Skip to main content

Adipokines and the Immune System: An Adipocentric View

  • Chapter
  • First Online:
Current Topics in Complement II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 632))

Abstract

There is increasing evidence of close interactions between the adipose and the immune systems. Adipocytes secrete multiple factors, including adipokines such as leptin and adiponectin that have both pro- and anti-inflammatory effects, and influence diseases involving the immune system. Further, adipose tissue also secretes various chemokines and cytokines, derived from either the adipocytes themselves, or the neighbouring cells including both resident and infiltrating macrophages. This close physical and paracrine interaction results in reciprocal actions of adipocytes, preadipocytes and macrophages within the microenvironment of the adipose tissue. Adipose tissue is a source of Acylation Stimulating Protein (ASP)/C3adesArg which interacts with the receptor C5L2 to stimulate triglyceride synthesis and glucose transport. C5L2, present on adipocytes, preadipocytes, macrophages, and numerous other myeloid and non-myeloid cells is also postulated to be a decoy receptor for C5a in immune cells. Several reviews within the past year have recently examined the role of C5L2 in C5a-mediated physiology. The present mini-review is an adipocentric view with emphasis on the role of ASP and C5L2 in lipid metabolism. C5L2 may play a role in mediating, on one hand, ASP stimulation of triglyceride synthesis in adipose, and, on the other hand, a role as mediator of C5a immune function. Both roles remain controversial, and will only be resolved with further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora, K.K., Cheng, Z. and Catt, K.J. (1997) Mutations of the conserved DRS motif in the second intracellular loop of the gonadotropin-releasing hormone receptor affect expression, activation, and internalization. Mol. Endocrinol. 11, 1203–1212

    Article  PubMed  CAS  Google Scholar 

  • Baldo, A., Sniderman, A.D., St Luce, S., Avramoglu, R.K., Maslowska, M., Hoang, B., Monge, J.C., Bell, A., Mulay, S. and Cianflone, K. (1993) The adipsin-acylation stimulating protein system and regulation of intracellular triglyceride synthesis. J. Clin. Invest. 92, 1543–1547

    Article  PubMed  CAS  Google Scholar 

  • Barrington, R., Zhang, M., Fischer, M. and Carroll, M.C. (2001) The role of complement in inflammation and adaptive immunity. Immunol. Rev. 180, 5–15

    Article  PubMed  CAS  Google Scholar 

  • Beltowski, J. (2006) Apelin and visfatin: unique “beneficial” adipokines upregulated in obesity? Med. Sci. Monit. 12, RA112–RA119

    PubMed  CAS  Google Scholar 

  • Berg, A.H., Combs, T.P., Du, X., Brownlee, M. and Scherer, P.E. (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947–953

    Article  PubMed  CAS  Google Scholar 

  • Bouloumie, A., Curat, C.A., Sengenes, C., Lolmede, K., Miranville, A. and Busse, R. (2005) Role of macrophage tissue infiltration in metabolic diseases. Curr. Opin. Clin. Nutr. Metab Care. 8, 347–354

    Article  PubMed  CAS  Google Scholar 

  • Cain, S.A. and Monk, P.N. (2002) The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J. Biol. Chem. 277, 7165–7169

    Article  PubMed  CAS  Google Scholar 

  • Cancello, R. and Clement, K. (2006) Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG 113, 1141–1147

    Article  PubMed  CAS  Google Scholar 

  • Cancello, R., Henegar, C., Viguerie, N., Taleb, S., Poitou, C., Rouault, C., Coupaye, M., Pelloux, V., Hugol, D., Bouillot, J.L., Bouloumie, A., Barbatelli, G., Cinti, S., Svensson, P.A., Barsh, G.S., Zucker, J.D., Basdevant, A., Langin, D. and Clement, K. (2005) Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54, 2277–2286

    Article  PubMed  CAS  Google Scholar 

  • Cancello, R., Tordjman, J., Poitou, C., Guilhem, G., Bouillot, J.L., Hugol, D., Coussieu, C., Basdevant, A., Bar, H.A., Bedossa, P., Guerre-Millo, M. and Clement, K. (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55, 1554–1561

