Skip to main content

Damage to Sperm DNA Mediated by Reactive Oxygen Species: Its Impact on Human Reproduction and the Health Trajectory of Offspring

  • Chapter
The Male Role in Pregnancy Loss and Embryo Implantation Failure

Abstract

Disruptions to the genetic integrity of the mammalian spermatozoon play a major role in determining the subsequent developmental trajectory of the embryo. This chapter examines the causative links that connect DNA damage in human spermatozoa and the appearance of mutations in the progeny responsible for a variety of clinical conditions from autism to cancer. Integral to this discussion is an abundance of evidence indicating that human spermatozoa are vulnerable to free radical attack and the generation of oxidative DNA damage. The resolution of this damage appears to be initiated by the spermatozoa but is driven to completion by the oocyte in a round of DNA repair that follows fertilization. The persistence of unresolved oxidative DNA damage following zygote formation has the potential to create mutations/epimutations in the offspring that may have a profound impact on the health of the progeny. It is proposed that the creation of oxidative stress in the male germ line is a consequence of a wide variety of environmental/lifestyle factors that influence the health and well-being of the offspring as a consequence of mutational change induced by the aberrant repair of oxidative DNA damage in the zygote. Factors such as paternal age, subfertility, smoking, obesity, and exposure to a range of environmental influences, including radio-frequency electromagnetic radiation and xenobiotics, have all been implicated in this process. Identifying the contributors to oxidative stress in the germ line and resolving the mechanisms by which such stressors influence the mutational load carried by the progeny will be an important task for the future. This task is particularly pressing, given the extensive use of assisted reproductive technologies to achieve pregnancies in vitro that would have been prevented in vivo by the complex array of mechanisms that nature has put in place to ensure that only the fittest gametes participate in the generative process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken RJ (2011) The capacitation-apoptosis highway: oxysterols and mammalian sperm function. Biol Reprod 85(1):9–12. doi:10.1095/biolreprod.111.092528

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Baker HW (1995) Seminal leukocytes: passengers, terrorists or good samaritans? Hum Reprod 10(7):1736–1739

    CAS  PubMed  Google Scholar 

  • Aitken RJ, Baker MA (2013) Oxidative stress, spermatozoa and leukocytic infiltration: relationships forged by the opposing forces of microbial invasion and the search for perfection. J Reprod Immunol 100(1):11–19. doi:10.1016/j.jri.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Clarkson JS (1987) Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil 81(2):459–469

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Clarkson JS (1988) Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl 9(6):367–376

    CAS  PubMed  Google Scholar 

  • Aitken RJ, De Iuliis G (2010) On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod 16(1):3–13. doi:10.1093/molehr/gap059

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Krausz C (2001) Oxidative stress, DNA damage and the Y chromosome. Reproduction 122(4):497–506

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Buckingham DW, Brindle J et al (1995) Analysis of sperm movement in relation to the oxidative stress created by leukocytes in washed sperm preparations and seminal plasma. Hum Reprod 10(8):2061–2071

    CAS  PubMed  Google Scholar 

  • Aitken RJ, Buckingham DW, Carreras A et al (1996) Superoxide dismutase in human sperm suspensions: relationship with cellular composition, oxidative stress, and sperm function. Free Radic Biol Med 21(4):495–504

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Harkiss D, Knox W et al (1998) A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci 111:645–656

    CAS  PubMed  Google Scholar 

  • Aitken RJ, Koopma P, Lewis SE (2004) Seeds of concern. Nature 432(7013):48–52

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Wingate JK, De Iuliis GN et al (2006) Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J Clin Endocrinol Metab 91(10):4154–4163

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, De Iuliis GN, McLachlan RI (2009) Biological and clinical significance of DNA damage in the male germ line. Int J Androl 32(1):46–56. doi:10.1111/j.1365

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, De Iuliis GN, Finnie JM et al (2010) Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod 25(10):2415–2426. doi:10.1093/humrep/deq214

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Gibb Z, Mitchell LA et al (2012a) Sperm motility is lost in vitro as a consequence of mitochondrial free radical production and the generation of electrophilic aldehydes but can be significantly rescued by the presence of nucleophilic thiols. Biol Reprod 87(5):110. doi:10.1095/biolreprod.112.102020

