Skip to main content

Regulation of Instant Blood Mediated Inflammatory Reaction (IBMIR) in Pancreatic Islet Xeno-Transplantation: Points for Therapeutic Interventions

  • Conference paper
Immune Responses to Biosurfaces

Abstract

Xeno-transplantation of pancreatic islets represents a promising therapeutic alternative for the treatment of type 1 diabetes mellitus. However, potent innate immune responses induced shortly after the transplantation of donor islets to the recipient, comprising the Instant Blood Mediated Immune Reaction (IBMIR), exert detrimental actions on islet graft function. The coagulation and complement cascades together with the leukocyte and platelet populations are the major players in IBMIR. This innate immune attack affects dramatically islet integrity and leads to significant loss of function of the xenograft. In the present review, we focus on the mechanisms contributing to IBMIR components and address therapeutic intervention approaches to limit IBMIR by administering inhibitors in circulation, by coating the islet surface with inhibitors or by generating transgenic donor animals; these approaches could result in improved xenograft survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auchincloss H, Sachs DH. Xenogeneic transplantation. Annu Rev Immunol. 1998;16:433–70.

    Article  CAS  PubMed  Google Scholar 

  2. Mulligan MS, Shearon TH, Weill D, Pagani FD, Moore J, Murray S. Heart and lung transplantation in the United States, 1997–2006. Am J Transplant. 2008;8:977–87.

    Article  CAS  PubMed  Google Scholar 

  3. Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes. 2014;7:211–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Luan NM, Iwata H. Long-term allogeneic islet graft survival in prevascularized subcutaneous sites without immunosuppressive treatment. Am J Transplant. 2014;14:1533–42.

    Article  CAS  PubMed  Google Scholar 

  5. O’Connell PJ, Cowan PJ, Hawthorne WJ, Yi S, Lew AM. Transplantation of xenogeneic islets: are we there yet? Curr Diab Rep. 2013;13:687–94.

    Article  PubMed  CAS  Google Scholar 

  6. Cooper DKC, Satyananda V, Ekser B, van der Windt DJ, Hara H, Ezzelarab MB, Schuurman H-J. Progress in pig-to-non-human primate transplantation models (1998–2013): a comprehensive review of the literature. Xenotransplantation. 2014;21:397–419.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reichart B, Niemann H, Chavakis T, et al. Xenotransplantation of porcine islet cells as a potential option for the treatment of type 1 diabetes in the future. Horm Metab Res. 2015;47:31–5.

    CAS  PubMed  Google Scholar 

  8. van der Windt DJ, Bottino R, Kumar G, et al. Clinical islet xenotransplantation: how close are we? Diabetes. 2012;61:3046–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Zeyland J, Lipiński D, Słomski R. The current state of xenotransplantation. J Appl Genet. 2014. doi:10.1007/s13353-014-0261-6.

    PubMed Central  PubMed  Google Scholar 

  10. Cooper DKC, Gollackner B, Knosalla C, Teranishi K. Xenotransplantation – how far have we come? Transpl Immunol. 2002;9:251–6.

    Article  CAS  PubMed  Google Scholar 

  11. Klymiuk N, Aigner B, Brem G, Wolf E. Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev. 2010;77:209–21.

    CAS  PubMed  Google Scholar 

  12. Nagaraju S, Bottino R, Wijkstrom M, Hara H, Trucco M, Cooper DKC. Islet xenotransplantation from genetically engineered pigs. Curr Opin Organ Transplant. 2013;18:695–702.

    Article  CAS  PubMed  Google Scholar 

  13. Holgersson J, Ehrnfelt C, Hauzenberger E, Serrander L. Leukocyte endothelial cell interactions in pig to human organ xenograft rejection. Vet Immunol Immunopathol. 2002;87:407–15.

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Yang Y-G. Innate cellular immunity and xenotransplantation. Curr Opin Organ Transplant. 2012;17:162–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ekser B, Cooper DKC. Overcoming the barriers to xenotransplantation: prospects for the future. Expert Rev Clin Immunol. 2010;6:219–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yang Y-G, Sykes M. Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol. 2007;7:519–31.

    Article  CAS  PubMed  Google Scholar 

  17. Bennet W, Groth CG, Larsson R, Nilsson B, Korsgren O. Isolated human islets trigger an instant blood mediated inflammatory reaction: implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. Ups J Med Sci. 2000;105:125–33.

    CAS  PubMed  Google Scholar 

  18. Nilsson B, Ekdahl KN, Korsgren O. Control of instant blood-mediated inflammatory reaction to improve islets of Langerhans engraftment. Curr Opin Organ Transplant. 2011;16:620–6.

