Skip to main content

Immense Cellular Implications Associated to Small Stress Proteins Expression: Impacts on Human Pathologies

  • Chapter
The Big Book on Small Heat Shock Proteins

Part of the book series: Heat Shock Proteins ((HESP,volume 8))

Abstract

In addition to being potent chaperones that protect cells against the accumulation of unfolded proteins under stress conditions, mammalian small heat shock proteins (small Hsps) regulate many vital cellular processes in normal and pathological cells. Indeed, these Hsps are constitutively expressed in many tissues and show dramatic changes in their levels of expression in most human pathologies. They are characterized by a large spectrum of activities and are particularly active in protein conformational and inflammatory diseases as well as in cancer pathologies. It is now believed that the immense cellular implications of small Hsps results from their ability to interact, through particular structural changes, with many different client proteins that are subsequently modulated in their activities or half-lifes. Here, we have integrated functionally and structurally the recent data in the literature concerning the interactions of mammalian small Hsps with specific clients. Further analysis with geneMANIA software and database confirmed the incredibly large number of functions associated with these Hsps. The consequences for human pathologies as well as putative therapeutic strategies are discussed, particularly when the expression of small Hsps is harmful (as in some cancer pathologies) or when it appears beneficial for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerley S, James PA, Kalli A, French S, Davies KE, Talbot K (2005) A mutation in the small heat shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes. Hum Mol Genet 15(2):347–354

    PubMed  Google Scholar 

  • Adhikari AS, Singh BN, Rao KS, Rao Ch M (2011) alphaB-crystallin, a small heat shock protein, modulates NF-kappaB activity in a phosphorylation-dependent manner and protects muscle myoblasts from TNF-alpha induced cytotoxicity. Biochim Biophys Acta 1813(8):1532–1542

    CAS  PubMed  Google Scholar 

  • Agrawal P, Yu K, Salomon AR, Sedivy JM (2010) Proteomic profiling of Myc-associated proteins. Cell Cycle 9(24):4908–4921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahner A, Gong X, Schmidt BZ, Peters KW, Rabeh WM, Thibodeau PH, Lukacs GL, Frizzell RA (2012) Small heat shock proteins target mutant CFTR for degradation via a SUMO-dependent pathway. Mol Biol Cell 24(2):74–84

    PubMed  Google Scholar 

  • Alford KA, Glennie S, Turrell BR, Rawlinson L, Saklatvala J, Dean JL (2007) HSP27 functions in inflammatory gene expression and TAK1-mediated signalling. J Biol Chem 282:6232–6241

    CAS  PubMed  Google Scholar 

  • Al-Madhoun AS, Chen YX, Haidari L, Rayner K, Gerthoffer W, McBride H, O’Brien ER (2007) The interaction and cellular localization of HSP27 and ERbeta are modulated by 17beta-estradiol and HSP27 phosphorylation. Mol Cell Endocrinol 270(1–2):33–42

    CAS  PubMed  Google Scholar 

  • Andley UP (2007) Crystallins in the eye: function and pathology. Prog Retin Eye Res 26(1):78–98

    CAS  PubMed  Google Scholar 

  • Andley UP, Song Z, Wawrousek EF, Fleming TP, Bassnett S (2000) Differential protective activity of {alpha}A- and {alpha}B-crystallin in lens epithelial cells. J Biol Chem 275:36823–36831

    CAS  PubMed  Google Scholar 

  • Andrieu C, Taieb D et al (2010) Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. Oncogene 29(13):1883–1896

    CAS  PubMed  Google Scholar 

  • Aquilina JA, Shrestha S, Morris AM, Ecroyd H (2013) Structural and functional aspects of hetero-oligomers formed by the small heat-shock proteins alphaB crystallin and HSP27. J Biol Chem 288(19):13602–13609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arany I, Clark JS, Reed DK, Ember I, Juncos LA (2012) Cisplatin enhances interaction between p66Shc and HSP27: its role in reorganization of the actin cytoskeleton in renal proximal tubule cells. Anticancer Res 32(11):4759–4763

    CAS  PubMed  Google Scholar 

  • Arrigo AP (1998) Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 379(1):19–26

    CAS  PubMed  Google Scholar 

  • Arrigo AP (2000) sHsp as novel regulators of programmed cell death and tumorigenicity. Pathol Biol (Paris) 48(3):280–288

    CAS  Google Scholar 

  • Arrigo AP (2001) Hsp27: novel regulator of intracellular redox state. IUBMB Life 52(6):303–307

    CAS  PubMed  Google Scholar 

  • Arrigo AP (2005) Heat shock proteins as molecular chaperones. Med Sci (Paris) 21(6–7):619–625

    Google Scholar 

  • Arrigo A-P (2007a) Anti-apoptotic, tumorigenic and metastatic potential of Hsp27 (HspB1) and alphaB-crystallin (HspB5): emerging targets for the development of new anti-cancer therapeutic strategies. In: Calderwood SK, Sherman M, Ciocca D (eds) Heat shock proteins in cancer. Springer, New-York, pp 73–92

    Google Scholar 

  • Arrigo AP (2007b) The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol 594:14–26

    PubMed  Google Scholar 

  • Arrigo AP (2011) Structure-functions of HspB1 (Hsp27). Methods Mol Biol 787:105–119

    CAS  PubMed  Google Scholar 

  • Arrigo AP (2012a) Editorial: heat shock proteins in cancer. Curr Mol Med 12(9):1099–1101

    CAS  PubMed  Google Scholar 

  • Arrigo AP (2012b) Pathology-dependent effects linked to small heat shock proteins expression. Scientifica 2012:19 (Article ID 185641)

