Skip to main content

Synthesis of Nanoporous Anodic Alumina by Anodic Oxidation of Low Purity Aluminum Substrates

  • Chapter
  • First Online:
Nanoporous Alumina

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 219))

Abstract

The aim of this chapter is to present some recent findings on the fabrication of anodic aluminum oxide (AAO) layers by anodization of low purity aluminum substrates. The use of low purity, technical aluminum alloys, instead of high purity substrates, can significantly reduce the cost of AAO fabrication, however, this can also affect the structure and properties of as produced alumina layers. Here, we focused on the comparison of oxide layer growth on substrates with different Al contents, as well as on the new procedures used for the synthesis of well-ordered nanoporous oxides from technical aluminum alloys. Some applications of the formed nanoporous AAO layers are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Bhushan (ed.), Springer Handbook of Nanotechnology, 2nd edn. (Springer-Verlag, Berlin, 2007)

    Google Scholar 

  2. S. Chen (ed.), Nanomanufacturing (American Scientific Publishers, New York, 2010)

    Google Scholar 

  3. A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. Chem. Commun. 2009, 2791–2808 (2009)

    Google Scholar 

  4. G.D. Sulka, Highly ordered anodic porous alumina formation by self-organised anodising and template-assisted fabrication of nanostructured materials, in Nanostructured materials in electrochemistry, ed. by A. Eftekhari (Wiley, Weinheim, 2008), pp. 1–116

    Google Scholar 

  5. W. Lee, S.-J. Park, Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 114, 7487–7556 (2014)

    Google Scholar 

  6. G.D. Sulka, J. Kapusta-Kołodziej, A. Brzózka et al., Anodic growth of TiO2 nanopore arrays at various temperatures. Electrochim. Acta 104, 526–535 (2013)

    Google Scholar 

  7. K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385–9454 (2014)

    Google Scholar 

  8. C.A. Grimes, G.K. Mor, TiO 2 Nanotube Arrays: Synthesis, Properties, and Applications (Springer, Dordrecht, Heidelberg, London, New York, 2009)

    Google Scholar 

  9. G.D. Sulka, L. Zaraska, W.J. Stępniowski, Anodic porous alumina as a template for nanofabrication, in Encyclopedia of Nanoscience and Nanotechnology, vol. 11, 2nd edn., ed. by H.S. Nalwa (American Scientific Publishers, California, 2011), pp. 261–349

    Google Scholar 

  10. H. Masuda, K. Yasui, Y. Sakamoto et al., Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated Al on Si. Jpn. Appl. Phys. 40, L1267–L1269 (2001)

    Google Scholar 

  11. H. Masuda, K. Yasui, M. Watanabe et al., Fabrication of through-hole diamond membranes by plasma etching using anodic porous alumina mask. Electrochem. Solid-State Lett. 4, G101–G103 (2001)

    Google Scholar 

  12. H. Masuda, H. Asoh, M. Watanabe et al., Square and triangular nanohole array architectures in anodic alumina. Adv. Mater. 13, 189–192 (2001)

    Google Scholar 

  13. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)

    Google Scholar 

  14. G.D. Sulka, S. Stroobants, V. Moshchalkov et al., Synthesis of well-ordered nanopores by anodising aluminium foils in sulphuric acid. J. Electrochem. Soc. 149, D97–D103 (2002)

    Google Scholar 

  15. G.D. Sulka, M. Jaskuła, Defect analysis in self-ordered nanopore structures grown by anodization of aluminium at various temperatures. J. Nanosci. Nanotechnol. 6, 3803–3811 (2006)

    Google Scholar 

  16. G.D. Sulka, K.G. Parkoła, Anodizing potential influence on well-ordered nanostructures formed by anodization of aluminium in sulphuric acid. Thin Solid Films 515, 338–345 (2006)

    Google Scholar 

  17. G.D. Sulka, W.J. Stępniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim. Acta 54, 3683–3691 (2009)

    Google Scholar 

  18. G.D. Sulka, A. Brzózka, L. Zaraska et al., Through-hole membranes of nanoporous alumina as templates for fabricating silver and tin nanowire arrays. Electrochim. Acta 55, 4368–4376 (2010)