    Article  PubMed  Google Scholar 

  • Aitken RJ, Whiting S, De Iuliis GN et al (2012b) Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. J Biol Chem 287(39):33048–33060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aitken RJ, Bronson R, Smith TB et al (2013) The source and significance of DNA damage in human spermatozoa; diagnostic strategies and straw man fallacies. Mol Hum Reprod 19(8):475–485. doi:10.1093/molehr/gat025

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Finnie JM, Muscio L et al (2014) Potential importance of transition metals in the induction of DNA damage by sperm preparation media. Hum Reprod 29(10):2136–2147. doi:10.1093/humrep/deu204

    Article  CAS  PubMed  Google Scholar 

  • Aly HA (2013) Aroclor 1254 induced oxidative stress and mitochondria mediated apoptosis in adult rat sperm in vitro. Environ Toxicol Pharmacol 36(2):274–283. doi:10.1016/j.etap.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  • Bakos HW, Mitchell M, Setchell BP et al (2011) The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model. Int J Androl 34(5):402–410

    Article  CAS  PubMed  Google Scholar 

  • Bejarano I, Monllor F, Marchena AM et al (2014) Exogenous melatonin supplementation prevents oxidative stress-evoked DNA damage in human spermatozoa. J Pineal Res 57(3):333–339. doi:10.1111/jpi.12172

    Article  CAS  PubMed  Google Scholar 

  • Bennetts LE, Aitken RJ (2005) A comparative study of oxidative DNA damage in mammalian spermatozoa. Mol Reprod Dev 71(1):77–87

    Article  CAS  PubMed  Google Scholar 

  • Boaz SM, Dominguez K, Shaman JA et al (2008) Mouse spermatozoa contain a nuclease that is activated by pretreatment with EGTA and subsequent calcium incubation. J Cell Biochem 103(5):1636–1645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brouwers JF, Boerke A, Silva PF et al (2011) Mass spectrometric detection of cholesterol oxidation in bovine sperm. Biol Reprod 85:128–36

    Article  CAS  PubMed  Google Scholar 

  • Burruel V, Klooster K, Barker CM et al (2014) Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage. Sci Rep 4:6598. doi:10.1038/srep06598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chavarro JE, Toth TL, Wright DL et al (2010) Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertil Steril 93(7):2222–2231. doi:10.1016/j.fertnstert.2009.01.100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crow JF (2000) The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet 1(1):40–47

    Article  CAS  PubMed  Google Scholar 

  • Dalzell LH, Thompson-Cree ME, McClure N et al (2003) Effects of 24-hour incubation after freeze-thawing on DNA fragmentation of testicular sperm from infertile and fertile men. Fertil Steril 79(Suppl 3):1670–1672

    Article  PubMed  Google Scholar 

  • De Iuliis GN, Newey RJ, King BV et al (2009) Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 4(7), e6446. doi:10.1371/journal.pone.0006446

    Article  PubMed Central  PubMed  Google Scholar 

  • de Lamirande E, Gagnon C (1993) A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl 16(1):21–25

    Article  PubMed  Google Scholar 

  • de Lamirande E, Lamothe G (2009) Reactive oxygen-induced reactive oxygen formation during human sperm capacitation. Free Radic Biol Med 46(4):502–510. doi:10.1016/j.freeradbiomed.2008.11.004

    Article  PubMed  Google Scholar 

  • Evenson DP, Jost LK, Marshall D et al (1999) Utility of sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 14(4):1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Fear JM, Hansen PJ (2011) Developmental changes in expression of genes involved in regulation of apoptosis in the bovine preimplantation embryo. Biol Reprod 84(1):43–51. doi:10.1095/biolreprod.110.086249

    Article  CAS  PubMed  Google Scholar 

  • Fraga CG, Motchnik PA, Wyrobek AJ et al (1996) Smoking and low antioxidant levels increase oxidative damage to DNA. Mutat Res 351:199–203

    Article  PubMed  Google Scholar 

  • Gawecka JE, Marh J, Ortega M et al (2013) Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS One 8(2), e56385. doi:10.1371/journal.pone.0056385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gharagozloo P, Aitken RJ (2011) The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod 26(7):1628–40. doi:10.1093/humrep/der132

    Article  PubMed  Google Scholar 

  • Gomez E, Buckingham DW, Brindle J et al (1996) Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa, correlation with biochemical markers of the cytoplasmic space, oxidative stress and sperm function. J Androl 17:276–287

    CAS  PubMed  Google Scholar 

  • Goriely A, McVean GA, Röjmyr M et al (2003) Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science 301(5633):643–646