    Google Scholar 

  • Arrigo AP (2013) Human small heat shock proteins: protein interactomes of homo- and hetero-oligomeric complexes: an update. FEBS Lett 587(13):1959–1969

    CAS  PubMed  Google Scholar 

  • Arrigo AP, Gibert B (2012) HspB1 dynamic phospho-oligomeric structure dependent interactome as cancer therapeutic target. Curr Mol Med 12:1151–1163

    CAS  PubMed  Google Scholar 

  • Arrigo AP, Gibert B (2013) Protein interactomes of three stress inducible small heat shock proteins: HspB1, HspB5 and HspB8. Int J Hyperthermia 29:409–422

    CAS  PubMed  Google Scholar 

  • Arrigo AP, Gibert B (2014) HspB1, HspB5 and HspB4 in human cancers: potent oncogenic role of some of their client proteins. Cancers (Basel) 6(1):333–365

    Google Scholar 

  • Arrigo A-P, Simon S (2010) Dual, beneficial and deleterious, roles of small stress proteins in human diseases: implications for therapeutic strategies. In: Simon S, Arrigo A-P (eds) Book serie: protein science engineering. Nova Sciences, New York, pp 457–476

    Google Scholar 

  • Arrigo A-P, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C (2005) Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 7(3–4):414–422

    CAS  PubMed  Google Scholar 

  • Arrigo AP, Simon S et al (2007) Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Lett 581(19):3665–3674

    CAS  PubMed  Google Scholar 

  • Asthana A, Raman B, Ramakrishna T, Rao Ch M (2012) Structural aspects and chaperone activity of human HspB3: role of the “C-terminal extension”. Cell Biochem Biophys 64(1):61–72. doi:10.1007/s12013-012-9366-x

    CAS  PubMed  Google Scholar 

  • Badri KR, Modem S, Gerard HC, Khan I, Bagchi M, Hudson AP, Reddy TR (2006) Regulation of Sam68 activity by small heat shock protein 22. J Cell Biochem 99(5):1353–1362

    CAS  PubMed  Google Scholar 

  • Barton KA, Hsu CD, Petrash JM (2009) Interactions between small heat shock protein alpha-crystallin and galectin-related interfiber protein (GRIFIN) in the ocular lens. Biochemistry 48(18):3956–3966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basha E, O’Neill H, Vierling E (2011) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37(3):106–117

    PubMed Central  PubMed  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2(2):84–89

    CAS  PubMed  Google Scholar 

  • Bausero MA, Page DT, Osinaga E, Asea A (2004) Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumour Biol 25(5–6):243–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bausero MA, Bharti A et al (2006) Silencing the hsp25 gene eliminates migration capability of the highly metastatic murine 4T1 breast adenocarcinoma cell. Tumour Biol 27(1):17–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bellaye PS, Wettstein G et al (2014) The small heat-shock protein alphaB-crystallin is essential for the nuclear localization of Smad4: impact on pulmonary fibrosis. J Pathol 232(4):458–472

    CAS  PubMed  Google Scholar 

  • Bellomo G, Mirabelli F (1992) Oxidative stress and cytoskeletal alterations. Ann N Y Acad Sci 663:97–109

    CAS  PubMed  Google Scholar 

  • Bellyei S, Szigeti A, Pozsgai E, Boronkai A, Gomori E, Hocsak E, Farkas R, Sumegi B, Gallyas F Jr (2007) Preventing apoptotic cell death by a novel small heat shock protein. Eur J Cell Biol 86(3):161–171

    CAS  PubMed  Google Scholar 

  • Bennardini F, Wrzosek A, Chiesi M (1992) Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circ Res 71(2):288–294

    CAS  PubMed  Google Scholar 

  • Benndorf R, Martin JL, Kosakovsky Pond SL, Wertheim JO (2014) Neuropathy- and myopathy-associated mutations in human small heat shock proteins: characteristics and evolutionary history of the mutation sites. Mutat Res. doi:10.1016/j.mrrev.2014.02.004

    Google Scholar 

  • Beresford PJ, Jaju M, Friedman RS, Yoon MJ, Lieberman J (1998) A role for heat shock protein 27 in CTL-mediated cell death. J Immunol 161(1):161–167

    CAS  PubMed  Google Scholar 

  • Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64(5–6):1037–1048

    CAS  PubMed  Google Scholar 

  • Bhat SP, Nagineni CN (1989) αB subunit of lens-specific protein α-cristallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commun 158(1):319–325

    CAS  PubMed  Google Scholar 

  • Bjorkdahl C, Sjogren MJ, Zhou X, Concha H, Avila J, Winblad B, Pei JJ (2008) Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles: tau and neurofilaments. J Neurosci Res 86(6):1343–1352

    PubMed  Google Scholar 

  • Boelens WC, Croes Y, de Jong WW (2001) Interaction between alphaB-crystallin and the human 20S proteasomal subunit C8/alpha7. Biochim Biophys Acta 1544(1–2):311–319

    CAS  PubMed  Google Scholar 

  • Bova MP, Yaron O, Huang Q, Ding L, Haley DA, Stewart PL, Horwitz J (1999) Mutation R120G in alphaB-crystallin, which is linked to a desmin- related myopathy, results in an irregular structure and defective chaperone-like function. Proc Natl Acad Sci U S A 96(11):6137–6142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington’s disease. Brain Pathol 9(1):147–163

    CAS  PubMed  Google Scholar 

  • Bruey JM, Ducasse C et al (2000a) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2(9):645–652

    CAS  PubMed  Google Scholar 

  • Bruey JM, Paul C, Fromentin A, Hilpert S, Arrigo AP, Solary E, Garrido C (2000b) Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene 19(42):4855–4863