    Article  CAS  PubMed  Google Scholar 

  19. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Anderson DH, Radeke MJ, Gallo NB, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res. 2010;29:95–112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. DeAngelis RA, Markiewski MM, Kourtzelis I, Rafail S, Syriga M, Sandor A, Maurya MR, Gupta S, Subramaniam S, Lambris JD. A complement-IL-4 regulatory circuit controls liver regeneration. J Immunol. 2012;188:641–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Markiewski MM, DeAngelis RA, Strey CW, Foukas PG, Gerard C, Gerard N, Wetsel RA, Lambris JD. The regulation of liver cell survival by complement. J Immunol. 2009;182:5412–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rafail S, Kourtzelis I, Foukas PG, Markiewski MM, DeAngelis RA, Guariento M, Ricklin D, Grice EA, Lambris JD. Complement deficiency promotes cutaneous wound healing in mice. J Immunol. 2015;194:1285–91.

    Article  CAS  PubMed  Google Scholar 

  24. Langer HF, Chung K-J, Orlova VV, et al. Complement-mediated inhibition of neovascularization reveals a point of convergence between innate immunity and angiogenesis. Blood. 2010;116:4395–403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Jalili A, Shirvaikar N, Marquez-Curtis L, Qiu Y, Korol C, Lee H, Turner AR, Ratajczak MZ, Janowska-Wieczorek A. Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Exp Hematol. 2010;38:321–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ratajczak MZ, Reca R, Wysoczynski M, Yan J, Ratajczak J. Modulation of the SDF-1-CXCR4 axis by the third complement component (C3) – implications for trafficking of CXCR4+ stem cells. Exp Hematol. 2006;34:986–95.

    Article  CAS  PubMed  Google Scholar 

  27. Reca R, Mastellos D, Majka M, et al. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood. 2003;101:3784–93.

    Article  CAS  PubMed  Google Scholar 

  28. MacLaren R, Cui W, Cianflone K. Adipokines and the immune system: an adipocentric view. Adv Exp Med Biol. 2008;632:1–21.

    Article  CAS  PubMed  Google Scholar 

  29. Phieler J, Chung K-J, Chatzigeorgiou A, et al. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. J Immunol. 2013;191:4367–74.

    Article  CAS  PubMed  Google Scholar 

  30. Phieler J, Garcia-Martin R, Lambris JD, Chavakis T. The role of the complement system in metabolic organs and metabolic diseases. Semin Immunol. 2013;25:47–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kourtzelis I, Rafail S, DeAngelis RA, Foukas PG, Ricklin D, Lambris JD. Inhibition of biomaterial-induced complement activation attenuates the inflammatory host response to implantation. FASEB J. 2013;27:2768–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kourtzelis I, Markiewski MM, Doumas M, et al. Complement anaphylatoxin C5a contributes to hemodialysis-associated thrombosis. Blood. 2010;116:631–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Orsini F, De Blasio D, Zangari R, Zanier ER, De Simoni M-G. Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis. Front Cell Neurosci. 2014;8:380.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Carroll MV, Sim RB. Complement in health and disease. Adv Drug Deliv Rev. 2011;63:965–75.

    Article  CAS  PubMed  Google Scholar 

  35. Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol. 2013;190:3831–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ehlers MR. CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect. 2000;2:289–94.

    Article  CAS  PubMed  Google Scholar 

  37. Lachmann PJ. The amplification loop of the complement pathways. Adv Immunol. 2009;104:115–49.

    Article  CAS  PubMed  Google Scholar 

  38. Amara U, Flierl MA, Rittirsch D, et al. Molecular intercommunication between the complement and coagulation systems. J Immunol. 2010;185:5628–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD. Interactions between coagulation and complement – their role in inflammation. Semin Immunopathol. 2012;34:151–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gaboriaud C, Ling WL, Thielens NM, Bally I, Rossi V. Deciphering the fine details of c1 assembly and activation mechanisms: “mission impossible”? Front Immunol. 2014;5:565.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Gál P, Barna L, Kocsis A, Závodszky P. Serine proteases of the classical and lectin pathways: similarities and differences. Immunobiology. 2007;212:267–77.

    Article  PubMed  CAS  Google Scholar 

  42. Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol. 2006;176:1305–10.