    Google Scholar 

  19. L. Zaraska, W.J. Stępniowski, E. Ciepiela et al., The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid. Thin Solid Films 534, 155–161 (2013)

    Google Scholar 

  20. L. Zaraska, W.J. Stępniowski, G.D. Sulka et al., Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software. Appl. Phys. A 114, 571–577 (2014)

    Google Scholar 

  21. L. Zaraska, W.J. Stępniowski, M. Jaskuła et al., Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures. Appl. Surf. Sci. 305, 650–657 (2014)

    Google Scholar 

  22. L. Zaraska, G.D. Sulka, M. Jaskuła, The effect of n-alcohols on porous anodic alumin formed by self-organized two-step anodizing of aluminum in phosphoric acid. Surf. Coat. Technol. 204, 1729–1737 (2010)

    Google Scholar 

  23. L. Zaraska, G.D. Sulka, M. Jaskuła, Properties of nanostructures obtained by anodization of aluminum in phosphoric acid at moderate potentials. J. Phys: Conf. Ser. 146, 012020 (2009)

    Google Scholar 

  24. T. Kikuchi, O. Nishinaga, S. Natsui et al., Self-ordering behavior of anodic porous alumina via selenic acid anodizing. Electrochim. Acta 137, 728–735 (2014)

    Google Scholar 

  25. W.J. Stępniowski, M. Norek, M. Michalska-Domańska et al., Fabrication of anodic aluminum oxide with incorporated chromate ions. Appl. Surf. Sci. 259, 324–330 (2012)

    Google Scholar 

  26. T. Kikuchi, T. Yamamoto, S. Natsui et al., Fabrication of anodic porous alumina by squaric acid anodizing. Electrochim. Acta 123, 14–22 (2014)

    Google Scholar 

  27. S. Ono, M. Saito, H. Asoh, Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochim. Acta 51, 827–833 (2005)

    Google Scholar 

  28. X. Chen, D. Yu, L. Cao et al., Fabrication of ordered porous anodic alumina with ultra-large interpore distances using ultrahigh voltages. Mater. Res. Bull. 57, 116–120 (2014)

    Google Scholar 

  29. T. Kikuchi, T. Yamamoto, R.O. Suzuki, Growth behavior of anodic porous alumina formed in malic acid solution. Appl. Surf. Sci. 284, 907–913 (2013)

    Google Scholar 

  30. T. Kikuchi, D. Nakajima, J. Kawashima et al., Fabrication of anodic porous alumina via anodizing in cyclic oxocarbon acids. Appl. Surf. Sci. 313, 276–285 (2014)

    Google Scholar 

  31. S. Stojadinovic, R. Vasilic, I. Belca et al., Structural and luminescence characterization of porous anodic oxide films on aluminum formed in sulfamic acid solution. Appl. Surf. Sci. 255, 2845–2850 (2008)

    Google Scholar 

  32. T. Kikuchi, O. Nishinaga, S. Natsui et al., Fabrication of anodic nanoporous alumina via acetylenedicarboxylic acid anodizing. ECS Electrochem. Lett. 7, C25–C28 (2014)

    Google Scholar 

  33. M. Saenz de Miera, M. Curioni, P. Skeldon et al., Modelling the anodizing behaviour of aluminium alloys in sulphuric acid through alloy analogues. Corros. Sci. 50, 3410–3415 (2008)

    Google Scholar 

  34. J.M. Montero-Moreno, M. Sarret, C. Müller, Influence of the aluminum surface on the final results of a two-step anodizing. Surf. Coat. Technol. 201, 6352–6357 (2007)

    Google Scholar 

  35. C.U. Yu, C.C. Hu, A. Bai et al., Pore-size dependence of AAO films on surface roughness of Al-1050 sheets controlled by electropolishing coupled with fractional factorial design. Surf. Coat. Technol. 201, 7259–7265 (2007)

    Google Scholar 

  36. L. Zaraska, E. Kurowska, G.D. Sulka et al., The effect of anode surface area on nanoporous oxide formation during anodizing of low purity aluminum (AA1050) alloy. J. Solid State Electrochem. 18, 361–368 (2014)