    Article  PubMed  CAS  Google Scholar 

  • Chen, A., Gao, Z.G., Barak, D., Liang, B.T. and Jacobson, K.A. (2001) Constitutive activation of A(3) adenosine receptors by site-directed mutagenesis. Biochem. Biophys. Res. Commun. 284, 596–601

    Article  PubMed  CAS  Google Scholar 

  • Chen, N.J., Mirtsos, C., Suh, D., Lu, Y.C., Lin, W.J., McKerlie, C., Lee, T., Baribault, H., Tian, H. and Yeh, W.C. (2007) C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446, 203–207

    Article  PubMed  CAS  Google Scholar 

  • Choy, L.N. and Spiegelman, B.M. (1996) Regulation of alternative pathway activation and C3a production by adipose cells. Obes. Res. 4, 521–532

    PubMed  CAS  Google Scholar 

  • Choy, L.N., Rosen, B.S. and Spiegelman, B.M. (1992) Adipsin and an endogenous pathway of complement from adipose cells. J. Biol. Chem. 267, 12736–12741

    PubMed  CAS  Google Scholar 

  • Chung, D.A., Wade, S.M., Fowler, C.B., Woods, D.D., Abada, P.B., Mosberg, H.I. and Neubig, R.R. (2002) Mutagenesis and peptide analysis of the DRY motif in the alpha2A adrenergic receptor: evidence for alternate mechanisms in G protein-coupled receptors. Biochem. Biophys. Res. Commun. 293, 1233–1241

    CAS  Google Scholar 

  • Chung, S., Lapoint, K., Martinez, K., Kennedy, A., Boysen, S.M. and McIntosh, M.K. (2006) Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 147, 5340–5351

    Article  PubMed  CAS  Google Scholar 

  • Cianflone, K.M., Sniderman, A.D., Walsh, M.J., Vu, H.T., Gagnon, J. and Rodriguez, M.A. (1989) Purification and characterization of acylation stimulating protein. J. Biol. Chem. 264, 426–430

    PubMed  CAS  Google Scholar 

  • Cianflone, K., Roncari, D.A., Maslowska, M., Baldo, A., Forden, J. and Sniderman, A.D. (1994) Adipsin/acylation stimulating protein system in human adipocytes: regulation of triacylglycerol synthesis. Biochemistry 33, 9489–9495

    Article  PubMed  CAS  Google Scholar 

  • Cianflone, K., Xia, Z. and Chen, L.Y. (2003) Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim. Biophys. Acta. 1609, 127–143

    Article  PubMed  CAS  Google Scholar 

  • Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg, A.S. and Obin, M.S. (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355

    Article  PubMed  CAS  Google Scholar 

  • Coenen, K.R., Gruen, M.L., Chait, A. and Hasty, A.H. (2007) Diet-induced increases in adiposity, but not plasma lipids, promote macrophage infiltration into white adipose tissue. Diabetes 56, 564–573

    Article  PubMed  CAS  Google Scholar 

  • Conner, A.C., Simms, J., Barwell, J., Wheatley, M. and Poyner, D.R. (2007) Ligand binding and activation of the CGRP receptor. Biochem. Soc. Trans. 35, 729–732

    Article  PubMed  CAS  Google Scholar 

  • Cottam, D.R., Mattar, S.G., Barinas-Mitchell, E., Eid, G., Kuller, L., Kelley, D.E. and Schauer, P.R. (2004) The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes. Surg. 14, 589–600

    Article  PubMed  Google Scholar 

  • Cui, W., Paglialunga, S., Kalant, D., Lu, H., Roy, C., Laplante, M., Deshaies, Y. and Cianflone, K. (2007) Acylation stimulating protein/C5L2 neutralizing antibodies alter triglyceride metabolism in vitro and in vivo. Am. J. Physiol Endocrinol. Metab. 293, E1482–E1491

    Article  PubMed  CAS  Google Scholar 

  • DiGirolamo, M. (1991) Cellular, metabolic, and clinical consequences of adipose mass enlargement in obesity. Nutrition 7, 287–289