    CAS  PubMed  Google Scholar 

  • Bruinsma IB, Bruggink KA et al (2011) Inhibition of alpha-synuclein aggregation by small heat shock proteins. Proteins 79(10):2956–2967

    CAS  PubMed  Google Scholar 

  • Brundel BJ, Ke L, Dijkhuis AJ, Qi X, Shiroshita-Takeshita A, Nattel S, Henning RH, Kampinga HH (2008) Heat shock proteins as molecular targets for intervention in atrial fibrillation. Cardiovasc Res 78(3):422–428

    CAS  PubMed  Google Scholar 

  • Brunet Simioni M, De Thonel A et al (2009) Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene 28:3332–3344

    CAS  PubMed  Google Scholar 

  • Buchner J (1999) Hsp90 & Co. – a holding for folding. Trends Biochem Sci 24(4):136–141

    CAS  PubMed  Google Scholar 

  • Bukach OV, Glukhova AE, Seit-Nebi AS, Gusev NB (2009) Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20). Biochim Biophys Acta 1794(3):486–495

    CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366

    CAS  PubMed  Google Scholar 

  • Bullard B, Ferguson C et al (2004) Association of the chaperone alphaB-crystallin with titin in heart muscle. J Biol Chem 279(9):7917–7924

    CAS  PubMed  Google Scholar 

  • Calderwood SK (2012) HSF1, a versatile factor in tumorogenesis. Curr Mol Med 12(9):1102–1107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31(3):164–172

    CAS  PubMed  Google Scholar 

  • Carra S (2009) The stress-inducible HspB8-Bag3 complex induces the eIF2alpha kinase pathway: implications for protein quality control and viral factory degradation? Autophagy 5(3):428–429

    CAS  PubMed  Google Scholar 

  • Carra S, Sivilotti M, Chavez Zobel AT, Lambert H, Landry J (2005) HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet 14(12):1659–1669

    CAS  PubMed  Google Scholar 

  • Carra S, Seguin SJ, Lambert H, Landry J (2008a) HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 283(3):1437–1444

    CAS  PubMed  Google Scholar 

  • Carra S, Seguin SJ, Landry J (2008b) HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4(2):237–239

    CAS  PubMed  Google Scholar 

  • Carra S, Rusmini P et al (2013) Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philos Trans R Soc Lond B Biol Sci 368(1617):20110409

    PubMed Central  PubMed  Google Scholar 

  • Cayado-Gutierrez N, Moncalero VL, Rosales EM, Beron W, Salvatierra EE, Alvarez-Olmedo D, Radrizzani M, Ciocca DR (2012) Downregulation of Hsp27 (HSPB1) in MCF-7 human breast cancer cells induces upregulation of PTEN. Cell Stress Chaperones 18(2):243–249

    PubMed Central  PubMed  Google Scholar 

  • Chalmin F, Ladoire S et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120(2):457–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charette SJ, Landry J (2000) The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosis. Ann N Y Acad Sci 926:126–131

    CAS  PubMed  Google Scholar 

  • Charette SJ, Lavoie JN, Lambert H, Landry J (2000) Inhibition of daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20(20):7602–7612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chauhan D, Li G et al (2003) Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 102(9):3379–3386

    CAS  PubMed  Google Scholar 

  • Chebotareva NA, Makeeva VF, Bazhina SG, Eronina TB, Gusev NB, Kurganov BI (2010) Interaction of Hsp27 with native phosphorylase kinase under crowding conditions. Macromol Biosci 10(7):783–789

    CAS  PubMed  Google Scholar 

  • Chen H, Zheng C, Zhang Y, Chang YZ, Qian ZM, Shen X (2006) Heat shock protein 27 downregulates the transferrin receptor 1-mediated iron uptake. Int J Biochem Cell Biol 38(8):1402–1416

    CAS  PubMed  Google Scholar 

  • Chen P, Ji W et al (2012) Alpha-crystallins and tumorigenesis. Curr Mol Med 12(9):1164–1173

    CAS  PubMed  Google Scholar 

  • Chen A, Karolczak-Bayatti M, Sweeney M, Treumann A, Morrissey K, Ulrich SM, Europe-Finner GN, Taggart MJ (2013) Lysine deacetylase inhibition promotes relaxation of arterial tone and C-terminal acetylation of HSPB6 (Hsp20) in vascular smooth muscle cells. Physiol Rep 1(6):e00127

    PubMed Central  PubMed  Google Scholar 

  • Chernik IS, Seit-Nebi AS, Marston SB, Gusev NB (2007) Small heat shock protein Hsp20 (HspB6) as a partner of 14-3-3gamma. Mol Cell Biochem 295(1–2):9–17

    CAS  PubMed  Google Scholar 

  • Choi YW, Tan YJ, Lim SG, Hong W, Goh PY (2004) Proteomic approach identifies HSP27 as an interacting partner of the hepatitis C virus NS5A protein. Biochem Biophys Res Commun 318(2):514–519

    CAS  PubMed  Google Scholar 

  • Choi J, Rees HD, Weintraub ST, Levey AI, Chin LS, Li L (2005) Oxidative modifications and aggregation of Cu, Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. J Biol Chem 280(12):11648–11655

    CAS  PubMed  Google Scholar 

  • Choi SH, Lee HJ et al (2014) MMP9 processing of HSPB1 regulates tumor progression. PLoS One 9(1):e85509

    PubMed Central  PubMed  Google Scholar 

  • Chowdary TK, Bakthisaran R, Tangirala R, Rao MC (2006) Interaction of mammalian Hsp22 with lipid membranes. Biochem J 401:437–445