    Article  CAS  PubMed  Google Scholar 

  • Greco E, Romano S, Iacobelli M et al (2005) ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod 20(9):2590–2594

    Article  CAS  PubMed  Google Scholar 

  • Hakimi H, Geary I, Pacey A et al (2006) Spermicidal activity of bacterial lipopolysaccharide is only partly due to lipid A. J Androl 27(6):774–779

    Article  CAS  PubMed  Google Scholar 

  • Harrouk W, Codrington A, Vinson R, Robaire B, Hales BF (2000) Paternal exposure to cyclophosphamide induces DNA damage and alters the expression of DNA repair genes in the rat preimplantation embryo. Mutant Res 461(3):229–241

    Article  CAS  Google Scholar 

  • Hochreiter-Hufford A, Ravichandran KS (2013) Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol 5(1):a008748. doi:10.1101/cshperspect.a008748

    Article  PubMed Central  PubMed  Google Scholar 

  • Hurst LD, Ellegren H (2002) Human genetics: mystery of the mutagenic male. Nature 420(6914):365–6

    Article  CAS  PubMed  Google Scholar 

  • Irvine DS, Twigg JP, Gordon EL et al (2000) DNA integrity in human spermatozoa: relationships with semen quality. J Androl 21(1):33–44

    CAS  PubMed  Google Scholar 

  • Ji G, Yan L, Liu W et al (2013) OGG1 Ser326Cys polymorphism interacts with cigarette smoking to increase oxidative DNA damage in human sperm and the risk of male infertility. Toxicol Lett 218(2):144–9. doi:10.1016/j.toxlet.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  • Jones R, Mann T, Sherins RJ (1979) Peroxidative breakdown of phospholipids in human spermatozoa: spermicidal effects of fatty acid peroxides and protective action of seminal plasma. Fertil Steril 31(5):531–537

    CAS  PubMed  Google Scholar 

  • Kodama H, Yamaguchi R, Fukuda J et al (1997) Increased deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril 68(3):519–524

    Article  CAS  PubMed  Google Scholar 

  • Kong A, Frigge ML, Masson G et al (2012) Rate of de novo mutations and the importance of father's age to disease risk. Nature 488(7412):471–475. doi:10.1038/nature11396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koppers AJ, De Iuliis GN, Finnie JM et al (2008) Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab 93(8):3199–3207. doi:10.1210/jc.2007-2616

    Article  CAS  PubMed  Google Scholar 

  • Koppers AJ, Garg ML, Aitken RJ (2010) Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free Radic Biol Med 48(1):112–119. doi:10.1016/j.freeradbiomed.2009.10.033

    Article  CAS  PubMed  Google Scholar 

  • Koppers AJ, Mitchell LA, Wang P et al (2011) Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J 436(3):687–698. doi:10.1042/BJ20110114

    Article  CAS  PubMed  Google Scholar 

  • Kort HI, Massey JB, Elsner CW et al (2006) Impact of body mass index values on sperm quantity and quality. J Androl 27(3):450–452

    Article  PubMed  Google Scholar 

  • Kramer JA, Krawetz SA (1996) Nuclear matrix interactions within the sperm genome. J Biol Chem 271(20):11619–11622

    Article  CAS  PubMed  Google Scholar 

  • Krausz C, Mills C, Rogers S et al (1994) Stimulation of oxidant generation by human sperm suspensions using phorbol esters and formyl peptides: relationships with motility and fertilization in vitro. Fertil Steril 62(3):599–605

    CAS  PubMed  Google Scholar 

  • Larson KL, Dejonge CJ, Barnes CM et al (2000) Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod 15(8):1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Ward MH, Han S et al (2009) Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk. Leuk Res 33(2):250–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Lin H, Li Y et al (2011) Association between socio-psycho-behavioral factors and male semen quality: systematic review and meta-analyses. Fertil Steril 95(1):116–123. doi:10.1016/j.fertnstert.2010.06.031

    Article  PubMed  Google Scholar 

  • Liu C, Duan W, Xu S et al (2013) Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicol Lett 218(1):2–9. doi:10.1016/j.toxlet.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chapple V, Roberts P et al (2014) Time-lapse videography of human oocytes following intracytoplasmic sperm injection: events up to the first cleavage division. Reprod Biol 14(4):249–256. doi:10.1016/j.repbio.2014.08.003