    PubMed  CAS  Google Scholar 

  • Drolet, R., Richard, C., Sniderman, A.D., Mailloux, J., Fortier, M., Huot, C., Rheaume, C. and Tchernof, A. (2007) Hypertrophy and hyperplasia of abdominal adipose tissues in women. Int. J. Obes. (Lond). 32, (2)283–291

    Article  Google Scholar 

  • Fain, J.N. (2006) Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam. Horm. 74, 443–477

    Article  PubMed  CAS  Google Scholar 

  • Fanelli, F., Barbier, P., Zanchetta, D., de Benedetti, P.G. and Chini, B. (1999) Activation mechanism of human oxytocin receptor: a combined study of experimental and computer-simulated mutagenesis. Mol. Pharmacol. 56, 214–225

    PubMed  CAS  Google Scholar 

  • Funahashi, T., Nakamura, T., Shimomura, I., Maeda, K., Kuriyama, H., Takahashi, M., Arita, Y., Kihara, S. and Matsuzawa, Y. (1999) Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern. Med. 38, 202–206

    Article  PubMed  CAS  Google Scholar 

  • Gao, H., Neff, T.A., Guo, R.F., Speyer, C.L., Sarma, J.V., Tomlins, S., Man, Y., Riedemann, N.C., Hoesel, L.M., Younkin, E., Zetoune, F.S. and Ward, P.A. (2005) Evidence for a functional role of the second C5a receptor C5L2. FASEB J. 19, 1003–1005

    PubMed  CAS  Google Scholar 

  • Gavrilyuk, V., Kalinin, S., Hilbush, B.S., Middlecamp, A., McGuire, S., Pelligrino, D., Weinberg, G. and Feinstein, D.L. (2005) Identification of complement 5a-like receptor (C5L2) from astrocytes: characterization of anti-inflammatory properties. J. Neurochem. 92, 1140–1149

    Article  PubMed  CAS  Google Scholar 

  • Gruijthuijsen, Y.K., Beuken, E.V., Smit, M.J., Leurs, R., Bruggeman, C.A. and Vink, C. (2004) Mutational analysis of the R33-encoded G protein-coupled receptor of rat cytomegalovirus: identification of amino acid residues critical for cellular localization and ligand-independent signalling. J. Gen. Virol. 85, 897–909

    Article  PubMed  CAS  Google Scholar 

  • Guzik, T.J., Mangalat, D. and Korbut, R. (2006) Adipocytokines – novel link between inflammation and vascular function? J. Physiol Pharmacol. 57, 505–528

    PubMed  CAS  Google Scholar 

  • Harmon, C.M. and Abumrad, N.A. (1993) Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J. Membr. Biol. 133, 43–49

    PubMed  CAS  Google Scholar 

  • Honczarenko, M., Lu, B., Nicholson-Weller, A., Gerard, N.P., Silberstein, L.E. and Gerard, C. (2005a) C5L2 receptor is not involved in C3a / C3a-desArg-mediated enhancement of bone marrow hematopoietic cell migration to CXCL12. Leukemia 19, 1682–1683

    Article  CAS  Google Scholar 

  • Honczarenko, M., Ratajczak, M., Nicholson-Weller, A. and Silberstein, L. (2005b) Complement C3a enhances CXCL12 (SDF-1)-mediated chemotaxis of bone marrow hematopoietic cells independently of C3a receptor. J Immunol. 175, 3698–3706

    CAS  Google Scholar 

  • Hotamisligil, G.S. (2006) Inflammation and metabolic disorders. Nature 444, 860–867

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil, G.S. and Spiegelman, B.M. (1994) Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43, 1271–1278

    Article  PubMed  CAS  Google Scholar 

  • Huber-Lang, M., Sarma, J.V., Rittirsch, D., Schreiber, H., Weiss, M., Flierl, M., Younkin, E., Schneider, M., Suger-Wiedeck, H., Gebhard, F., McClintock, S.D., Neff, T., Zetoune, F., Bruckner, U., Guo, R.F., Monk, P.N. and Ward, P.A. (2005) Changes in the novel orphan, C5a receptor (C5L2), during experimental sepsis and sepsis in humans. J. Immunol. 174, 1104–1110

