Skip to main content

Liquid Fuels Production from Algal Biomass

  • Chapter
Algal Biorefinery: An Integrated Approach

Abstract

Energy crisis is looming the global economy and environment. The rate at which fossil fuels are depleting, a necessity of alternate fuel has been gaining importance. The use of fossil fuels for energy is unsustainable and causes build up of greenhouse gases in the atmosphere leading to global warming. Biofuels store energy chemically that can be harnessed easily. It can also be used in existing combustion engines after blending with petroleum diesel to various degrees. No separate transportation infrastructures would be required for such fuels (Amaro et al., Appl Energy 88:3402–3410, 2011). In biorefinery concept, every component of the biomass material would be used to produce commercially important products. At present, first generation biofuels are produced using sucrose and starch crops. Second generation biofuels are produced using lignocellulosic biomass. Lignocellulosic biomass gained importance because of their abundant availability but need of pretreatment and saccharification processes has hindered their usage as feedstock. Moreover, bioenergy production using agricultural crops or agricultural wastes as feedstock is disadvantageous as resources for water and agriculture lands are limited (Li et al., Appl Microbiol Biotechnol 81:629–636, 2008). Algal biomass has been considered as third generation feedstock for biofuel production (Metzger and Largeau, Appl Microbiol Biotechnol 66:486–496, 2005). Many algal species having high lipid content thus could be explored for oleo-fuel generation. Similarly, algal species having high carbohydrate content can be exploited for bioethanol or biogas production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor, V.B., Cicek, N., Sparling, R., Berlin, A. and Levin, D.B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv., 29, 675–685.

    Article  CAS  Google Scholar 

  • Amaro, H.M., Guedes, A.C. and Malcata, F.X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy, 88, 3402–3410.

    Article  CAS  Google Scholar 

  • Banerjee, A., Sharma, R., Chisti, Y. and Banerjee, U.C. (2002). Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Crit. Rev. Biotechnol., 22, 245–279.

    Article  CAS  Google Scholar 

  • Belarbi, E.-H., Molina, E. and Chisti, Y. (2000). RETRACTED: A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Process Biochem., 35, 951–969.

    Article  CAS  Google Scholar 

  • Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R.K. and Pandey, A. (2010). Bioethanol production from rice straw: An overview. Bioresour. Technol., 101, 4767–4774.

    Article  CAS  Google Scholar 

  • Brown, L.M. and Zeiler, K.G. (1993). Aquatic biomass and carbon dioxide trapping. Energy Convers. Manag., 34, 1005–1013.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv., 25, 294–306.

    Article  CAS  Google Scholar 

  • Choi, S.P., Nguyen, M.T. and Sim, S.J. (2010). Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol., 101, 5330–5336.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2007). Importance of biodiesel as transportation fuel. Energy Policy, 35, 4661–4670.

    Article  Google Scholar 

  • Ghirardi, M. (2000). Microalgae: A green source of renewable H2. Trends Biotechnol., 18, 506–511.

    Article  CAS  Google Scholar 

  • Goh, C.S. and Lee, K.T. (2010). A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew. Sustain. Energy Rev., 14, 842–848.

    Google Scholar 

  • Gouveia, L. and Oliveira, A.C. (2009). Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol., 36, 269–274.

    Article  CAS  Google Scholar 

  • Hargreaves, P.I., Barcelos, C.A., da Costa, A.C.A. and Pereira, N. (2013). Production of ethanol 3G from Kappaphycus alvarezii: Evaluation of different process strategies. Bioresour. Technol., 134, 257–263.

    Article  CAS  Google Scholar 

  • Harun, R., Danquah, M.K. and Forde, G.M. (2009). Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol., 85(2), 199–203.

    Google Scholar 

  • Helwani, Z., Othman, M.R., Aziz, N., Kim, J. and Fernando, W.J.N. (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Appl. Catal. A Gen., 363, 1–10.

    Article  CAS  Google Scholar 

  • Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J., 54, 621–639.

    Article  CAS  Google Scholar 

  • İçöz, E., Mehmet Tuğrul, K., Saral, A. and İçöz, E. (2009). Research on ethanol production and use from sugar beet in Turkey. Biomass and Bioenergy, 33, 1–7.

    Article  Google Scholar 

  • Jang, J.-S., Cho, Y., Jeong, G.-T. and Kim, S.-K. (2012). Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng., 35, 11–18.

    Article  CAS  Google Scholar 

  • Khan, S.A., Hussain, M.Z., Prasad, S. and Banerjee, U.C. (2009). Prospects of biodiesel production from microalgae in India. Renew. Sustain. Energy Rev., 13, 2361–2372.

    Article  CAS  Google Scholar 

  • Kim, N.-J., Li, H., Jung, K., Chang, H.N. and Lee, P.C. (2011). Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol., 102, 7466–7469.

    Article  CAS  Google Scholar 

  • Knothe, G. (2006). Analyzing biodiesel: standards and other methods. J. Am. Oil Chem. Soc., 83, 823–833.

    Article  CAS  Google Scholar 

  • Lee, O.K., Kim, A.L., Seong, D.H., Lee, C.G., Jung, Y.T., Lee, J.W. and Lee, E.Y. (2013). Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol., 132, 197–201.

