evans R, Haygarth PM (2012) The effects of climate change on the mobilization of diffuse substances from agricultural systems. In: Sparks DL (ed) Advances in agronomy, vol 115. Academic Press, San Diego, CA, pp 41–77

    Google Scholar 

  • Malmstrom CM, Field CB (1997) Virus-induced differences in the response of oat plants to elevated carbon dioxide. Plant Cell Environ 20:178–188

    Article  Google Scholar 

  • Manderscheid R, Weigel HJ (2007) Drought stress effects on wheat are mitigated by atmospheric CO2 enrichment. Agron Sustain Dev 27:79–87

    Article  Google Scholar 

  • McDonald A, Riha S, DiTommaso A, DeGaetano A (2009) Climate change and the geography of weed damage: analysis of U.S. maize systems suggests the potential for significant range transformations. Agric Ecosyst Environ 130:131–140

    Article  Google Scholar 

  • McElrone AJ, Hamilton JG, Krafnick AJ, Aldea M, Knepp RG, DeLucia EH (2005) Combined effects of elevated CO2 and natural climatic variation on leaf spot diseases of redbud and sweetgum trees. Environ Pollut 158:108–114

    Article  CAS  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys Res Lett 36(23)

    Google Scholar 

  • Mishra S, Heckathorn SA, Barua D, Wang D, Joshi P, Hamilton Iii EW, Frantz J (2008) Interactive effects of elevated CO2 and ozone on leaf thermotolerance in field grown Glycine max. J Integr Plant Biol 50:1396–1405

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RAC, Mitchell VJ, Driscoll SP, Franklin J, Lawlor DW (1993) Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant Cell Environ 16:521–529

    Article  CAS  Google Scholar 

  • Montgomery DR (2007) Soil erosion and agricultural sustainability. Proc Natl Acad Sci 104(33): 13268–13272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morecroft MD, Paterson JS (2006) Effects of temperature and precipitation changes on plant communities. In: Morison JIL, Morecroft MD (eds) Plant growth and climate change. Blackwell Publishing Ltd, Oxford, pp 146–164

    Chapter  Google Scholar 

  • Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ 22:659–682

    Article  CAS  Google Scholar 

  • Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Y, Nichols MH, Nunes JP, Renschler CS, Souchère V, Van Oost K (2005) Modeling response of soil erosion and runoff to changes in precipitation and cover. CATENA 61:131–154

    Article  Google Scholar 

  • Nilsen ET, Orcutt DM (1996) The physiology of plants under stress: abiotic factors. Wiley, New York

    Google Scholar 

  • Nobel PS (2005) Physicochemical and environmental plant physiology, 3rd edn. Academic Press, Inc., San Diego, CA

    Google Scholar 

  • Norhisham AR, Abood F, Rita M, Hakeem KR (2013) Effect of humidity on egg hatchability and reproductive biology of the Bamboo Borer (Dinoderus minutus Fabricius). SpringerPlus 2:9. doi:10.1186/2193-1801-2-9

    Article  PubMed Central  PubMed  Google Scholar 

  • Oliveira VF, Zaidan LBP, Braga MR, Aidar MPM, Carvalho MAM (2010) Elevated CO2 atmosphere promotes plant growth and inulin production in the cerrado species Vernonia herbacea. Funct Plant Biol 37:223–231

    Article  Google Scholar 

  • Osmond CB, Bjorkman O, Anderson DJ (1980) Physiological processes in plant ecology. Berlin: Springer-Verlag

    Google Scholar 

  • Owensby CE (1994) Climate change and grasslands: ecosystem-level responses to elevated carbon dioxide. Proceedings of the XVII international grassland congress. New Zealand Grassland Association, Palmerston North, pp 1119–1124

    Google Scholar 

  • Parker-Allie F, Musil CF, Thuiller W (2009) Effects of climate warming on the distributions of invasive European annual grasses: a southern African perspective. Clim Chang 94:87–103

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37(1):637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  CAS  PubMed  Google Scholar 

  • Parry MAJ, Hawkesford MJ (2010) Food security: increasing yield and improving resource use efficiency. Proc Nutr Soc 69:592–600

    Article  PubMed  Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) (2007) Climate change: impacts, adaptation, and vulnerability. Contribution of Working Group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 1000 pp

    Google Scholar 

  • Patterson DT, Flint EP (1995) Effect of environmental stress on weed/crop interactions. Weed Sci 43:483–490

    CAS  Google Scholar 

  • Polowick PL, Sawhney VK (1988) High temperature induced male and female sterility in canola (Brassica napus L.). Ann Bot 62:83–86