    Article  CAS  PubMed  Google Scholar 

  43. Ricklin D. Manipulating the mediator: modulation of the alternative complement pathway C3 convertase in health, disease and therapy. Immunobiology. 2012;217:1057–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Alcorlo M, Tortajada A, Rodríguez de Córdoba S, Llorca O. Structural basis for the stabilization of the complement alternative pathway C3 convertase by properdin. Proc Natl Acad Sci U S A. 2013;110:13504–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Hourcade DE. The role of properdin in the assembly of the alternative pathway C3 convertases of complement. J Biol Chem. 2006;281:2128–32.

    Article  CAS  PubMed  Google Scholar 

  46. Lesher AM, Nilsson B, Song W-C. Properdin in complement activation and tissue injury. Mol Immunol. 2013;56:191–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Rawal N, Pangburn MK. Structure/function of C5 convertases of complement. Int Immunopharmacol. 2001;1:415–22.

    Article  CAS  PubMed  Google Scholar 

  48. Bubeck D. The making of a macromolecular machine: assembly of the membrane attack complex. Biochemistry. 2014;53:1908–15.

    Article  CAS  PubMed  Google Scholar 

  49. Klos A, Tenner AJ, Johswich K-O, Ager RR, Reis ES, Köhl J. The role of the anaphylatoxins in health and disease. Mol Immunol. 2009;46:2753–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9:729–40.

    CAS  PubMed  Google Scholar 

  51. Kim DD, Song W-C. Membrane complement regulatory proteins. Clin Immunol. 2006;118:127–36.

    Article  CAS  PubMed  Google Scholar 

  52. Barilla-LaBarca ML, Liszewski MK, Lambris JD, Hourcade D, Atkinson JP. Role of membrane cofactor protein (CD46) in regulation of C4b and C3b deposited on cells. J Immunol. 2002;168:6298–304.

    Article  CAS  PubMed  Google Scholar 

  53. Kimberley FC, Sivasankar B, Paul Morgan B. Alternative roles for CD59. Mol Immunol. 2007;44:73–81.

    Article  CAS  PubMed  Google Scholar 

  54. Bennet W, Sundberg B, Elgue G, Larsson R, Korsgren O, Nilsson B. A new in vitro model for the study of pig-to-human vascular hyperacute rejection. Xenotransplantation. 2001;8:176–84.

    Article  CAS  PubMed  Google Scholar 

  55. Bottino R, Wijkstrom M, van der Windt DJ, et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J Transplant. 2014;14:2275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hawthorne WJ, Salvaris EJ, Phillips P, et al. Control of IBMIR in neonatal porcine islet xenotransplantation in baboons. Am J Transplant. 2014;14:1300–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. van der Windt DJ, Bottino R, Casu A, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. Am J Transplant. 2009;9:2716–26.

    Article  PubMed  CAS  Google Scholar 

  58. Zhou C-Y, McInnes E, Copeman L, Langford G, Parsons N, Lancaster R, Richards A, Carrington C, Thompson S. Transgenic pigs expressing human CD59, in combination with human membrane cofactor protein and human decay-accelerating factor. Xenotransplantation. 2005;12:142–8.

    Article  PubMed  Google Scholar 

  59. Zhou C-Y, McInnes E, Parsons N, et al. Production and characterization of a pig line transgenic for human membrane cofactor protein. Xenotransplantation. 2002;9:183–90.

    Article  PubMed  Google Scholar 

  60. Perry VH, O’Connor V. C1q: the perfect complement for a synaptic feast? Nat Rev Neurosci. 2008;9:807–11.

    Article  CAS  PubMed  Google Scholar 

  61. Rawal N, Rajagopalan R, Salvi VP. Stringent regulation of complement lectin pathway C3/C5 convertase by C4b-binding protein (C4BP). Mol Immunol. 2009;46:2902–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Williams JC, Mackman N. Tissue factor in health and disease. Front Biosci (Elite Ed). 2012;4:358–72.

    Article  Google Scholar 

  63. Owens AP, Mackman N. Tissue factor and thrombosis: the clot starts here. Thromb Haemost. 2010;104:432–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Saha D, S S, Sergeeva EG, Ionova ZI, Gorbach AV. Tissue factor and atherothrombosis. Curr Pharm Des. 2015;21:1152–7.

    Article  CAS  PubMed  Google Scholar 

  65. Samad F, Ruf W. Inflammation, obesity, and thrombosis. Blood. 2013;122:3415–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Edgington TS, Mackman N, Brand K, Ruf W. The structural biology of expression and function of tissue factor. Thromb Haemost. 1991;66:67–79.

    CAS  PubMed  Google Scholar 

  67. Walker RK, Krishnaswamy S. The activation of prothrombin by the prothrombinase complex. The contribution of the substrate-membrane interaction to catalysis. J Biol Chem. 1994;269:27441–50.

