Skip to main content
  • 4681 Accesses

Abstract

Cells and their environment are separated by the plasma membrane, which is permeable only for small hydrophobic molecules. Larger or hydrophilic molecules (or even ions) require protein transporters to get across. These can work as

Primary active transporters :

that hydrolyse energy-rich molecules to pump ions or molecules actively across a membrane against a concentration gradient. Substrate is usually ATP, but some transporters use other energy-rich molecules such as phospho-enolpyruvate, PP i, or GTP. There are three main groups of ion pumps:

F-type :

occur in the mitochondrial and plastid membrane; they work as ATP-synthases that convert the chemiosmotic energy of an ion gradient into chemical energy of a phosphodiester bond. Archaea have a related ATP synthase, called A-type. Proton pumps related to F-type occur in vacuoles and other organelles (“V-type”); they are responsible for the low pH inside these compartments. Transported ion is usually H +, but Na + may also be used.

P-type :

energise the plasma membrane by pumping ions against a concentration gradient. Bacteria, yeasts, and plants use a H +-ATPase, and animals a Na + /K +-ATPase. The \(\upgamma\)-phosphate of ATP is transferred onto an Asp residue of the enzyme, forming an acylphosphate. This is then hydrolysed by water.

ABC-type :

use the energy of ATP hydrolysis to pump nutrients into, or waste products out of a cell. Some members of the family have lost the ability to pump substrates actively; they act as regulated channels.

Secondary active transporters :

use the ion gradient produced by the pumps to transport molecules across the membrane against a concentration gradient. Ions and substrate can go in the same (symport) or in opposite direction (antiport).

Passive channels or pores :

that facilitate the diffusion of molecules down a concentration gradient, but unlike passive diffusion transport are selective and saturable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Abramson, I. Smirnova, V. Kasho, G. Verner, H.R. Kaback, S. Iwata, Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003). doi: 10.1126/science. 1088196

    Google Scholar 

  2. M.P. Blaustein, Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am. J. Physiol. 232 (5), C165–C173 (1977). URL http://ajpcell.physiology.org/content/ajpcell/232/5/C165.full.pdf

  3. M.P. Blaustein, J.M. Hamlyn, Signaling mechanisms that link salt retention to hypertension: Endogenous ouabain, the Na+ pump, the Na+/Ca2+ exchanger and TRPC proteins. Biochim. Biophys. Acta 1802 (12), 1219–1229 (2010). doi: 10.1016/j.bbadis.2010.02.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. S. Breton, D. Brown, Regulation of luminal acidification by the V-ATPase. Physiol. 28(5), 318–329 (2013). doi: 10.1152/physiol.00007. 2013

    Article  CAS  Google Scholar 

  5. E. Buxbaum, Co-operative binding sites for transported substrates in the multiple drug resistance transporter Mdr1. Eur. J. Biochem. 265, 64–70 (1999a). doi: 10.1046/j.1432-1327.1999.00644.x

    Article  CAS  PubMed  Google Scholar 

  6. E. Buxbaum, Co-operating ATP sites in the multiple drug resistance transporter Mdr1. Eur. J. Biochem. 265, 54–63 (1999b). doi: 10.1046/j. 1432-1327.1999.00643.x

    Google Scholar 

  7. E. Buxbaum, W. Schoner, Phosphate binding and ATP binding sites coexist in Na+/K+-ATPase, as demonstrated by the inactivating MgPO4 complex analogue Co(NH3)4PO4. Eur. J. Biochem. 195, 407–419 (1991). doi: 10.1111/j.1432-1033.1991. tb15720.x

    Article  CAS  PubMed  Google Scholar 

  8. L.C. Cantley, L. Josephson, R. Warner, M. Yanagisawa, C. Lechene, G. Guidotti, Vanadate is a potent (Na, K)-ATPase inhibitor found in ATP derived from muscle. J. Biol. Chem. 252(21), 7421–7423 (1977). URL http://www.jbc.org/content/252/21/7421.full.pdf+html

  9. M. Cereijido, R.G. Contreras, L. Shoshani, I. Larre, The Na+-K+-ATPase as self-adhesion molecule and hormone receptor. Am. J. Physiol. Cell Physiol. 302(3), C473–C481 (2012). doi: 10.1152/ajpcell.00083.2011

    Article  CAS  PubMed  Google Scholar 

  10. B.L. deGroot, H. Grubmüller, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357 (2001). doi: 10.1126/science.1066115