    Google Scholar 

  37. L.B. Kong, Y. Huang, Y. Guo et al., A facile approach to preparation of nanostripes on the electropolished aluminum surface. Mater. Lett. 59, 1656–1659 (2005)

    Google Scholar 

  38. V.V. Yuzhakov, S.C. Chang, A.E. Miller, Pattern formation during electropolishing. Phys. Rev. B 56, 12608–12624 (1997)

    Google Scholar 

  39. N. Wang, W.D. Zhang, J.P. Xu et al., Fabrication of anodic aluminum oxide templates with small interpore distances. Chin. Phys. Lett. 27, 066801 (2010)

    Google Scholar 

  40. D. Lo, R.A. Budiman, Fabrication and characterization of porous anodic alumina films from impure aluminum foils. J. Electrochem. Soc. 154, C60–C66 (2007)

    Google Scholar 

  41. L. Zaraska, G.D. Sulka, J. Szeremeta et al., Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum. Electrochim. Acta 55, 4377–4386 (2010)

    Google Scholar 

  42. L. Fernandez-Romero, J.M. Montero-Moreno, E. Pellicer et al., Assessment of the thermal stability of anodic alumina membranes at high temperatures. Mater. Chem. Phys. 111, 542–547 (2008)

    Google Scholar 

  43. J.M. Montero-Moreno, M. Sarret, C. Müller, Some considerations on the influence of voltage in potentiostatic two-step anodizing of AA1050. J. Electrochem. Soc. 154, C169–C174 (2007)

    Google Scholar 

  44. J.M. Montero-Moreno, M. Sarret, C. Müller, Self-ordered porous alumina by two-step anodizing at constant current: behaviour and evolution of the structure. Micropor. Mesopor. Mat. 136, 68–74 (2010)

    Google Scholar 

  45. T. Aerts, J.B. Jorcin, I. De Graeve et al., Comparison between the influence of applied electrode and electrolyte temperatures on porous anodizing of aluminium. Electrochim. Acta 55, 3957–3965 (2010)

    Google Scholar 

  46. H.C. Na, T.J. Sung, S.H. Yoon et al., Formation of unidirectional nanoporous structures in thickly anodized aluminum oxide layer. Trans. Nonferrous Met. Soc. China 19, 1013–1017 (2009)

    Google Scholar 

  47. L. Zaraska, G.D. Sulka, M. Jaskuła, Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. J. Solid State Electrochem. 15, 2427–2436 (2011)

    Google Scholar 

  48. A.P. Li, F. Muller, A. Birner et al., Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023–6026 (1998)

    Google Scholar 

  49. K. Ebihara, H. Takahashi, M. Nagayama, Structure and density of anodic oxide films formed on aluminum in oxalic acid solutions. J. Met. Finish. Soc. Jpn. 34, 548–553 (1983)

    Google Scholar 

  50. F. Li, L. Zhang, R.M. Metzger, On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 10, 2470–2480 (1998)

    Google Scholar 

  51. N. Wang, J. Xu, W. Zhang et al., Initial stage of pore formation process in anodic aluminum oxide template. J. Solid State Electrochem. 14, 1377–1382 (2010)

    Google Scholar 

  52. H. Habazaki, K. Shimitzu, P. Skeldon et al., Formation of amorphous anodic oxide films of controlled composition on aluminium alloys. Thin Solid Films 300, 131–137 (1997)

    Google Scholar 

  53. L.E. Fratila-Apachitei, F.D. Tichelaar, G.E. Thompson et al., A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys. Electrochim. Acta 49, 3169–3177 (2004)

    Google Scholar 

  54. L.E. Fratila-Apachitei, H. Terryn, P. Skeldon et al., Influence of substrate microstructure on the growth of anodic oxide layers. Electrochim. Acta 49, 1127–1140 (2004)

    Google Scholar 

  55. L.E. Fratila-Apachitei, J. Duszczyk, L. Katgerman, Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature. Surf. Coat. Technol. 157, 80–94 (2002)

    Google Scholar 

  56. C.H. Voon, M.N. Derman, U. Hashim, Effect of manganese content on the fabrication of porous anodic alumina. J. Nanomater. 2012, 752926 (2012)