    PubMed Central  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciocca DR, Arrigo AP, Calderwood SK (2013) Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 87(1):19–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cosentino C, Grieco D, Costanzo V (2011) ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J 30(3):546–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crippa V, Sau D et al (2010) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19(17):3440–3456

    CAS  PubMed  Google Scholar 

  • Cuesta R, Laroia G, Schneider RJ (2000) Chaperone Hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev 14(12):1460–1470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P, Colombo R (2001) The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic Biol Med 31(12):1624–1632

    CAS  PubMed  Google Scholar 

  • Dall’Era MA, Oudes A, Martin DB, Liu AY (2007) HSP27 and HSP70 interact with CD10 in C4-2 prostate cancer cells. Prostate 67(7):714–721

    PubMed  Google Scholar 

  • Datskevich PN, Nefedova VV, Sudnitsyna MV, Gusev NB (2012) Mutations of small heat shock proteins and human congenital diseases. Biochemistry (Mosc) 77(13):1500–1514

    CAS  Google Scholar 

  • De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones 16(3):235–249

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Thonel A, Vandekerckhove J et al (2010) HSP27 controls GATA-1 protein level during erythroid cell differentiation. Blood 116(1):85–96

    PubMed  Google Scholar 

  • de Wit NJ, Verschuure P, Kappe G, King SM, de Jong WW, van Muijen GN, Boelens WC (2004) Testis-specific human small heat shock protein HSPB9 is a cancer/testis antigen, and potentially interacts with the dynein subunit TCTEL1. Eur J Cell Biol 83(7):337–345

    PubMed  Google Scholar 

  • Del Vecchio PJ, MacElroy KS, Rosser MP, Church RL (1984) Association of alpha-crystallin with actin in cultured lens cells. Curr Eye Res 3(10):1213–1219

    PubMed  Google Scholar 

  • Delneste Y, Magistrelli G et al (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17(3):353–362

    CAS  PubMed  Google Scholar 

  • den Engelsman J, Gerrits D, de Jong WW, Robbins J, Kato K, Boelens WC (2005) Nuclear import of {alpha}B-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G. J Biol Chem 280(44):37139–37148

    Google Scholar 

  • den Engelsman J, Boros S et al (2009) The small heat-shock proteins HSPB2 and HSPB3 form well-defined heterooligomers in a unique 3 to 1 subunit ratio. J Mol Biol 393(5):1022–1032

    Google Scholar 

  • Deng M, Chen PC et al (2010) The small heat shock protein alphaA-crystallin is expressed in pancreas and acts as a negative regulator of carcinogenesis. Biochim Biophys Acta 1802(7–8):621–631

    CAS  PubMed  Google Scholar 

  • Devlin GL, Carver JA, Bottomley SP (2003) The selective inhibition of serpin aggregation by the molecular chaperone, alpha-crystallin, indicates a nucleation-dependent specificity. J Biol Chem 278(49):48644–48650

    CAS  PubMed  Google Scholar 

  • Diaz-Latoud C, Buache E, Javouhey E, Arrigo AP (2005) Substitution of the unique cysteine residue of murine hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid Redox Signal 7(3–4):436–445

    CAS  PubMed  Google Scholar 

  • Dierick I, Irobi J et al (2007) Genetic variant in the HSPB1 promoter region impairs the HSP27 stress response. Hum Mutat 28(8):830

    PubMed  Google Scholar 

  • Dieterich LC, Huang H, Massena S, Golenhofen N, Phillipson M, Dimberg A (2013) alphaB-crystallin/HspB5 regulates endothelial-leukocyte interactions by enhancing NF-kappaB-induced up-regulation of adhesion molecules ICAM-1, VCAM-1 and E-selectin. Angiogenesis 16(4):975–983 [In eng]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dimberg A, Rylova S et al (2008) alphaB-crystallin promotes tumor angiogenesis by increasing vascular survival during tube morphogenesis. Blood 111(4):2015–2023

    CAS  PubMed  Google Scholar 

  • Djabali K, de Nechaud B, Landon F, Portier MM (1997) AlphaB-crystallin interacts with intermediate filaments in response to stress. J Cell Sci 110(Pt 21):2759–2769

    PubMed  Google Scholar 

  • Djabali K, Piron G, de Nechaud B, Portier MM (1999) alphaB-crystallin interacts with cytoplasmic intermediate filament bundles during mitosis. Exp Cell Res 253(2):649–662

    CAS  PubMed  Google Scholar 

  • Dodd SL, Hain B, Senf SM, Judge AR (2009) Hsp27 inhibits IKK{beta}-induced NF-{kappa}B activity and skeletal muscle atrophy. FASEB J 23:3415–3423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doppler H, Storz P, Li J, Comb MJ, Toker A (2005) A phosphorylation state-specific antibody recognizes Hsp27, a novel substrate of protein kinase D. J Biol Chem 280(15):15013–15019

    PubMed  Google Scholar 

  • Dudani AK, Mehic J, Martyres A (2007) Plasminogen and angiostatin interact with heat shock proteins. Mol Cell Biochem 300(1–2):197–205

    CAS  PubMed  Google Scholar 

  • Duverger O, Paslaru L, Morange M (2004) HSP25 is involved in two steps of the differentiation of PAM212 keratinocytes. J Biol Chem 279(11):10252–10260

    CAS  PubMed  Google Scholar 

  • Eaton P, Awad WI, Miller JI, Hearse DJ, Shattock MJ (2000) Ischemic preconditioning: a potential role for constitutive low molecular weight stress protein translocation and phosphorylation? J Mol Cell Cardiol 32(6):961–971