    PubMed  CAS  Google Scholar 

  • Johswich, K. and Klos, A. (2007) C5L2 – an anti-inflammatory molecule or a receptor for acylation stimulating protein (C3a-desArg)? Adv. Exp. Med. Biol. 598, 159–180

    Article  PubMed  Google Scholar 

  • Johswich, K., Martin, M., Thalmann, J., Rheinheimer, C., Monk, P.N. and Klos, A. (2006) Ligand specificity of the anaphylatoxin C5L2 receptor and its regulation on myeloid and epithelial cell lines. J. Biol. Chem. 281, 39088–39095

    Article  PubMed  CAS  Google Scholar 

  • Kalant, D., Cain, S.A., Maslowska, M., Sniderman, A.D., Cianflone, K. and Monk, P.N. (2003a) The chemoattractant receptor-like protein C5L2 binds the C3a des-Arg77/ acylation-stimulating protein. J. Biol. Chem. 278, 11123–11129

    Article  CAS  Google Scholar 

  • Kalant, D., Maslowska, M., Scantlebury, T., Wang, H. and Cianflone, K. (2003b) Control of lipogenesis in adipose tissue and the role of acylation stimulating protein. Can. J. Diabetes27, 154–171

    CAS  Google Scholar 

  • Kalant, D., MacLaren, R., Cui, W., Samanta, R., Monk, P.N., Laporte, S.A. and Cianflone, K. (2005) C5L2 is a functional receptor for acylation-stimulating protein. J. Biol. Chem. 280, 23936–23944

    Article  PubMed  CAS  Google Scholar 

  • Koerner, A., Kratzsch, J. and Kiess, W. (2005) Adipocytokines: leptin – the classical, resistin – the controversical, adiponectin – the promising, and more to come. Best. Pract. Res. Clin. Endocrinol. Metab. 19, 525–546

    Article  PubMed  CAS  Google Scholar 

  • Lago, F., Dieguez, C., Gomez-Reino, J. and Gualillo, O. (2007) The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev. 18, 313–325

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre, A.M., Laville, M., Vega, N., Riou, J.P., van Gaal, L., Auwerx, J. and Vidal, H. (1998) Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 47, 98–103

    Article  PubMed  CAS  Google Scholar 

  • Lumeng, C.N., Bodzin, J.L. and Saltiel, A.R. (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184

    Article  PubMed  CAS  Google Scholar 

  • Luttrell, L.M. and Lefkowitz, R.J. (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Sci. 115, 455–465

    PubMed  CAS  Google Scholar 

  • MacLaren, R., Kalant, D. and Cianflone, K. (2007) The ASP receptor C5L2 is regulated by metabolic hormones associated with insulin resistance. Biochem. Cell Biol. 85, 11–21

    Article  PubMed  CAS  Google Scholar 

  • Marcil, M., Vu, H., Cui, W., Dastani, Z., Engert, J.C., Gaudet, D., Castro-Cabezas, M., Sniderman, A.D., Genest, J.,. and JrCianflone, K. (2006) Identification of a novel C5L2 variant (S323I) in a French Canadian family with familial combined hyperlipemia. Arterioscler. Thromb. Vasc. Biol. 26, 1619–1625

    Article  PubMed  CAS  Google Scholar 

  • Maslowska, M., Scantlebury, T., Germinario, R. and Cianflone, K. (1997) Acute in vitro production of acylation stimulating protein in differentiated human adipocytes. J. Lipid Res. 38, 1–11

    PubMed  CAS  Google Scholar 

  • Maslowska, M., Vu, H., Phelis, S., Sniderman, A.D., Rhode, B.M., Blank, D. and Cianflone, K. (1999) Plasma acylation stimulating protein, adipsin and lipids in non-obese and obese populations. Eur. J. Clin. Invest. 29, 679–686