    Google Scholar 

  57. A.C. Crossland, G.E. Thompson, C.J.E. Smith et al., Formation of manganese-rich layers during anodizing of Al-Mn alloys. Corros. Sci. 41, 2053–2069 (1999)

    Google Scholar 

  58. J.F. Garcia-Garcia, E.F. Koroleva, G.E. Thompson et al., Anodic film formation on binary Al–Mg and Al–Ti alloys in nitric acid. Surf. Interface Anal. 42, 258–263 (2010)

    Google Scholar 

  59. I. Tsangaraki-Kaplanoglou, S. Theohari, T. Dimogerontakis et al., Effect of alloy types on the anodizing process of aluminum. Surf. Coat. Technol. 200, 2634–2641 (2006)

    Google Scholar 

  60. J.P. Dasquet, D. Caillard, E. Conforto et al., Investigation of the anodic oxide layer on 1050 and 2024T3 aluminium alloys by electron microscopy and electrochemical impedance spectroscopy. Thin Solid Films 371, 183–190 (2000)

    Google Scholar 

  61. J.P. Dasquet, J.P. Bonino, D. Caillard et al., Zinc impregnation of the anodic oxidation layer of 1050 and 2024 aluminium alloys. J. Appl. Electrochem. 30, 845–853 (2000)

    Google Scholar 

  62. B. Kim, J.S. Lee, Effect of aluminum purity on the pore formation of porous anodic alumina. Bull. Korean Chem. Soc. 35, 349–352 (2014)

    Google Scholar 

  63. G.D. Sulka, K.G. Parkoła, Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid. Electrochim. Acta 52, 1880–1888 (2007)

    Google Scholar 

  64. E. Ciepiela, L. Zaraska, G.D. Sulka, GridSpace2 Virtual Laboratory case study: Implementation of algorithms for quantitative analysis of grain morphology in self-assembled hexagonal lattices according to Hillebrand method. Lect. Notes Comput. Sci. 7136, 240–251 (2012)

    Google Scholar 

  65. E. Ciepiela, L. Zaraska, G.D. Sulka, Implementation of algorithms of quantitative analysis of the grain morphology in self-assembled hexagonal lattices according to Hillebrand method. http://gs2.cyfronet.pl/epapers/hillebrand-grains/. Accessed Oct 2014 (2011)

  66. P. Nowakowski, E. Ciepiela, D. Harężlak et al., The collage authoring environment. Procedia Comput. Sci. 4, 608–617 (2011)

    Google Scholar 

  67. M. Michalska-Domańska, M. Norek, W.J. Stepniowski et al., Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—a comparative study with the AAO produced on high purity aluminum. Electrochim. Acta 105, 424–432 (2013)

    Google Scholar 

  68. B. Gastón-García, E. García-Lecina, J.A. Díez et al., Local burning phenomena in sulfuric acid anodizing: analysis of porous anodic alumina layers on AA1050. Electrochem. Solid State Lett. 11, C33–C35 (2010)

    Google Scholar 

  69. J.J. Roa, B. Gastón-García, E. García-Lecina et al., Mechanical properties at nanometric scale of alumina layers formed in sulphuric acid anodizing under burning conditions. Ceram. Int. 38, 1627–1633 (2012)

    Google Scholar 

  70. C.K. Chung, M.W. Liao, C.T. Lee et al., Anodization of nanoporous alumina on impurityinduced hemisphere curved surface of aluminum at room temperature. Nanoscale Res. Lett. 6, 596–601 (2011)

    Google Scholar 

  71. A. Yin, R.S. Guico, J. Xu, Fabrication of anodic aluminium oxide templates on curved surfaces. Nanotechnology 18, 035304 (2007)

    Google Scholar 

  72. M. Curioni, M. Saenz de Miera, P. Skeldon et al., Macroscopic and local filming behavior of AA2024 T3 aluminum alloy during anodizing in sulfuric acid electrolyte. J. Electrochem. Soc. 155, C387–C395 (2008)

    Google Scholar 

  73. S.J. Garcia-Vergara, K. El Khazmi, P. Skeldon et al., Influence of copper on the morphology of porous anodic alumina. Corros. Sci. 48, 2937–2946 (2006)