    CAS  PubMed  Google Scholar 

  • Efthymiou CA, Mocanu MM, de Belleroche J, Wells DJ, Latchmann DS, Yellon DM (2004) Heat shock protein 27 protects the heart against myocardial infarction. Basic Res Cardiol 99(6):392–394. Epub 2004 Jul 13

    CAS  PubMed  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16(2):221–229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ehrnsperger M, Gaestel M, Buchner J (2000) Analysis of chaperone properties of small Hsp’s. Methods Mol Biol 99:421–429

    CAS  PubMed  Google Scholar 

  • Elicker KS, Hutson LD (2007) Genome-wide analysis and expression profiling of the small heat shock proteins in zebrafish. Gene 403(1–2):60–69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evgrafov OV, Mersiyanova I et al (2004) Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 36(6):602–606

    CAS  PubMed  Google Scholar 

  • Fanelli MA, Montt-Guevara M, Diblasi AM, Gago FE, Tello O, Cuello-Carrion FD, Callegari E, Bausero MA, Ciocca DR (2008) P-cadherin and beta-catenin are useful prognostic markers in breast cancer patients; beta-catenin interacts with heat shock protein Hsp27. Cell Stress Chaperones 13(2):207–220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Firdaus WJ, Wyttenbach A, Diaz-Latoud C, Currie RW, Arrigo AP (2006a) Analysis of oxidative events induced by expanded polyglutamine huntingtin exon 1 that are differentially restored by expression of heat shock proteins or treatment with an antioxidant. FEBS J 273(13):3076–3093

    CAS  PubMed  Google Scholar 

  • Firdaus WJ, Wyttenbach A, Giuliano P, Kretz-Remy C, Currie RW, Arrigo AP (2006b) Huntingtin inclusion bodies are iron-dependent centers of oxidative events. FEBS J 273(23):5428–5441

    CAS  PubMed  Google Scholar 

  • Fontaine JM, Sun X, Benndorf R, Welsh MJ (2005) Interactions of HSP22 (HSPB8) with HSP20, alphaB-crystallin, and HSPB3. Biochem Biophys Res Commun 337(3):1006–1011

    CAS  PubMed  Google Scholar 

  • Fontaine JM, Sun X, Hoppe AD, Simon S, Vicart P, Welsh MJ, Benndorf R (2006) Abnormal small heat shock protein interactions involving neuropathy-associated HSP22 (HSPB8) mutants. FASEB J 20:2168–2170

    CAS  PubMed  Google Scholar 

  • Forsman A, Ruetschi U, Ekholm J, Rymo L (2008) Identification of intracellular proteins associated with the EBV-encoded nuclear antigen 5 using an efficient TAP procedure and FT-ICR mass spectrometry. J Proteome Res 7(6):2309–2319

    CAS  PubMed  Google Scholar 

  • Fox JH, Kama JA et al (2007) Mechanisms of copper ion mediated Huntington’s disease progression. PLoS One 2(3):e334

    PubMed Central  PubMed  Google Scholar 

  • Freeman BC, Morimoto RI (1996) The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J 15(12):2969–2979

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu L, Liang JJ (2002) Detection of protein-protein interactions among lens crystallins in a mammalian two-hybrid system assay. J Biol Chem 277(6):4255–4260

    CAS  PubMed  Google Scholar 

  • Fu L, Liang JJ (2003) Enhanced stability of alpha B-crystallin in the presence of small heat shock protein Hsp27. Biochem Biophys Res Commun 302(4):710–714

    CAS  PubMed  Google Scholar 

  • Fuchs M, Poirier DJ, Seguin SJ, Lambert H, Carra S, Charette SJ, Landry J (2010) Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction. Biochem J 425(1):245–255

    CAS  Google Scholar 

  • Ganea E (2001) Chaperone-like activity of alpha-crystallin and other small heat shock proteins. Curr Protein Pept Sci 2(3):205–225

    CAS  PubMed  Google Scholar 

  • Gangalum RK, Bhat SP (2009) AlphaB-crystallin: a Golgi-associated membrane protein in the developing ocular lens. Invest Ophthalmol Vis Sci 50(7):3283–5290

    PubMed Central  PubMed  Google Scholar 

  • Garrido C (2002) Size matters: of the small HSP27 and its large oligomers. Cell Death Differ 9(5):483–485

    CAS  PubMed  Google Scholar 

  • Garrido C, Fromentin A, Bonnotte B, Favre N, Moutet M, Arrigo AP, Mehlen P, Solary E (1998) Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 58(23):5495–5499

    CAS  PubMed  Google Scholar 

  • Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13(14):2061–2070

    CAS  PubMed  Google Scholar 

  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5:22

    Google Scholar 

  • Gastmann O, Burfeind P, Gunther E, Hameister H, Szpirer C, Hoyer-Fender S (1993) Sequence, expression, and chromosomal assignment of a human sperm outer dense fiber gene. Mol Reprod Dev 36(4):407–418

    CAS  PubMed  Google Scholar 

  • Georgakis GV, Younes A (2005) Heat-shock protein 90 inhibitors in cancer therapy: 17AAG and beyond. Future Oncol 1(2):273–281

    CAS  PubMed  Google Scholar 

  • Gernold M, Knauf U, Gaestel M, Stahl J, Kloetzel P-M (1993) Development and tissue-specific distribution of mouse small heat shock protein hsp 25. Dev Genet 14:103–111

    CAS  PubMed  Google Scholar 

  • Ghosh JG, Houck SA, Clark JI (2007a) Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly. PLoS One 2(6):e498