    Article  PubMed  CAS  Google Scholar 

  • Maslowska, M., Legakis, H., Assadi, F. and Cianflone, K. (2006) Targeting the signaling pathway of acylation stimulating protein. J. Lipid Res. 47, 643–652

    Article  PubMed  CAS  Google Scholar 

  • Matarese, G., Leiter, E.H. and La Cava, A. (2007) Leptin in autoimmunity: many questions, some answers. Tissue Antigens 70, 87–95

    Article  PubMed  CAS  Google Scholar 

  • Meier, U. and Gressner, A.M. (2004) Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin. Chem. 50, 1511–1525

    Article  PubMed  CAS  Google Scholar 

  • Monk, P.N., Scola, A.M., Madala, P. and Fairlie, D.P. (2007) Function, structure and therapeutic potential of complement C5a receptors. Br. J. Pharmacol. 152, 429–448

    Article  PubMed  CAS  Google Scholar 

  • Montague, C.T., Prins, J.B., Sanders, L., Zhang, J., Sewter, C.P., Digby, J., Byrne, C.D. and O’Rahilly, S. (1998) Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 47, 1384–1391

    Article  PubMed  CAS  Google Scholar 

  • Muscari, A., Antonelli, S., Bianchi, G., Cavrini, G., Dapporto, S., Ligabue, A., Ludovico, C., Magalotti, D., Poggiopollini, G. and Zoli, M. (2007) Serum C3 is a stronger inflammatory marker of insulin resistance than C-reactive protein, leukocyte count, and erythrocyte sedimentation rate: comparison study in an elderly population. Diabetes Care 30, 2362–2368

    Article  PubMed  CAS  Google Scholar 

  • Neels, J.G. and Olefsky, J.M. (2006) Inflamed fat: what starts the fire? J. Clin. Invest. 116, 33–35

    Article  PubMed  CAS  Google Scholar 

  • Nomiyama, T., Perez-Tilve, D., Ogawa, D., Gizard, F., Zhao, Y., Heywood, E.B., Jones, K.L., Kawamori, R., Cassis, L.A., Tschop, M.H. and Bruemmer, D. (2007) Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J. Clin. Invest. 117, 2877–2888

    Article  PubMed  CAS  Google Scholar 

  • Odegaard, J.I., Ricardo-Gonzalez, R.R., Goforth, M.H., Morel, C.R., Subramanian, V., Mukundan, L., Eagle, A.R., Vats, D., Brombacher, F., Ferrante, A.W. and Chawla, A. (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116–1120

    Article  PubMed  CAS  Google Scholar 

  • Ohno, M., Hirata, T., Enomoto, M., Araki, T., Ishimaru, H. and Takahashi, T.A. (2000) A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Mol. Immunol. 37, 407–412

    Article  PubMed  CAS  Google Scholar 

  • Ohyama, K., Yamano, Y., Sano, T., Nakagomi, Y., Wada, M. and Inagami, T. (2002) Role of the conserved DRY motif on G protein activation of rat angiotensin II receptor type 1A. Biochem. Biophys. Res. Commun. 292, 362–367

    Article  PubMed  CAS  Google Scholar 

  • Okinaga, S., Slattery, D., Humbles, A., Zsengeller, Z., Morteau, O., Kinrade, M.B., Brodbeck, R.M., Krause, J.E., Choe, H.R., Gerard, N.P. and Gerard, C. (2003) C5L2, a nonsignaling C5A binding protein. Biochemistry 42, 9406–9415

    Article  PubMed  CAS  Google Scholar 

  • Otto, M., Hawlisch, H., Monk, P.N., Muller, M., Klos, A., Karp, C.L. and Kohl, J. (2004a) C5a mutants are potent antagonists of the C5a receptor (CD88) and of C5L2: position 69 is the locus that determines agonism or antagonism. J. Biol. Chem. 279, 142–151

    Article  CAS  Google Scholar 

  • Otto, M., Hawlisch, H., Monk, P.N., Muller, M., Klos, A., Karp, C.L. and Kohl, J. (2004b) C5a mutants are potent antagonists of the C5a receptor (CD88) and of C5L2: position 69 is the locus that determines agonism or antagonism. J. Biol. Chem. 279, 142–151