    Google Scholar 

  74. C.E. Caicedo-Martinez, E. Koroleva, P. Skeldon et al., Behavior of impurity and minor alloying elements during surface treatments of aluminum. J. Electrochem. Soc. 149, B139–B145 (2002)

    Google Scholar 

  75. I.S. Molchan, T.V. Molchan, N.V. Gaponenko et al., Impurity-driven defect generation in porous anodic alumina. Electrochem. Commun. 12, 693–696 (2010)

    Google Scholar 

  76. S.-Z. Kure-Chu, K. Osaka, H. Yashiro et al., Controllable fabrication of networked three-dimensional nanoporous anodic alumina films on low-purity Al materials. J. Electrochem. Soc. 162, C24–C34 (2015)

    Google Scholar 

  77. A.K. Mukhopadhyay, A.K. Sharma, Influence of Fe-bearing particles and nature of electrolyte on the hard anodizing behaviour of AA 7075 extrusion products. Surf. Coat. Technol. 92, 212–220 (1997)

    Google Scholar 

  78. J.C. Walmsley, C.J. Simensen, A. Bjørgum et al., The structure and impurities of hard DC anodic layers on AA6060 aluminium alloy. J. Adhesion 84, 543–561 (2008)

    Google Scholar 

  79. M. Schneider, K. Kremmer, S.K. Weidmann, W. Fürbeth, Interplay between parameter variation and oxide structure of a modified PAA process. Surf. Interface Anal. 45, 1503–1509 (2013)

    Google Scholar 

  80. M. Schneider, K. Kremmer, The effect of bath aging on the microstructure of anodic oxide layers on AA1050. Surf. Coat. Technol. 246, 64–70 (2014)

    Google Scholar 

  81. T. Aerts, T. Dimogerontakis, I. De Graeve et al., Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film. Surf. Coat. Technol. 201, 7310–7317 (2007)

    Google Scholar 

  82. T. Aerts, I. De Graeve, H. Terryn, Control of the electrode temperature for electrochemical studies: A new approach illustrated on porous anodizing of aluminium. Electrochem. Commun. 11, 2292–2295 (2009)

    Google Scholar 

  83. T. Aerts, E. Tourwé, R. Pintelon et al., Modelling of the porous anodizing of aluminium: generation of experimental input data and optimization of the considered model. Surf. Coat. Technol. 205, 4388–4396 (2011)

    Google Scholar 

  84. C.H. Voon, M.N. Derman, U. Hashim et al., Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from Al-Mn alloys. J. Nanomater. 2013, 167047 (2013)

    Google Scholar 

  85. C.K. Chung, R.X. Zhou, T.Y. Liu et al., Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99 %) aluminum at room temperature. Nanotechnology 20, 055301 (2009)

    Google Scholar 

  86. C.H. Voon, M.N. Derman, Effect of electrolyte concentration on the growth of porous anodic aluminium oxide (AAO) on Al-Mn alloys. Adv. Mater. Res. 626, 610–614 (2013)

    Google Scholar 

  87. A. Bai, C.C. Hu, Y.F. Yang et al., Pore diameter control of anodic aluminum oxide with ordered array of nanopores. Electrochim. Acta 53, 2258–2264 (2008)

    Google Scholar 

  88. L. Iglesias-Rubianes, S.J. Garcia-Vergara, P. Skeldon et al., Cyclic oxidation processes during anodizing of Al–Cu alloys. Electrochim. Acta 52, 7148–7157 (2007)

    Google Scholar 

  89. G. Boisier, N. Pébère, C. Druez et al., FESEM and EIS study of sealed AA2024 T3 anodized in sulfuric acid electrolytes: influence of tartaric acid. J. Electrochem. Soc. 155, C521–C529 (2008)

    Google Scholar 

  90. O. Sanz, T.L.M. Martínez, F.J. Echave et al., Aluminium anodisation for Au-CeO2/Al2O3-Al monoliths preparation. Chem. Eng. J. 151, 324–332 (2009)