    PubMed Central  PubMed  Google Scholar 

  • Ghosh JG, Houck SA, Clark JI (2007b) Interactive sequences in the stress protein and molecular chaperone human alphaB crystallin recognize and modulate the assembly of filaments. Int J Biochem Cell Biol 39(10):1804–1815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh JG, Shenoy AK Jr, Clark JI (2007c) Interactions between important regulatory proteins and human alphaB crystallin. Biochemistry 46(21):6308–6317

    CAS  PubMed  Google Scholar 

  • Ghosh JG, Houck SA, Clark JI (2008) Interactive sequences in the molecular chaperone, human alphaB crystallin modulate the fibrillation of amyloidogenic proteins. Int J Biochem Cell Biol 40(5):954–967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh A, Lai C, McDonald S, Suraweera N, Sengupta N, Propper D, Dorudi S, Silver A (2013) HSP27 expression in primary colorectal cancers is dependent on mutation of KRAS and PI3K/AKT activation status and is independent of TP53. Exp Mol Pathol 94(1):103–108

    CAS  PubMed  Google Scholar 

  • Gibert B, Hadchity E, Czekalla A, Aloy MT, Colas P, Rodriguez-Lafrasse C, Arrigo AP, Diaz-Latoud C (2011) Inhibition of heat shock protein 27 (HspB1) tumorigenic functions by peptide aptamers. Oncogene 34:3672–3681

    Google Scholar 

  • Gibert B, Eckel B et al (2012a) Knock down of heat shock protein 27 (HspB1) induces degradation of several putative client proteins. PLoS One 7(1):e29719

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibert B, Eckel B et al (2012b) Targeting heat shock protein 27 (HspB1) interferes with bone metastasis and tumour formation in vivo. Br J Cancer 107(1):63–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibert B, Simon S, Dimitrova V, Diaz-Latoud C, Arrigo A-P (2013) Peptide aptamers – tools to negatively or positively modulate HspB1 (27) function. Philos Trans R Soc B Biol Sci 368(1617):20120075. doi: 10.1098/rstb.2012.0075

    Google Scholar 

  • Goldfarb LG, Vicart P, Goebel HH, Dalakas MC (2004) Desmin myopathy. Brain 127(Pt 4):723–734

    CAS  PubMed  Google Scholar 

  • Golembieski WA, Thomas SL et al (2008) HSP27 mediates SPARC-induced changes in glioma morphology, migration, and invasion. Glia 56(10):1061–1075

    PubMed  Google Scholar 

  • Groenen P, Merck K, de Jong W, Bloemendal H (1994) Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur J Biochem 225:1–19

    CAS  PubMed  Google Scholar 

  • Gruden G, Bruno G et al (2008) Serum heat shock protein 27 and diabetes complications in the EURODIAB prospective complications study: a novel circulating marker for diabetic neuropathy. Diabetes 57(7):1966–1970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gruvberger-Saal SK, Parsons R (2006) Is the small heat shock protein alphaB-crystallin an oncogene? J Clin Invest 116(1):30–32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18(9):685–716

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J (1984) Role of iron in oxygen radical reactions. Methods Enzymol 105:47–56

    CAS  PubMed  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12(10):842–846

    CAS  PubMed  Google Scholar 

  • Hatters DM, Lindner RA, Carver JA, Howlett GJ (2001) The molecular chaperone, alpha-crystallin, inhibits amyloid formation by apolipoprotein C-II. J Biol Chem 276(36):33755–33761

    CAS  PubMed  Google Scholar 

  • Havugimana PC, Hart GT et al (2012) A census of human soluble protein complexes. Cell 150(5):1068–1081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi N, Peacock JW, Beraldi E, Zoubeidi A, Gleave ME, Ong CJ (2012) Hsp27 silencing coordinately inhibits proliferation and promotes Fas-induced apoptosis by regulating the PEA-15 molecular switch. Cell Death Differ 19(6):990–1002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hegele A, Kamburov A et al (2012) Dynamic protein-protein interaction wiring of the human spliceosome. Mol Cell 45(4):567–5880

    CAS  PubMed  Google Scholar 

  • Heinrich JC, Tuukkanen A, Schroeder M, Fahrig T, Fahrig R (2011) RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients. J Cancer Res Clin Oncol 137(9):1349–1361

    PubMed  Google Scholar 

  • Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16(3):287–293

    CAS  PubMed  Google Scholar 

  • Hilditch-Maguire P, Trettel F, Passani LA, Auerbach A, Persichetti F, MacDonald ME (2000) Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum Mol Genet 9(19):2789–2797

    CAS  PubMed  Google Scholar 

  • Hino M, Kurogi K, Okubo MA, Murata-Hori M, Hosoya H (2000) Small heat shock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells. Biochem Biophys Res Commun 271(1):164–169

    CAS  PubMed  Google Scholar 

  • Hishiya A, Salman MN, Carra S, Kampinga HH, Takayama S (2011) BAG3 directly interacts with mutated alphaB-crystallin to suppress its aggregation and toxicity. PLoS One 6(3):e16828

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hook D, Harding J (1996) Alpha-crystallin acting as a molecular chaperone protects catalase against steroid-induced inactivation. FEBS Lett 382:281–284

    CAS  PubMed  Google Scholar 

  • Horwitz J, Huang Q-L, Ding L-L (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 89:10449–10453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu WF, Gong L et al (2012) alphaA- and alphaB-crystallins interact with caspase-3 and Bax to guard mouse lens development. Curr Mol Med 12(2):177–187

    CAS  PubMed  Google Scholar 

  • Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT (2004) Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci 1012:153–163