    Google Scholar 

  11. S.J. Ferguson, ATP synthase: From sequence to ring size to the P/O ratio. Proc. Natl. Acad. Sci. USA 107(39), 16755–16756 (2010). doi: 10.1073/pnas.1012260107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. H. Fuerstenwerth, On the differences between ouabain and digitalis glycosides. Am. J. Therapeut. 21(1), 35–42 (2014). doi: 10.1097/MJT. 0b013e318217a609

    Article  Google Scholar 

  13. Y. Fujiyoshi, K. Mitsoka, B.L. de Groot, A. Philippsen, H. Grubmüller, P. Agre, A. Engel, Structure and function of water channels. Curr. Opin. Struct. Biol. 12(4), 509–515 (2002). doi: 10.1016/S0959-440X(02)00355-X

    Article  CAS  PubMed  Google Scholar 

  14. M. Futai, M. Nakanishi-Matsui, H. Okamoto, M. Sekiya, R.K. Nakamoto, Rotational catalysis in proton pumping ATPases: From E. coli F-ATPase to mammalian V-ATPase. Biochim. Biophys. Acta. 1817(10), 1711–1721 (2012). doi: 10.1016/j.bbabio.2012.03.015

    Google Scholar 

  15. V. De Giorgis, P. Veggiotti, Glut1 deficiency syndrome 2013: Current state of the art. Seizure 22(10), 803–811 (2013). doi: 10.1016/j.seizure. 2013.07.003

    Article  PubMed  Google Scholar 

  16. B. Holland, ABC Proteins – From Bacteria to Man (Academic Press, Amsterdam, 2003). ISBN 978-0-1235-2551-2.

    Google Scholar 

  17. Y. Ishibashi, A. Kohyama-Koganeya, Y. Hirabayashi, New insights on glucosylated lipids: Metabolism and functions. Biochim. Biophys. Acta 1831(9), 1475–1485 (2013). doi: 10.1016/j.bbalip.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  18. I.D. Kerr, A.J. Haider, I.C. Gelissen, The ABCG family of membrane-associated transporters: you don’t have to be big to be mighty. Brit. J. Pharmacol. 164(7), 1767–1779 (2011). doi: 10.1111/j.1476-5381. 2010.01177.x

    Article  CAS  Google Scholar 

  19. M. Mueckler, B. Thorens, The slc2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34(2–3), 121–138 (2013). doi: 10.1016/ j.mam.2012.07.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nagy, H. and Goda, K. and Szakács, G. and Arceci, R. and Váradi, A. and Sarkadi, B. and Mechetner, E. and Szabó, G. Fluorescence resonance energy transfer studies of function-related changes in oligomerization and conformational state of Pgp. 2nd Advanced Lecture Course “ATP-Binding Cassette (ABC) Proteins: From Multidrug resistance to Genetic Disease. FEBS, Gosau, 99 (1999)

    Google Scholar 

  21. D. Pavlovic, The role of cardiotonic steroids in the pathogenesis of cardiomyopathy in chronic kidney disease. Nephron Clin. Pract. 128, 11–21 (2014). doi: 10.1159/000363301

    Article  CAS  PubMed  Google Scholar 

  22. K.R.H. Repke, R. Schön, Flip-flop model of (NaK)-ATPase function. Acta Biol. Med. Germ. 31(4), K19–K30 (1973)

    PubMed  Google Scholar 

  23. W. Schoner, G. Scheiner-Bobis, Role of endogenous cardiotonic steroids in sodium homeostasis. Nephrol. Dial. Transplant. 23(9), 2723–2729 (2008). doi: 10.1093/ndt/gfn325

    Article  CAS  PubMed  Google Scholar 

  24. M. Toei, R. Saum, M. Forgac, Regulation and isoform function of the V-ATPases. Biochem 49(23), 4715–4723 (2010). doi: 10.1021/bi100397s

    Article  CAS  Google Scholar 

  25. W. Withering, An Account of the Foxglove, and some of its Medical Uses: With Practical Remarks on Dropsy, and Other Diseases (G.G.J. and J. Robinson, London, 1785). URL http://www.munseys.com/diskfive/foxg.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buxbaum, E. (2015). Transport of Solutes Across Membranes. In: Fundamentals of Protein Structure and Function. Springer, Cham. https://doi.org/10.1007/978-3-319-19920-7_18

Download citation

Publish with us

Policies and ethics