    Google Scholar 

  91. O. Sanz, F.J. Echave, J.A. Odriozola et al., Aluminum anodization in oxalic acid: controlling the texture of Al2O3/Al monoliths for catalytic applications. Ind. Eng. Chem. Res. 50, 2117–2125 (2011)

    Google Scholar 

  92. W.J. Stępniowski, M. Michalska-Domańska, M. Norek et al., Anodization of cold deformed technical purity aluminum (AA1050) in oxalic acid. Surf. Coat. Technol. 238, 268–274 (2014)

    Google Scholar 

  93. C.K. Chung, T.Y. Liu, W.T. Chang, Effect of oxalic acid concentration on the formation of anodic aluminum oxide using pulse anodization at room temperature. Microsyst. Technol. 16, 1451–1456 (2010)

    Google Scholar 

  94. C.K. Chung, W.T. Chang, M.W. Liao et al., Effect of pulse voltage and aluminum purity on the characteristics of anodic aluminum oxide using hybrid pulse anodization at room temperature. Thin Solid Films 519, 4754–4758 (2011)

    Google Scholar 

  95. C.K. Chung, W.T. Chang, M.W. Liao et al., Fabrication of enhanced anodic aluminum oxide performance at room temperatures using hybrid pulse anodization with effective cooling. Electrochim. Acta 56, 6489–6497 (2011)

    Google Scholar 

  96. C.K. Chung, M.W. Liao, H.C. Chang et al., Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization. Thin Solid Films 520, 1554–1558 (2011)

    Google Scholar 

  97. C.K. Chung, W.T. Chang, M.W. Liao et al., Improvement of pore distribution uniformity of nanoporous anodic aluminum oxide with pulse reverse voltage on low-and-high-purity aluminum foils. Mater. Lett. 88, 104–107 (2012)

    Google Scholar 

  98. C.K. Chung, M.W. Liao, H.C. Chang et al., On characteristics of pore size distribution in hybrid pulse anodized high-aspect-ratio aluminum oxide with Taguchi method. Microsyst. Technol. 19, 387–393 (2013)

    Google Scholar 

  99. N. Hu, X. Dong, X. He et al., Interfacial morphology of low-voltage anodic aluminium oxide. J. Appl. Crystallogr. 46, 1386–1396 (2013)

    Google Scholar 

  100. C.C. Chen, J.H. Chen, C.G. Chao Post-treatment method of producing ordered array of anodic aluminum oxide using general purity commercial (99.7 %) aluminum. Jpn. J. Appl. Phys. 44, 1529–1533 (2005)

    Google Scholar 

  101. E. Rocca, D. Vantelon, A. Gehin et al., Chemical reactivity of self-organized alumina nanopores in aqueous medium. Acta Mater. 59, 962–970 (2011)

    Google Scholar 

  102. E. Rocca, D. Vantelon, S. Reguer et al., Structural evolution in nanoporous anodic aluminium oxide. Mater. Chem. Phys. 134, 905–911 (2012)

    Google Scholar 

  103. T.S. Shih, P.S. Wei, Y.S. Huang, Optical properties of anodic aluminum oxide films on Al1050 alloys. Surf. Coat. Technol. 202, 3298–3305 (2008)

    Google Scholar 

  104. S. Canulescu, K. Rechendorff, V.N. Borca et al., Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying. Appl. Phys. Lett. 104, 121910 (2014)

    Google Scholar 

  105. L. Zaraska, G.D. Sulka, M. Jaskuła, Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays. Surf. Coat. Technol. 205, 2432–2437 (2010)

    Google Scholar 

  106. J.M. Montero-Moreno, M. Belenguer, M. Sarret et al., Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques. Electrochim. Acta 54, 2529–2535 (2009)

    Google Scholar 

  107. M.T. Safarzadeh, A. Arab, S.M.A. Boutorabi, The effects of anodizing condition and post treatment on the growth of nickel nanowires using anodic aluminum oxide. Iran. J. Mater. Sci. Eng. 7, 12–18 (2010)

    Google Scholar 

  108. D. Gong, V. Yadavalli, M. Paulose et al., Controlled molecular release using nanoporous alumina capsules. Biomed. Microdevices 5, 75–80 (2003)