    CAS  PubMed  Google Scholar 

  • Huang L, Min JN, Masters S, Mivechi NF, Moskophidis D (2007) Insights into function and regulation of small heat shock protein 25 (HSPB1) in a mouse model with targeted gene disruption. Genesis 45(8):487–501

    CAS  PubMed  Google Scholar 

  • Huang Z, Cheng Y et al (2012) Tumor suppressor Alpha B-crystallin (CRYAB) associates with the cadherin/catenin adherens junction and impairs NPC progression-associated properties. Oncogene 31(32):3709–3720

    CAS  PubMed  Google Scholar 

  • Jakob U, Gaestel M, Engels K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    CAS  PubMed  Google Scholar 

  • Janue A, Olive M, Ferrer I (2007) Oxidative stress in desminopathies and myotilinopathies: a link between oxidative damage and abnormal protein aggregation. Brain Pathol 17(4):377–388

    CAS  PubMed  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47(6):S161–S170

    CAS  PubMed  Google Scholar 

  • Jia Y, Ransom RF, Shibanuma M, Liu C, Welsh MJ, Smoyer WE (2001) Identification and characterization of hic-5/ARA55 as an hsp27 binding protein. J Biol Chem 276(43):39911–39918

    CAS  PubMed  Google Scholar 

  • Jiang T, Altman S (2001) Protein-protein interactions with subunits of human nuclear RNase P. Proc Natl Acad Sci U S A 98(3):920–925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kammanadiminti SJ, Chadee K (2006) Suppression of NF-kappaB activation by Entamoeba histolytica in intestinal epithelial cells is mediated by heat shock protein 27. J Biol Chem 281(36):26112–26120

    CAS  PubMed  Google Scholar 

  • Kamradt MC, Lu M et al (2005) The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J Biol Chem 280(12):11059–11066

    CAS  PubMed  Google Scholar 

  • Kang SH, Kang KW et al (2008) Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability. BMC Cancer 8(1):286

    PubMed Central  PubMed  Google Scholar 

  • Kase S, Parikh JG, Rao NA (2009) Expression of heat shock protein 27 and alpha-crystallins in human retinoblastoma after chemoreduction. Br J Ophthalmol 93(4):541–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ke L, Meijering RA, Hoogstra-Berends F, Mackovicova K, Vos MJ, Van Gelder IC, Henning RH, Kampinga HH, Brundel BJ (2011) HSPB1, HSPB6, HSPB7 and HSPB8 protect against RhoA GTPase-induced remodeling in tachypaced atrial myocytes. PLoS One 6(6):e20395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keller JN, Dimayuga E, Chen Q, Thorpe J, Gee J, Ding Q (2004) Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol 36(12):2376–2391

    CAS  PubMed  Google Scholar 

  • Kerr BA, Byzova TV (2010) alphaB-crystallin: a novel VEGF chaperone. Blood 115(16):3181–3183

    CAS  PubMed  Google Scholar 

  • Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8(1–2):152–162

    CAS  PubMed  Google Scholar 

  • Kijima K, Numakura C, Goto T, Takahashi T, Otagiri T, Umetsu K, Hayasaka K (2005) Small heat shock protein 27 mutation in a Japanese patient with distal hereditary motor neuropathy. J Hum Genet 50(9):473–476

    PubMed  Google Scholar 

  • Kim EH, Lee HJ et al (2007) Inhibition of heat shock protein 27-mediated resistance to DNA damaging agents by a novel PKC delta-V5 heptapeptide. Cancer Res 67(13):6333–6341

    CAS  PubMed  Google Scholar 

  • Klemenz R, Andres AC, Fröhli E, Schäfer R, Aoyama A (1993) Expression of the murine small heat shock proteins hsp25 and aB crystallin in the absence of stress. J Cell Biol 120(3):639–645

    CAS  PubMed  Google Scholar 

  • Knapinska AM, Gratacos FM, Krause CD, Hernandez K, Jensen AG, Bradley JJ, Wu X, Pestka S, Brewer G (2011) Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich element-mediated mRNA degradation. Mol Cell Biol 31(7):1419–1431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koch HB, Zhang R, Verdoodt B, Bailey A, Zhang CD, Yates JR 3rd, Menssen A, Hermeking H (2007) Large-scale identification of c-MYC-associated proteins using a combined TAP/MudPIT approach. Cell Cycle 6(2):205–217

    CAS  PubMed  Google Scholar 

  • Kurnellas MP, Brownell SE et al (2012) Chaperone activity of small heat shock proteins underlies therapeutic efficacy in experimental autoimmune encephalomyelitis. J Biol Chem 287(43):36423–36434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwok AS, Phadwal K, Turner BJ, Oliver PL, Raw A, Simon AK, Talbot K, Agashe VR (2011) HspB8 mutation causing hereditary distal motor neuropathy impairs lysosomal delivery of autophagosomes. J Neurochem 119(6):1155–1161

    CAS  PubMed  Google Scholar 

  • Latchman DS (2005) HSP27 and cell survival in neurones. Int J Hyperthermia 21(5):393–402

    CAS  PubMed  Google Scholar 

  • Lavoie JN, Hickey E, Weber LA, Landry J (1993) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 268(32):24210–24214

    CAS  PubMed  Google Scholar 

  • Lee HJ, Lee YS (2010) Repeated-dose toxicity of HSP27-binding heptapeptide in mice. Drug Chem Toxicol 33(3):284–290

    CAS  PubMed  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122(1):189–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S, Carson K, Rice-Ficht A, Good T (2006) Small heat shock proteins differentially affect Abeta aggregation and toxicity. Biochem Biophys Res Commun 347(2):527–533