    CAS  PubMed  Google Scholar 

  68. Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3:1894–904.

    Article  CAS  PubMed  Google Scholar 

  69. Moberg L, Johansson H, Lukinius A, et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet. 2002;360:2039–45.

    Article  CAS  PubMed  Google Scholar 

  70. Bennet W, Sundberg B, Lundgren T, et al. Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomologus monkeys: protective effects of sCR1 and heparin. Transplantation. 2000;69:711–9.

    Article  CAS  PubMed  Google Scholar 

  71. Johansson H, Lukinius A, Moberg L, et al. Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes. 2005;54:1755–62.

    Article  CAS  PubMed  Google Scholar 

  72. Ozmen L, Ekdahl KN, Elgue G, Larsson R, Korsgren O, Nilsson B. Inhibition of thrombin abrogates the instant blood-mediated inflammatory reaction triggered by isolated human islets: possible application of the thrombin inhibitor melagatran in clinical islet transplantation. Diabetes. 2002;51:1779–84.

    Article  CAS  PubMed  Google Scholar 

  73. Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991;30:10363–70.

    Article  CAS  PubMed  Google Scholar 

  74. Hirsh J. Current anticoagulant therapy – unmet clinical needs. Thromb Res. 2003;109 Suppl 1:S1–8.

    Article  CAS  PubMed  Google Scholar 

  75. Bouwens EAM, Stavenuiter F, Mosnier LO. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost. 2013;11 Suppl 1:242–53.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Wood JP, Ellery PER, Maroney SA, Mast AE. Biology of tissue factor pathway inhibitor. Blood. 2014;123:2934–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Sadler JE. Thrombomodulin structure and function. Thromb Haemost. 1997;78:392–5.

    CAS  PubMed  Google Scholar 

  78. Mosnier LO, Meijers JC, Bouma BN. Regulation of fibrinolysis in plasma by TAFI and protein C is dependent on the concentration of thrombomodulin. Thromb Haemost. 2001;85:5–11.

    CAS  PubMed  Google Scholar 

  79. Ayares D, Phelps C, Vaught T, et al. Multi-transgenic pigs for xenoislet transplantation. Xenotransplantation. 2013;20:46.

    Article  Google Scholar 

  80. Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d’Apice AJF, Cowan PJ. Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant. 2008;8:1101–12.

    Article  CAS  PubMed  Google Scholar 

  81. Wuensch A, Baehr A, Bongoni AK, et al. Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs. Transplantation. 2014;97:138–47.

    Article  CAS  PubMed  Google Scholar 

  82. Wang H, Vinnikov I, Shahzad K, et al. The lectin-like domain of thrombomodulin ameliorates diabetic glomerulopathy via complement inhibition. Thromb Haemost. 2012;108:1141–53.

    Article  PubMed  Google Scholar 

  83. Krarup A, Wallis R, Presanis JS, Gál P, Sim RB. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS One. 2007;2, e623.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Caliezi C, Wuillemin WA, Zeerleder S, Redondo M, Eisele B, Hack CE. C1-Esterase inhibitor: an anti-inflammatory agent and its potential use in the treatment of diseases other than hereditary angioedema. Pharmacol Rev. 2000;52:91–112.

    CAS  PubMed  Google Scholar 

  85. Ritis K, Doumas M, Mastellos D, Micheli A, Giaglis S, Magotti P, Rafail S, Kartalis G, Sideras P, Lambris JD. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol. 2006;177:4794–802.

    Article  CAS  PubMed  Google Scholar 

  86. Kastl SP, Speidl WS, Kaun C, et al. The complement component C5a induces the expression of plasminogen activator inhibitor-1 in human macrophages via NF-kappaB activation. J Thromb Haemost. 2006;4:1790–7.

    Article  CAS  PubMed  Google Scholar 

  87. Mitroulis I, Alexaki VI, Kourtzelis I, Ziogas A, Hajishengallis G, Chavakis T. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther. 2014;147:123–35. doi:10.1016/j.pharmthera.2014.11.008.

    Article  PubMed  CAS  Google Scholar 

  88. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89.

    Article  CAS  PubMed  Google Scholar 

  89. Kuwano Y, Spelten O, Zhang H, Ley K, Zarbock A. Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils. Blood. 2010;116:617–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Chavakis E, Choi EY, Chavakis T. Novel aspects in the regulation of the leukocyte adhesion cascade. Thromb Haemost. 2009;102:191–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Chavakis T, Bierhaus A, Al-Fakhri N, et al. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med. 2003;198:1507–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Gahmberg CG, Fagerholm SC, Nurmi SM, Chavakis T, Marchesan S, Grönholm M. Regulation of integrin activity and signalling. Biochim Biophys Acta. 2009;1790:431–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Choi EY, Santoso S, Chavakis T. Mechanisms of neutrophil transendothelial migration. Front Biosci (Landmark Ed). 2009;14:1596–605.