    Article  PubMed  Google Scholar 

  • Lopes S, Jurisicova A, Sun JG et al (1998) Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod 13(4):896–900

    Article  CAS  PubMed  Google Scholar 

  • Lozano GM, Bejarano I, Espino J et al (2009) Relationship between caspase activity and apoptotic markers in human sperm in response to hydrogen peroxide and progesterone. J Reprod Dev 55(6):615–621

    Article  CAS  PubMed  Google Scholar 

  • Menezo Y Jr, Russo G, Tosti E et al (2007) Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet 24(11):513–520

    Article  PubMed Central  PubMed  Google Scholar 

  • Meseguer M, Martínez-Conejero JA, O'Connor JE et al (2008) The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril 89(5):1191–1199

    Article  PubMed  Google Scholar 

  • Moskovtsev SI, Willis J, White J et al (2007) Leukocytospermia: relationship to sperm deoxyribonucleic acid integrity in patients evaluated for male factor infertility. Fertil Steril 88(3):737–740

    Article  CAS  PubMed  Google Scholar 

  • Nadel B, de Lara J, Finkernagel SW et al (1995) Cell-specific organization of the 5S ribosomal RNA gene cluster DNA loop domains in spermatozoa and somatic cells. Biol Reprod 53(5):1222–1228

    Article  CAS  PubMed  Google Scholar 

  • Oliveira H, Spanò M, Santos C et al (2009) Adverse effects of cadmium exposure on mouse sperm. Reprod Toxicol 28(4):550–555. doi:10.1016/j.reprotox.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  • Paasch U, Grunewald S, Agarwal A et al (2004) Activation pattern of caspases in human spermatozoa. Fertil Steril 81(1):802–809

    Article  CAS  PubMed  Google Scholar 

  • Paul C, Nagano M, Robaire B (2011) Aging results in differential regulation of DNA repair pathways in pachytene spermatocytes in the Brown Norway rat. Biol Reprod 85(6):1269–1278. doi:10.1095/biolreprod.111.094219

    Article  CAS  PubMed  Google Scholar 

  • Pujianto DA, Curry BJ, Aitken RJ (2010) Prolactin exerts a prosurvival effect on human spermatozoa via mechanisms that involve the stimulation of Akt phosphorylation and suppression of caspase activation and capacitation. Endocrinology 151(3):1269–1279. doi:10.1210/en.2009-0964

    Article  CAS  PubMed  Google Scholar 

  • Rhemrev JP, van Overveld FW, Haenen GR et al (2000) Quantification of the nonenzymatic fast and slow TRAP in a postaddition assay in human seminal plasma and the antioxidant contributions of various seminal compounds. J Androl 21(6):913–920

    CAS  PubMed  Google Scholar 

  • Robinson L, Gallos ID, Conner SJ et al (2012) The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod 27(10):2908–2917. doi:10.1093/humrep/des261

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez PC, Valdez LB, Zaobornyj T et al (2011) Nitric oxide and superoxide anion production during heparin-induced capacitation in cryopreserved bovine spermatozoa. Reprod Domest Anim 46(1):74–81. doi:10.1111/j.1439-0531.2010.01583.x

    Article  CAS  PubMed  Google Scholar 

  • Saleh RA, Agarwal A, Kandirali E et al (2002) Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril 78(6):1215–1224

    Article  PubMed  Google Scholar 

  • Sanocka D, Miesel R, Jedrzejczak P et al (1997) Effect of reactive oxygen species and the activity of antioxidant systems on human semen; association with male infertility. Int J Androl 20(5):255–264

    Article  CAS  PubMed  Google Scholar 

  • Sawyer DE, Mercer BG, Wiklendt AM et al (2003) Quantitative analysis of gene-specific DNA damage in human spermatozoa. Mutat Res 529(1-2):21–34

    Article  CAS  PubMed  Google Scholar 

  • Shaman JA, Yamauchi Y, Ward WS (2007) The sperm nuclear matrix is required for paternal DNA replication. J Cell Biochem 102(3):680–688

    Article  CAS  PubMed  Google Scholar 

  • Shimura T, Inoue M, Taga M et al (2002) p53-dependent S-phase damage checkpoint and pronuclear cross talk in mouse zygotes with X-irradiated sperm. Mol Cell Biol 22(7):2220–2228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shinde DN, Elmer DP, Calabrese P et al (2013) New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. Hum Mol Genet 22(20):4117–4126. doi:10.1093/hmg/ddt260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Showell MG, Brown J, Yazdani A et al. (2011) Antioxidants for male subfertility. Cochrane Database Syst Rev (1): CD007411. doi: 10.1002/14651858.CD007411