    Article  CAS  Google Scholar 

  • Li, Y., Horsman, M., Wang, B., Wu, N. and Lan, C.Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol., 81, 629–636.

    Article  CAS  Google Scholar 

  • Macario, A., Giordano, G., Onida, B., Cocina, D., Tagarelli, A. and Giuffrè, A.M. (2010). Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid–base catalyst. Appl. Catal. A Gen., 378, 160–168.

    Article  CAS  Google Scholar 

  • Marchetti, J.M., Miguel, V.U. and Errazu, A.F. (2007). Possible methods for biodiesel production. Renew. Sustain. Energy Rev., 11, 1300–1311.

    Article  CAS  Google Scholar 

  • Mata, T.M., Martins, A.A. and Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 14, 217–232.

    Article  CAS  Google Scholar 

  • Metzger, P. and Largeau, C. (2005). Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol., 66, 486–496.

    Article  CAS  Google Scholar 

  • Mittal, A., Katahira, R., Himmel, M.E. and Johnson, D.K. (2011). Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: Changes in crystalline structure and effects on enzymatic digestibility. Biotechnol. Biofuels, 4, 41.

    Article  CAS  Google Scholar 

  • Moellering, E.R. and Benning, C. (2010). RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell, 9, 97–106.

    Article  CAS  Google Scholar 

  • Mussato, S.I., Dragone, G., Guimarães, P.M., Silva, J.P.A., Carneiro, L., Roberto, L.M., Vicente, A., Domingues, L. and Teixeira, J.A. et al. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv., 28, 817–830.

    Google Scholar 

  • Nagle, N. and Lemke, P. (1990). Production of methyl ester fuel from microalgae. Appl. Biochem. Biotechnol., 24–25, 355–361.

    Article  Google Scholar 

  • Park, J.-H., Hong, J.-Y., Jang, H.C., Oh, S.G., Kim, S.-H., Yoon, J.-J. and Kim, Y.J. (2012). Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol., 108, 83–88.

    Article  CAS  Google Scholar 

  • Ross, A.B., Jones, J.M., Kubacki, M.L. and Bridgeman, T. (2008). Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol., 99, 6494–6504.

    Article  CAS  Google Scholar 

  • Sarkar, N., Ghosh, S.K., Bannerjee, S. and Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renew. Energy, 37, 19–27.

    Article  CAS  Google Scholar 

  • Sheridan, C. (2009). Making green. Nat. Biotechnol., 27, 1074–1076.

    Article  CAS  Google Scholar 

  • Singh, A., Nigam, P.S. and Murphy, J.D. (2011). Renewable fuels from algae: An answer to debatable land based fuels. Bioresour. Technol., 102, 10–16.

    Article  CAS  Google Scholar 

  • Singh, S., Kate, B.N. and Banerjee, U.C. (2008). Bioactive Compounds from Cyanobacteria and Microalgae: An Overview. Crit. Rev. Biotechnol., 25(3), 75–95.

    Google Scholar 

  • Suppes, G. (2004). Transesterification of soybean oil with zeolite and metal catalysts. Appl. Catal. A Gen., 257, 213–223.

    Article  CAS  Google Scholar 

  • Talebnia, F., Karakashev, D. and Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol., 101, 4744–4753.

    Article  CAS  Google Scholar 

  • Vyas, A.P., Verma, J.L. and Subrahmanyam, N. (2010). A review on FAME production processes. Fuel, 89, 1–9.

    Article  CAS  Google Scholar 

  • Waltz, E. (2009). Biotech’s green gold? Nat. Biotechnol., 27, 15–18.

    Article  CAS  Google Scholar 

  • Wang, J., Kim, Y.M., Rhee, H.S., Lee, M.W. and Park, J.M. (2013). Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3. Bioresour. Technol., 135, 199–206.

    Article  CAS  Google Scholar 

  • Xu, H., Miao, X. and Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol., 126, 499–507.

    Article  CAS  Google Scholar 

  • Yoo, C., Jun, S.-Y., Lee, J.-Y., Ahn, C.-Y. and Oh, H.-M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol., 101, 71–74.

    Article  Google Scholar 

  • Yoon, S.H. and Lee, C.S. (2011). Lean Combustion and Emission Characteristics of Bioethanol and Its Blends in a Spark Ignition (SI) Engine. Energy & Fuels, 25, 3484–3492.

    Article  CAS  Google Scholar 

  • Younesi, H., Najafpour, G. and Mohamed, A.R. (2005). Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem. Eng. J., 27, 110–119.

    Article  CAS  Google Scholar 

  • Yoza, B.A. and Masutani, E.M. (2013). The analysis of macroalgae biomass found around Hawaii for bioethanol production. Environ. Technol., 34, 1859–1867.

    Article  CAS  Google Scholar 

  • Zabeti, M., Daud, W.M.A.W. and Aroua, M.K. (2010). Biodiesel production using alumina-supported calcium oxide: An optimization study. Fuel Process. Technol., 91, 243–248.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Capital Publishing Company

About this chapter

Cite this chapter

Roy, S., Das, D. (2015). Liquid Fuels Production from Algal Biomass. In: Das, D. (eds) Algal Biorefinery: An Integrated Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-22813-6_13

Download citation

Publish with us

Policies and ethics