    Google Scholar 

  109. A. Belwalkar, E. Grasing, W. Van Geertruyden et al., Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J. Membrane Sci. 319, 192–198 (2008)

    Google Scholar 

  110. A.K. Kasi, J.K. Kasi, M. Hasan et al., Fabrication of low cost anodic aluminum oxide (AAO) tubular membrane and their application for hemodialysis. Adv. Mater. Res. 550–553, 2040–2045 (2012)

    Google Scholar 

  111. I. Kanazirski, C. Girginov, A. Girginov, Electrolytic colouring of anodic alumina films in NiSO4, CuSO4 and (NiSO4 + CuSO4) containing electrolytes. Adv. Nat. Sci. Theory Appl. 1, 45–51 (2012)

    Google Scholar 

  112. I. De Graeve, P. Laha, V. Goossens et al., Colour simulation and prediction of complex nano-structured metal oxide films test case: Analysis and modeling of electro-coloured anodized aluminium. Surf. Coat. Technol. 205, 4349–4354 (2011)

    Google Scholar 

  113. H.-H. Shih, Y-Ch. Huang, Study on the black electrolytic coloring of anodized aluminum in cupric sulfate. J. Mater. Process. Technol. 208, 24–28 (2008)

    Google Scholar 

  114. Y. Goueffon, C. Mabru, M. Labarrère et al., Black anodic films on 7175 aluminium alloy for space applications. Surf. Coat. Technol. 204, 1013–1017 (2009)

    Google Scholar 

  115. Y. Goueffon, C. Mabru, M. Labarrère et al., Investigations into the coefficient of thermal expansion of porous films prepared on AA7175 T7351 by anodizing in sulphuric acid electrolyte. Surf. Coat. Technol. 205, 2643–2648 (2010)

    Google Scholar 

  116. Y. Goueffon, L. Arurault, S. Fontorbes et al., Chemical characteristics, mechanical and thermo-optical properties of black anodic films prepared on 7175 aluminium alloy for space applications. Mater. Chem. Phys. 120, 636–642 (2010)

    Google Scholar 

  117. J.C. Ganley, E.G. Seebauer, R.I. Masel, Porous anodic alumina microreactors for production of hydrogen from ammonia. AIChE J. 50, 829–834 (2004)

    Google Scholar 

  118. J.C. Ganley, K.L. Riechmann, E.G. Seebauer et al., Porous anodic alumina optimized as a catalyst support for microreactors. J. Catal. 227, 26–32 (2004)

    Google Scholar 

  119. S. Peng, D. Tian, X. Miao et al., Designing robust alumina nanowires-on-nanopores structures: Superhydrophobic surfaces with slippery or sticky water adhesion. J. Colloid Interface Sci. 409, 18–24 (2013)

    Google Scholar 

  120. W. Liu, Y. Luo, L. Sun et al., Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating. Appl. Surf. Sci. 264, 872–878 (2013)

    Google Scholar 

  121. M.H. Lee, N. Lim, D.J. Ruebusch et al., Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. Nano Lett. 11, 3425–3430 (2011)

    Google Scholar 

Download references

Acknowledgments

Some of the research presented here was supported by the Polish Ministry of Science and High Education (grant no. N N507 481237 and the European COST action D41 Inorganic oxide surfaces and interfaces). A part of the research was carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (contract no. POIG.02.01.00-12-023/08). Some part of work was made possible with assistance of the PL-Grid project, contract number: POIG.02.03.00-00-007/08-00, website: www.plgrid.pl. The project is co-funded by the European Regional Development Fund as part of the Innovative Economy program. The SEM imaging was performed in the Laboratory of Field Emission Scanning Electron Microscopy and Microanalysis at the Institute of Geological Sciences, Jagiellonian University, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz D. Sulka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaraska, L., Wierzbicka, E., Kurowska-Tabor, E., Sulka, G.D. (2015). Synthesis of Nanoporous Anodic Alumina by Anodic Oxidation of Low Purity Aluminum Substrates. In: Losic, D., Santos, A. (eds) Nanoporous Alumina. Springer Series in Materials Science, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-20334-8_3

Download citation

Publish with us

Policies and ethics