    Article  CAS  Google Scholar 

  94. Woodfin A, Voisin M-B, Nourshargh S. Recent developments and complexities in neutrophil transmigration. Curr Opin Hematol. 2010;17:9–17.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Robinson LA, Tu L, Steeber DA, Preis O, Platt JL, Tedder TF. The role of adhesion molecules in human leukocyte attachment to porcine vascular endothelium: implications for xenotransplantation. J Immunol. 1998;161:6931–8.

    CAS  PubMed  Google Scholar 

  96. Schneider MKJ, Ghielmetti M, Rhyner DM, Antsiferova MA, Seebach JD. Human leukocyte transmigration across Galalpha(1,3)Gal-negative porcine endothelium is regulated by human CD18 and CD99. Transplantation. 2009;87:491–9.

    Article  CAS  PubMed  Google Scholar 

  97. Birmele B, Thibault G, Nivet H, Gruel Y, Bardos P, Lebranchu Y. Human lymphocyte adhesion to xenogeneic porcine endothelial cells: modulation by human TNF-alpha and involvement of VLA-4 and LFA-1. Transpl Immunol. 1996;4:265–70.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang XF, Feng MF. Adherence of human monocytes and NK cells to human TNF-alpha-stimulated porcine endothelial cells. Immunol Cell Biol. 2000;78:633–40.

    Article  CAS  PubMed  Google Scholar 

  99. Kwiatkowski P, Artrip JH, John R, Edwards NM, Wang SF, Michler RE, Itescu S. Induction of swine major histocompatibility complex class I molecules on porcine endothelium by tumor necrosis factor-alpha reduces lysis by human natural killer cells. Transplantation. 1999;67:211–8.

    Article  CAS  PubMed  Google Scholar 

  100. Hauzenberger E, Hauzenberger D, Hultenby K, Holgersson J. Porcine endothelium supports transendothelial migration of human leukocyte subpopulations: anti-porcine vascular cell adhesion molecule antibodies as species-specific blockers of transendothelial monocyte and natural killer cell migration. Transplantation. 2000;69:1837–49.

    Article  CAS  PubMed  Google Scholar 

  101. Saethre M, Schneider MKJ, Lambris JD, Magotti P, Haraldsen G, Seebach JD, Mollnes TE. Cytokine secretion depends on Galalpha(1,3)Gal expression in a pig-to-human whole blood model. J Immunol. 2008;180:6346–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Kourtzelis I, Ferreira A, Mitroulis I, Ricklin D, Bornstein SR, Waskow C, Lambris JD, Chavakis T. Complement inhibition in a xenogeneic model of interactions between human whole blood and porcine endothelium. Horm Metab Res. 2015;47:36–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Nyqvist D, Köhler M, Wahlstedt H, Berggren P-O. Donor islet endothelial cells participate in formation of functional vessels within pancreatic islet grafts. Diabetes. 2005;54:2287–93.

    Article  CAS  PubMed  Google Scholar 

  104. Heald KA, Carless N, Jay TR, Boucher N, Downing R. Expression of the GALalpha(1-3)GAL epitope on pig islets. J Mol Med. 1999;77:169–71.

    Article  CAS  PubMed  Google Scholar 

  105. Henriksnäs J, Lau J, Zang G, Berggren P-O, Köhler M, Carlsson P-O. Markedly decreased blood perfusion of pancreatic islets transplanted intraportally into the liver: disruption of islet integrity necessary for islet revascularization. Diabetes. 2012;61:665–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Chavakis T. Leucocyte recruitment in inflammation and novel endogenous negative regulators thereof. Eur J Clin Invest. 2012;42:686–91.

    Article  CAS  PubMed  Google Scholar 

  107. Hajishengallis G, Chavakis T. Endogenous modulators of inflammatory cell recruitment. Trends Immunol. 2013;34:1–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Choi EY, Chavakis E, Czabanka MA, et al. Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science. 2008;322:1101–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Kang Y-Y, Kim D-Y, Lee S-H, Choi EY. Deficiency of developmental endothelial locus-1 (Del-1) aggravates bleomycin-induced pulmonary fibrosis in mice. Biochem Biophys Res Commun. 2014;445:369–74.