    Google Scholar 

  • Poorter H, Van Berkel Y, Baxter R, Den Hertog J, Dijkstra P, Gifford RM, Griffin KL, Roumet C, Roy J, Wong SC (1997) The effects of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ 20:472–482

    Article  CAS  Google Scholar 

  • Pritchard SG, Rogers HH (2000) Spatial and temporal deployment of crop roots in CO2-enriched environments. New Phytol 147:55–71

    Article  CAS  Google Scholar 

  • Pruski FF, Nearing MA (2002a) Runoff and soil-loss responses to changes in precipitation: a computer simulation study. J Soil Water Conserv 57(1):7–16

    Google Scholar 

  • Pruski FF, Nearing MA (2002b) Climate-induced changes in erosion during the 21st century for eight U.S. locations. Water Resour Res 38(12):1298

    Article  Google Scholar 

  • Qaderi MM, Kurepin LV, Reid DM (2006) Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiol Plant 128:710–721

    Article  CAS  Google Scholar 

  • Rahman A, Wardle D (1990) Effects of climate change on cropping weeds in New Zealand. In: Prestidge RA, Pottinger RP (eds) The impact of climate change on pests, diseases, weeds and beneficial organisms present in New Zealand agricultural and horticultural systems. Ruakura Agricultural Centre, Hamilton

    Google Scholar 

  • Rasineni GK, Guha A, Reddy AR (2011) Elevated atmospheric CO2 mitigated photoinhibition in a tropical tree species, Gmelina arborea. J Photochem Photobiol Biol 103:159–165

    Article  CAS  Google Scholar 

  • Ray JD, Gesch RW, Sinclair TR, Hartwell Allen L (2002) The effect of vapor pressure deficit on maize transpiration response to a drying soil. Plant Soil 239:113–121

    Article  CAS  Google Scholar 

  • Robinson PJ (2000) Temporal trends in United States dew point temperatures. Int J Climatol 20: 985–1002

    Article  Google Scholar 

  • Robredo A, Perez-Lopez U, Sainz de la Maza H, Gonzalez-Moro B, Lacuesta M, Mena-Petite A, Munoz-Rueda A (2007) Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environ Exp Bot 59:252–263

    Article  CAS  Google Scholar 

  • Robredo A, Perez-Lopez U, Miranda-Apodaca J, Lacuesta M, Mena-Petite A, Munoz-Rueda A. (2011). Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environmental and Experimental Botany 71, 399–408

    Google Scholar 

  • Rogers HH, Runion GB, Prior SA, Torbert HA (1999) Response of plants to elevated atmospheric CO2: root growth, mineral nutrition, and soil carbon. In: Luo Y, Mooney HA (eds) Carbon dioxide and environmental stress. Academic Press, Inc., San Diego, CA, pp 215–244

    Chapter  Google Scholar 

  • Sage RF, Kubien DS (2003) Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth Res 77:209–225

    Article  CAS  PubMed  Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci U S A 104(50):19703–19708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schonhof I, Klaring HP, Krumbein A, Schreiner M (2007) Interaction between atmospheric CO2 and glucosinolates in broccoli. J Chem Ecol 33:105–114

    Article  CAS  PubMed  Google Scholar 

  • Scott RL, Hamerlynck EP, Jenerette GD, Moran MS, Barron-Gafford GA (2010) Carbon dioxide exchange in a semidesert grassland through drought-induced vegetation change. Journal of Geophysical Research 115:G03026 doi:10.1029/2010JG001348

  • Sefcik LT, Zak DR, Ellsworth DS (2006) Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Tree Physiol 26: 1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Srygley RB, Dudley R, Oliveira EG, Aizprua R, Pelaez NZ, Riveros AJ (2010) El Nino and dry season rainfall influence host plant phenology and an annual butterfly migration from neotropical wet to dry forests. Glob Chang Biol 16(3):936–945

    Article  Google Scholar 

  • Stone P (2001) The effects of heat stress on cereal yield and quality. In: Basra AS (ed) Crop responses and adaptations to temperature stress. Food Products Press, Binghamton, NY, pp 243–291

    Google Scholar 

  • Strzepek K, McCluskey A (2007) The impact of climate change on regional water resources and agriculture in Africa. World Bank Development Research Group, Washington, DC

    Google Scholar 

  • Stuhlfauth T, Fock HP (1990) Effect of whole season CO2 enrichment on the cultivation of a medicinal plant, Digitalis lanata. J Agron Crop Sci 164:168–173

    Article  CAS  Google Scholar 

  • Stuhlfauth T, Klug K, Fock HP (1987) The production of secondary metabolites by Digitalis lanata during CO2 enrichment and water stress. Phytochemistry 26:2735–2739