    Article  CAS  Google Scholar 

  • Paglialunga, S., Schrauwen, P., Roy, C., Moonen-Kornips, E., Lu, H., Hesselink, M.K., Deshaies, Y., Richard, D. and Cianflone, K. (2007) Reduced adipose tissue triglyceride synthesis and increased muscle fatty acid oxidation in C5L2 knockout mice. J. Endocrinol. 194, 293–304

    Article  PubMed  CAS  Google Scholar 

  • Pausova, Z. (2006) From big fat cells to high blood pressure: a pathway to obesity-associated hypertension. Curr. Opin. Nephrol. Hypertens. 15, 173–178

    Article  PubMed  Google Scholar 

  • Pelleymounter, M.A., Cullen, M.J., Baker, M.B., Hecht, R., Winters, D., Boone, T. and Collins, F. (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543

    Article  PubMed  CAS  Google Scholar 

  • Pilz, S., Mangge, H., Obermayer-Pietsch, B. and Marz, W. (2007) Visfatin/pre-B-cell colony-enhancing factor: a protein with various suggested functions. J. Endocrinol. Invest. 30, 138–144

    PubMed  CAS  Google Scholar 

  • Price, S.R., Olivecrona, T. and Pekala, P.H. (1986) Regulation of lipoprotein lipase synthesis by recombinant tumor necrosis factor – the primary regulatory role of the hormone in 3T3-L1 adipocytes. Arch. Biochem. Biophys. 251, 738–746

    Article  PubMed  CAS  Google Scholar 

  • Rhee, M.H., Nevo, I., Levy, R. and Vogel, Z. (2000) Role of the highly conserved Asp-Arg-Tyr motif in signal transduction of the CB2 cannabinoid receptor. FEBS Lett. 466, 300–304

    Article  PubMed  CAS  Google Scholar 

  • Rosenkilde, M.M., Kledal, T.N. and Schwartz, T.W. (2005) High constitutive activity of a virus-encoded seven transmembrane receptor in the absence of the conserved DRY motif (Asp-Arg-Tyr) in transmembrane helix 3. Mol. Pharmacol. 68, 11–19

    PubMed  CAS  Google Scholar 

  • Rovati, G.E., Capra, V. and Neubig, R.R. (2007) The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol. Pharmacol. 71, 959–964

    Article  PubMed  CAS  Google Scholar 

  • Saladin, R., De Vos, P., Guerre-Millo, M., Leturque, A., Girard, J., Staels, B. and Auwerx, J. (1995) Transient increase in obese gene expression after food intake or insulin administration. Nature 377, 527–529

    Article  PubMed  CAS  Google Scholar 

  • Savill, J., Hogg, N. and Haslett, C. (1991) Macrophage vitronectin receptor, CD36, and thrombospondin cooperate in recognition of neutrophils undergoing programmed cell death. Chest 99, 6S–7S

    Article  CAS  Google Scholar 

  • Scantlebury, T., Maslowska, M. and Cianflone, K. (1998) Chylomicron-specific enhancement of acylation stimulating protein and precursor protein C3 production in differentiated human adipocytes. J. Biol. Chem. 273, 20903–20909

    Article  PubMed  CAS  Google Scholar 

  • Scheer, A., Costa, T., Fanelli, F., de Benedetti, P.G., Mhaouty-Kodja, S., Abuin, L., Nenniger-Tosato, M. and Cotecchia, S. (2000) Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the alpha(1b)-adrenergic receptor: effects on receptor isomerization and activation. Mol. Pharmacol. 57, 219–231

    PubMed  CAS  Google Scholar 

  • Scola, A.M., Higginbottom, A., Partridge, L.J., Reid, R.C., Woodruff, T., Taylor, S.M., Fairlie, D.P. and Monk, P.N. (2007) The role of the N-terminal domain of the complement fragment receptor C5L2 in ligand binding. J. Biol. Chem. 282, 3664–3671