    Article  CAS  PubMed  Google Scholar 

  110. Mitroulis I, Kang Y-Y, Gahmberg CG, Siegert G, Hajishengallis G, Chavakis T, Choi E-Y. Developmental endothelial locus-1 attenuates complement-dependent phagocytosis through inhibition of Mac-1-integrin. Thromb Haemost. 2014;111:1004–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Choi EY, Lim J-H, Neuwirth A, et al. Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Mol Psychiatry. 2014. doi:10.1038/mp.2014.146.

    PubMed Central  Google Scholar 

  112. Eskan MA, Jotwani R, Abe T, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol. 2012;13:465–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Wang S, Zhao Z, Cong Z, Suo G. Thrombin-activatable fibrinolysis inhibitor is activated in an instant blood-mediated inflammatory reaction after intraportal islet transplant. Exp Clin Transplant. 2014;12:62–6.

    Article  PubMed  Google Scholar 

  114. Tjernberg J, Ekdahl KN, Lambris JD, Korsgren O, Nilsson B. Acute antibody-mediated complement activation mediates lysis of pancreatic islets cells and may cause tissue loss in clinical islet transplantation. Transplantation. 2008;85:1193–9.

    Article  PubMed Central  PubMed  Google Scholar 

  115. Goto M, Johansson H, Maeda A, Elgue G, Korsgren O, Nilsson B. Low molecular weight dextran sulfate prevents the instant blood-mediated inflammatory reaction induced by adult porcine islets. Transplantation. 2004;77:741–7.

    Article  CAS  PubMed  Google Scholar 

  116. Biarnés M, Montolio M, Nacher V, Raurell M, Soler J, Montanya E. Beta-cell death and mass in syngeneically transplanted islets exposed to short- and long-term hyperglycemia. Diabetes. 2002;51:66–72.

    Article  PubMed  Google Scholar 

  117. van der Windt DJ, Bottino R, Casu A, Campanile N, Cooper DKC. Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation. 2007;14:288–97.

    Article  PubMed  Google Scholar 

  118. Harlan DM, Kenyon NS, Korsgren O, Roep BO, Immunology of Diabetes Society. Current advances and travails in islet transplantation. Diabetes. 2009;58:2175–84.

    Article  CAS  Google Scholar 

  119. Tai JH, Sun H, Liu W, Melling CWJ, Hasilo C, White DJG. Isolating human islets of Langerhans causes loss of decay accelerating factor (CD55) on beta-cells. Cell Transplant. 2008;17:1349–59.

    Article  PubMed  Google Scholar 

  120. Akima S, Hawthorne WJ, Favaloro E, Patel A, Blyth K, Mudaliar Y, Chapman JR, O’Connell PJ. Tirofiban and activated protein C synergistically inhibit the Instant Blood Mediated Inflammatory Reaction (IBMIR) from allogeneic islet cells exposure to human blood. Am J Transplant. 2009;9:1533–40.

    Article  CAS  PubMed  Google Scholar 

  121. Contreras JL, Eckstein C, Smyth CA, et al. Activated protein C preserves functional islet mass after intraportal transplantation: a novel link between endothelial cell activation, thrombosis, inflammation, and islet cell death. Diabetes. 2004;53:2804–14.

    Article  CAS  PubMed  Google Scholar 

  122. Wuillemin WA, te Velthuis H, Lubbers YT, de Ruig CP, Eldering E, Hack CE. Potentiation of C1 inhibitor by glycosaminoglycans: dextran sulfate species are effective inhibitors of in vitro complement activation in plasma. J Immunol. 1997;159:1953–60.

    CAS  PubMed  Google Scholar 

  123. van der Windt DJ, Marigliano M, He J, et al. Early islet damage after direct exposure of pig islets to blood: has humoral immunity been underestimated? Cell Transplant. 2012;21:1791–802.

    Article  PubMed  Google Scholar 

  124. Goto M, Johansson H, Maeda A, Elgue G, Korsgren O, Nilsson B. Low-molecular weight dextran sulfate abrogates the instant blood-mediated inflammatory reaction induced by adult porcine islets both in vitro and in vivo. Transplant Proc. 2004;36:1186–7.

    Article  CAS  PubMed  Google Scholar 

  125. Johansson H, Goto M, Dufrane D, Siegbahn A, Elgue G, Gianello P, Korsgren O, Nilsson B. Low molecular weight dextran sulfate: a strong candidate drug to block IBMIR in clinical islet transplantation. Am J Transplant. 2006;6:305–12.

    Article  CAS  PubMed  Google Scholar 

  126. Goto M, Tjernberg J, Dufrane D, et al. Dissecting the instant blood-mediated inflammatory reaction in islet xenotransplantation. Xenotransplantation. 2008;15:225–34.