    Article  CAS  Google Scholar 

  • Stulen I, Den Hertog J (1993) Root growth and functioning under atmospheric CO2 enrichment. Vegetation 104/105:99–116

    Article  Google Scholar 

  • Teixeira EI, Fischer G, Van Velthuizen H, Walter C, Ewert F (2013) Global hotspots of heat stress on agricultural crops due to climate change. Agric For Meteorol 170(15):206–215

    Article  Google Scholar 

  • Tohidimoghadam HR, Ghooshchi F, Zahedi H (2011) Effect of UV radiation and elevated CO2 on morphological traits, yield and yield components of canola (Brassica napus L.) grown under water deficit. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39:213–219

    CAS  Google Scholar 

  • Tuba Z, Raschi A, Lanini GM, Nagy Z, Helyes L, Vodnik D, di Toppi LS (2003) Plant response to elevated carbon dioxide. In: di Toppi LS, Pawlik-Skowronska B (eds) Abiotic stresses in plants. Kluwer Academic Publishers, Dordrecht, pp 157–204

    Chapter  Google Scholar 

  • Von Caemmerer S, Furbank RT (2003) The C4 pathway: an efficient CO2 pump. Photosyn Res 77: 191–207

    Article  Google Scholar 

  • Walther GR (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc B Biol Sci 365(1549):2019–2024

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879): 389–395

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Bunce JA, Maas JL (2003) Elevated carbon dioxide increases contents ofantioxidant compounds in field-grown strawberries. J Agric Food Chem 51:4315–4320

    Article  CAS  PubMed  Google Scholar 

  • Wolfe W, Ziska L, Petzoldt C, Seaman A, Chase L, Hayhoe K (2007) Projected change in climate thresholds in the northeastern U.S.: implications for crops, pests, livestock, and farmers. Mitig Adapt Strateg Glob Chang 13:555–575

    Article  Google Scholar 

  • Woodward FI, Williams BG (1987) Climate and plant distribution at global and local scales. Plant Ecol 69(1):189–197

    Article  Google Scholar 

  • Yonekura T, Kihira A, Shimada T, Miwa M, Aruzate A, Izuta T, Ogawa K (2005) Impacts of O3 and CO2 enrichment on growth of Komatsuna (Brassica campestris) and radish (Raphanus sativus). Phyton 45:229–235

    CAS  Google Scholar 

  • Yoon ST, Hoogenboom G, Flitcroft I, Bannayan M (2009) Growth and development of cotton (Gossypium hirsutum L.) in response to CO2 enrichment under two different temperature regimes. Environ Exp Bot 2009(67):178–187

    Article  CAS  Google Scholar 

  • Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495

    Article  CAS  PubMed  Google Scholar 

  • Yu YB, Adams DO, Yang SF (1980) Inhibition of ethylene production by 2,4-dinitrophenol and high temperature. Plant Physiol 66:286–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao D, Reddy KR, Kakani VG, Mohammed AR, Read JJ, Gao W (2004) Leaf and canopy photosynthetic characteristics of cotton (Gossypiuym hirsutum) under elevated CO2 concentration and UV-B radiation. J Plant Physiol 161:581–590

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J. Bradbury, A. DeGaetano, A.M. Stoner, and D. Wuebbles (2008) Regional climate change projections for the Northeast USA.Mitigation and Adaptation Strategies for Global Change, 13(5-6):425–436

    Google Scholar 

  • Ziska LH, Bunce JA (2006) Plant responses to rising atmospheric carbon dioxide. In: Morison JIL, Morecroft MD (eds) Plant growth and climate change. Blackwell Publishing Ltd, Oxford, pp 17–47

    Chapter  Google Scholar 

  • Ziska LH, Morris CF, Goins EW (2004) Quantitative and qualitative evaluation of selected wheat varieties released since 1903 to increasing atmospheric carbon dioxide: can yield sensitivity to carbon dioxide be a factor in wheat performance? Glob Chang Biol 10:1810–1819

    Article  Google Scholar 

  • Ziska LH, Blumenthal DM, Runion GB, Hunt ER, Diaz-Soltero H (2011) Invasive species and climate change: an agronomic perspective. Clim Change 105:13–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burhan Ahad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahad, B., Reshi, Z.A. (2015). Climate Change and Plants. In: Hakeem, K. (eds) Crop Production and Global Environmental Issues. Springer, Cham. https://doi.org/10.1007/978-3-319-23162-4_20

Download citation

Publish with us

Policies and ethics