    Article  PubMed  CAS  Google Scholar 

  • Seibold, A., Dagarag, M. and Birnbaumer, M. (1998) Mutations of the DRY motif that preserve beta 2-adrenoceptor coupling. Recept. Channels 5, 375–385

    PubMed  CAS  Google Scholar 

  • Stephens, J.M. and Pekala, P.H. (1991) Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J. Biol. Chem. 266, 21839–21845

    PubMed  CAS  Google Scholar 

  • Talle, M.A., Rao, P.E., Westberg, E., Allegar, N., Makowski, M., Mittler, R.S. and Goldstein, G. (1983) Patterns of antigenic expression on human monocytes as defined by monoclonal antibodies. Cell Immunol. 78, 83–99

    Article  PubMed  CAS  Google Scholar 

  • Tams, J.W., Knudsen, S.M. and Fahrenkrug, J. (2001) Characterization of a G protein coupling “YL” motif of the human VPAC1 receptor, equivalent to the first two amino acids in the “DRY” motif of the rhodopsin family. J. Mol. Neurosci. 17, 325–330

    Article  PubMed  CAS  Google Scholar 

  • Tataranni, P.A. and Ortega, E. (2005) A burning question: does an adipokine-induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes? Diabetes 54, 917–927

    Article  PubMed  CAS  Google Scholar 

  • Tchoukalova, Y.D., Sarr, M.G. and Jensen, M.D. (2004) Measuring committed preadipocytes in human adipose tissue from severely obese patients by using adipocyte fatty acid binding protein. Am. J. Physiol. Regul. Integr. Comp Physiol. 287, R1132–R1140

    Article  PubMed  CAS  Google Scholar 

  • Tilg, H. and Moschen, A.R. (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772–783

    Article  PubMed  CAS  Google Scholar 

  • Tomas, E., Tsao, T.S., Saha, A.K., Murrey, H.E., Zhang, C.C., Itani, S.I., Lodish, H.F. and Ruderman, N.B. (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci.U S A 99, 16309–16313

    Article  PubMed  CAS  Google Scholar 

  • Trayhurn, P. and Wood, I.S. (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 92, 347–355

    Article  PubMed  CAS  Google Scholar 

  • Trayhurn, P. and Wood, I.S. (2005) Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem. Soc. Trans. 33, 1078–1081

    Article  PubMed  CAS  Google Scholar 

  • Uysal, K.T., Wiesbrock, S.M., Marino, M.W. and Hotamisligil, G.S. (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610–614

    Article  PubMed  CAS  Google Scholar 

  • Ward, P.A. (2008) Role of the complement in experimental sepsis. J. Leukoc. Biol. 83, (3)467–470

    Article  PubMed  CAS  Google Scholar 

  • Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L. and Ferrante, A.W., Jr.(2003) Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808

    PubMed  CAS  Google Scholar 

  • Wellen, K.E. and Hotamisligil, G.S. (2003) Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest. 112, 1785–1788

    PubMed  CAS  Google Scholar 

  • Wilkison, W.O., Min, H.Y., Claffey, K.P., Satterberg, B.L. and Spiegelman, B.M. (1990) Control of the adipsin gene in adipocyte differentiation. Identification of distinct nuclear factors binding to single- and double-stranded DNA. J. Biol. Chem. 265, 477–482

    PubMed  CAS  Google Scholar 

  • Xia, Z., Stanhope, K.L., Digitale, E., Simion, O.M., Chen, L., Havel, P. and Cianflone, K. (2004) Acylation-stimulating protein (ASP)/complement C3adesArg deficiency results in increased energy expenditure in mice. J. Biol. Chem. 279, 4051–4057

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., Barnes, G.T., Yang, Q., Tan, G., Yang, D., Chou, C.J., Sole, J., Nichols, A., Ross, J.S., Tartaglia, L.A. and Chen, H. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin.Invest. 112, 1821–1830

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

MacLaren, R., Cui, W., Cianflone, K. (2008). Adipokines and the Immune System: An Adipocentric View. In: Lambris, J. (eds) Current Topics in Complement II. Advances in Experimental Medicine and Biology, vol 632. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78952-1_1

Download citation

Publish with us

Policies and ethics