  • Singh NP, Muller CH, Berger RE (2003) Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril 80(6):1420–1430

    Article  PubMed  Google Scholar 

  • Smith TB, Dun MD, Smith ND et al (2013) The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J Cell Sci 126(6):1488–1497. doi:10.1242/jcs.121657

    Article  CAS  PubMed  Google Scholar 

  • Sotolongo B, Huang TT, Isenberger E et al (2005) An endogenous nuclease in hamster, mouse, and human spermatozoa cleaves DNA into loop-sized fragments. J Androl 26(2):272–80

    CAS  PubMed  Google Scholar 

  • Storey BT, Alvarez JG, Thompson KA (1998) Human sperm glutathione reductase activity in situ reveals limitation in the glutathione antioxidant defense system due to supply of NADPH. Mol Reprod Dev 49(4):400–407

    Article  CAS  PubMed  Google Scholar 

  • Sturmey RG, Hawkhead JA, Barker EA et al (2009) DNA damage and metabolic activity in the preimplantation embryo. Hum Reprod 24(1):81–91

    Article  CAS  PubMed  Google Scholar 

  • Suleiman SA, Ali ME, Zaki ZM et al (1996) Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl 17(5):530–537

    CAS  PubMed  Google Scholar 

  • Thomson LK, Fleming SD, Aitken RJ et al (2009) Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod 24(9):2061–2070. doi:10.1093/humrep/dep214

    Article  CAS  PubMed  Google Scholar 

  • Tosic J, Walton A (1950) Metabolism of spermatozoa. The formation and elimination of hydrogen peroxide by spermatozoa and effects on motility and survival. Biochem J 47(2):199–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tunc O, Bakos HW, Tremellen K (2011) Impact of body mass index on seminal oxidative stress. Andrologia 43(2):121–128

    Article  CAS  PubMed  Google Scholar 

  • Twigg J, Irvine DS, Houston P et al (1998) Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol Hum Reprod 4(5):439–445

    Article  CAS  PubMed  Google Scholar 

  • Uribe P, Boguen R, Treulen F et al (2015) Peroxynitrite-mediated nitrosative stress decreases motility and mitochondrial membrane potential in human spermatozoa. Mol Hum Reprod 21:237–43

    Article  CAS  PubMed  Google Scholar 

  • van Overveld FW, Haenen GR, Rhemrev J et al (2000) Tyrosine as important contributor to the antioxidant capacity of seminal plasma. Chem Biol Interact 127:151–161

    Article  PubMed  Google Scholar 

  • Wang Y, Sharma RK, Agarwal A (1997) Effect of cryopreservation and sperm concentration on lipid peroxidation in human semen. Urology 50(3):409–413

    Article  CAS  PubMed  Google Scholar 

  • Ward WS (2010) Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 16(1):30–36. doi:10.1093/molehr/gap080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wündrich K, Paasch U, Leicht M et al (2006) Activation of caspases in human spermatozoa during cryopreservation–an immunoblot study. Cell Tissue Bank 7(2):81–9

    Article  PubMed  Google Scholar 

  • Xu DX, Shen HM, Zhu QX et al (2003) The associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutat Res 534(1-2):155–163

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Baldwin D, Schultz RM (2004) Transcript profiling during preimplantation mouse development. Dev Biol 272(2):483–496

    Article  CAS  PubMed  Google Scholar 

  • Zribi N, Chakroun NF, Ben Abdallah F et al (2012) Effect of freezing-thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology 65(3):326–331. doi:10.1016/j.cryobiol.2012.09.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support given by the University of Newcastle and the National Health and Medical Research Council that has enabled the studies summarized in this chapter to be undertaken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert John Aitken Sc.D., F.R.S.E., F.A.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gavriliouk, D., Aitken, R.J. (2015). Damage to Sperm DNA Mediated by Reactive Oxygen Species: Its Impact on Human Reproduction and the Health Trajectory of Offspring. In: Bronson, R. (eds) The Male Role in Pregnancy Loss and Embryo Implantation Failure. Advances in Experimental Medicine and Biology, vol 868. Springer, Cham. https://doi.org/10.1007/978-3-319-18881-2_2

Download citation

Publish with us

Policies and ethics