    Article  PubMed  Google Scholar 

  127. Rood PPM, Bottino R, Balamurugan AN, Smetanka C, Ayares D, Groth C-G, Murase N, Cooper DKC, Trucco M. Reduction of early graft loss after intraportal porcine islet transplantation in monkeys. Transplantation. 2007;83:202–10.

    Article  PubMed  Google Scholar 

  128. Huber-Lang M, Sarma JV, Zetoune FS, et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. 2006;12:682–7.

    Article  CAS  PubMed  Google Scholar 

  129. Kanthi YM, Sutton NR, Pinsky DJ. CD39: interface between vascular thrombosis and inflammation. Curr Atheroscler Rep. 2014;16:425.

    Article  PubMed  CAS  Google Scholar 

  130. Dwyer KM, Mysore TB, Crikis S, Robson SC, Nandurkar H, Cowan PJ, D’Apice AJF. The transgenic expression of human CD39 on murine islets inhibits clotting of human blood. Transplantation. 2006;82:428–32.

    Article  CAS  PubMed  Google Scholar 

  131. Kang HJ, Lee H, Ha J-M, et al. The role of the alternative complement pathway in early graft loss after intraportal porcine islet xenotransplantation. Transplantation. 2014;97:999–1008.

    Article  CAS  PubMed  Google Scholar 

  132. Tokodai K, Goto M, Inagaki A, Nakanishi W, Okada N, Okada H, Satomi S. C5a-inhibitory peptide combined with gabexate mesilate prevents the instant blood-mediated inflammatory reaction in a rat model of islet transplantation. Transplant Proc. 2010;42:2102–3.

    Article  CAS  PubMed  Google Scholar 

  133. Tokodai K, Goto M, Inagaki A, et al. Attenuation of cross-talk between the complement and coagulation cascades by C5a blockade improves early outcomes after intraportal islet transplantation. Transplantation. 2010;90:1358–65.

    Article  CAS  PubMed  Google Scholar 

  134. Qu H, Ricklin D, Bai H, et al. New analogs of the clinical complement inhibitor compstatin with subnanomolar affinity and enhanced pharmacokinetic properties. Immunobiology. 2013;218:496–505.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Ji M, Yi S, Smith-Hurst H, Phillips P, Wu J, Hawthorne W, O’Connell P. The importance of tissue factor expression by porcine NICC in triggering IBMIR in the xenograft setting. Transplantation. 2011;91:841–6.

    Article  PubMed  Google Scholar 

  136. Ma X, Ye B, Gao F, Liang Q, Dong Q, Liu Y, Rong P, Wang W, Yi S. Tissue factor knockdown in porcine islets: an effective approach to suppressing the instant blood-mediated inflammatory reaction. Cell Transplant. 2012;21:61–71.

    Article  PubMed  Google Scholar 

  137. Berman DM, Cabrera O, Kenyon NM, et al. Interference with tissue factor prolongs intrahepatic islet allograft survival in a nonhuman primate marginal mass model. Transplantation. 2007;84:308–15.

    Article  CAS  PubMed  Google Scholar 

  138. Moberg L, Olsson A, Berne C, et al. Nicotinamide inhibits tissue factor expression in isolated human pancreatic islets: implications for clinical islet transplantation. Transplantation. 2003;76:1285–8.

    Article  CAS  PubMed  Google Scholar 

  139. Jung D-Y, Park JB, Joo S-Y, Joh J-W, Kwon C-H, Kwon G-Y, Kim S-J. Effect of nicotinamide on early graft failure following intraportal islet transplantation. Exp Mol Med. 2009;41:782–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Cabric S, Eich T, Sanchez J, Nilsson B, Korsgren O, Larsson R. A new method for incorporating functional heparin onto the surface of islets of Langerhans. Tissue Eng Part C Methods. 2008;14:141–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Cabric S, Sanchez J, Lundgren T, et al. Islet surface heparinization prevents the instant blood-mediated inflammatory reaction in islet transplantation. Diabetes. 2007;56:2008–15.

    Article  CAS  PubMed  Google Scholar 

  142. Vaithilingam V, Kollarikova G, Qi M, Larsson R, Lacik I, Formo K, Marchese E, Oberholzer J, Guillemin GJ, Tuch BE. Beneficial effects of coating alginate microcapsules with macromolecular heparin conjugates-in vitro and in vivo study. Tissue Eng Part A. 2014;20:324–34.

    Article  CAS  PubMed  Google Scholar 

  143. Cabric S, Sanchez J, Johansson U, Larsson R, Nilsson B, Korsgren O, Magnusson PU. Anchoring of vascular endothelial growth factor to surface-immobilized heparin on pancreatic islets: implications for stimulating islet angiogenesis. Tissue Eng Part A. 2010;16:961–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Luan NM, Teramura Y, Iwata H. Immobilization of soluble complement receptor 1 on islets. Biomaterials. 2011;32:4539–45.

    Article  CAS  PubMed  Google Scholar 

  145. Luan NM, Teramura Y, Iwata H. Immobilization of the soluble domain of human complement receptor 1 on agarose-encapsulated islets for the prevention of complement activation. Biomaterials. 2010;31:8847–53.

    Article  PubMed  CAS  Google Scholar 

  146. Luan NM, Iwata H. Xenotransplantation of islets enclosed in agarose microcapsule carrying soluble complement receptor 1. Biomaterials. 2012;33:8075–81.

    Article  CAS  PubMed  Google Scholar 

  147. Luan NM, Iwata H. Inhibition of instant blood-mediated inflammatory responses by co-immobilization of sCR1 and heparin on islets. Biomaterials. 2013;34:5019–24.

    Article  CAS  PubMed  Google Scholar 

  148. Teramura Y, Iwata H. Improvement of graft survival by surface modification with poly(ethylene glycol)-lipid and urokinase in intraportal islet transplantation. Transplantation. 2011;91:271–8.

    Article  CAS  PubMed  Google Scholar 

  149. Totani T, Teramura Y, Iwata H. Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains. Biomaterials. 2008;29:2878–83.

    Article  CAS  PubMed  Google Scholar 

  150. Chen H, Teramura Y, Iwata H. Co-immobilization of urokinase and thrombomodulin on islet surfaces by poly(ethylene glycol)-conjugated phospholipid. J Control Release. 2011;150:229–34.

    Article  CAS  PubMed  Google Scholar 

  151. Teramura Y, Iwata H. Islets surface modification prevents blood-mediated inflammatory responses. Bioconjug Chem. 2008;19:1389–95.

    Article  CAS  PubMed  Google Scholar 

  152. Cui W, Wilson JT, Wen J, Angsana J, Qu Z, Haller CA, Chaikof EL. Thrombomodulin improves early outcomes after intraportal islet transplantation. Am J Transplant. 2009;9:1308–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Thompson P, Badell IR, Lowe M, et al. Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function. Am J Transplant. 2011;11:2593–602.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem. 1988;263:17755–62.

    CAS  PubMed  Google Scholar 

  155. Puga Yung G, Schneider MKJ, Seebach JD. Immune responses to alpha1,3 galactosyltransferase knockout pigs. Curr Opin Organ Transplant. 2009;14:154–60.

    Article  PubMed  Google Scholar 

  156. Omori T, Nishida T, Komoda H, Fumimoto Y, Ito T, Sawa Y, Gao C, Nakatsu S, Shirakura R, Miyagawa S. A study of the xenoantigenicity of neonatal porcine islet-like cell clusters (NPCC) and the efficiency of adenovirus-mediated DAF (CD55) expression. Xenotransplantation. 2006;13:455–64.

    Article  PubMed  Google Scholar 

  157. Schmidt P, Goto M, Le Mauff B, Anegon I, Korsgren O. Adenovirus-mediated expression of human CD55 or CD59 protects adult porcine islets from complement-mediated cell lysis by human serum. Transplantation. 2003;75:697–702.

    Article  CAS  PubMed  Google Scholar 

  158. Bennet W, Björkland A, Sundberg B, Brandhorst D, Brendel MD, Richards A, White DJ, Nilsson B, Groth CG, Korsgren O. Expression of complement regulatory proteins on islets of Langerhans: a comparison between human islets and islets isolated from normal and hDAF transgenic pigs. Transplantation. 2001;72:312–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the European Community's Seventh Framework Programme under grant agreement n°602699 (DIREKT) and by the Deutsche Forschungsgemeinschaft (SFB-TRR 127 Project A3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Kourtzelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kourtzelis, I., Magnusson, P.U., Kotlabova, K., Lambris, J.D., Chavakis, T. (2015). Regulation of Instant Blood Mediated Inflammatory Reaction (IBMIR) in Pancreatic Islet Xeno-Transplantation: Points for Therapeutic Interventions. In: Lambris, J., Ekdahl, K., Ricklin, D., Nilsson, B. (eds) Immune Responses to Biosurfaces. Advances in Experimental Medicine and Biology, vol 865. Springer, Cham. https://doi.org/10.1007/978-3-319-18603-0_11

Download citation

Publish with us

Policies and ethics