    CAS  PubMed  Google Scholar 

  • Lee YS, Lim KH et al (2008) The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res 68(18):7561–7569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JS, Kim HY et al (2012) Expression of alphaB-crystallin overrides the anti-apoptotic activity of XIAP. Neuro Oncol 14(11):1332–1345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lelj-Garolla B, Mauk AG (2005) Self-association of a small heat shock protein. J Mol Biol 345(3):631–642

    CAS  PubMed  Google Scholar 

  • Lelj-Garolla B, Mauk AG (2006) Self-association and chaperone activity of Hsp27 are thermally activated. J Biol Chem 281(12):8169–8174

    CAS  PubMed  Google Scholar 

  • Lemieux P, Oesterreich S, Lawrence JA, Steeg PS, Hilsenbeck SG, Harvey JM, Fuqua SA (1997) The small heat shock protein hsp27 increases invasiveness but decreases motility of breast cancer cells. Invasion Metastasis 17(3):113–123

    CAS  PubMed  Google Scholar 

  • Lewis SE, Mannion RJ, White FA, Coggeshall RE, Beggs S, Costigan M, Martin JL, Dillmann WH, Woolf CJ (1999) A role for HSP27 in sensory neuron survival. J Neurosci 19(20):8945–8953

    CAS  PubMed  Google Scholar 

  • Li DW, Liu JP et al (2005) Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alpha B-crystallin through inhibition of RAS activation. Mol Biol Cell 16(9):4437–4453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li B, Smith CC, Laing JM, Gober MD, Liu L, Aurelian L (2007) Overload of the heat-shock protein H11/HspB8 triggers melanoma cell apoptosis through activation of transforming growth factor-beta-activated kinase 1. Oncogene 26(24):3521–3531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ, Rustgi A, Fuchs SY, Diehl JA (2006) Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell 24(3):355–366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu BF, Liang JJ (2008) Confocal fluorescence microscopy study of interaction between lens MIP26/AQP0 and crystallins in living cells. J Cell Biochem 104(1):51–58

    CAS  PubMed  Google Scholar 

  • Liu C, Gilmont RR, Benndorf R, Welsh MJ (2000) Identification and characterization of a novel protein from Sertoli cells, PASS1, that associates with mammalian small stress protein hsp27. J Biol Chem 275(25):18724–18731

    CAS  PubMed  Google Scholar 

  • Liu JP, Schlosser R, Ma WY, Dong Z, Feng H, Lui L, Huang XQ, Liu Y, Li DW (2004) Human alphaA- and alphaB-crystallins prevent UVA-induced apoptosis through regulation of PKCalpha, RAF/MEK/ERK and AKT signaling pathways. Exp Eye Res 79(6):393–403

    CAS  Google Scholar 

  • Liu J, Chen Q, Huang W, Horak KM, Zheng H, Mestril R, Wang X (2006) Impairment of the ubiquitin-proteasome system in desminopathy mouse hearts. FASEB J 20(2):362–364

    CAS  PubMed  Google Scholar 

  • Liu S, Li J, Tao Y, Xiao X (2007) Small heat shock protein alphaB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochem Biophys Res Commun 354(1):109–114

    CAS  PubMed  Google Scholar 

  • Mahon KA, Chepelinsky AB, Khillan JS, Overbeek PA, Piatigorsky J, Westphal H (1987) Oncogenesis of the lens in transgenic mice. Science 235(4796):1622–1628

    CAS  PubMed  Google Scholar 

  • Mao YW, Liu JP, Xiang H, Li DW (2004) Human alphaA- and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11(5):512–526

    CAS  PubMed  Google Scholar 

  • Marin-Vinader L, Shin C, Onnekink C, Manley JL, Lubsen NH (2006) Hsp27 enhances recovery of splicing as well as rephosphorylation of SRp38 after heat shock. Mol Biol Cell 17(2):886–894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Markossian KA, Yudin IK, Kurganov BI (2009) Mechanism of suppression of protein aggregation by alpha-crystallin. Int J Mol Sci 10(3):1314–1345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsushima-Nishiwaki R, Kumada T et al (2013) Direct association of heat shock protein 20 (HSPB6) with phosphoinositide 3-kinase (PI3K) in human hepatocellular carcinoma: regulation of the PI3K activity. PLoS One 8(11):e78440

    CAS  PubMed Central  PubMed  Google Scholar 

  • McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121–135

    CAS  PubMed  Google Scholar 

  • McClung HM, Golembieski WA, Schultz CR, Jankowski M, Schultz LR, Rempel SA (2012) Deletion of the SPARC acidic domain or EGF-like module reduces SPARC-induced migration and signaling through p38 MAPK/HSP27 in glioma. Carcinogenesis 33(2):275–284

    CAS  PubMed Central  PubMed  Google Scholar 

  • McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8(4):303–308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mehlen P, Arrigo A-P (1994) The serum-induced phosphorylation of mammalian hsp27 correlates with changes in its intracellular localization and levels of oligomerization. Eur J Biochem 221:327–334

    CAS  PubMed  Google Scholar 

  • Mehlen P, Préville X, Chareyron P, Briolay J, Klemenz R, Arrigo A-P (1995) Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 154(1):363–374

    CAS  PubMed  Google Scholar 

  • Mehlen P, Préville X, Kretz-Remy C, Arrigo A-P (1996a) Human hsp27, Drosophila hsp27 and human αB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these protein against TNFα−induced cell death. EMBO J 15:2695–2706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mehlen P, Schulze-Osthoff K, Arrigo AP (1996b) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271(28):16510–16514

    CAS  PubMed  Google Scholar 

  • Mehlen P, Hickey E, Weber L, Arrigo A-P (1997a) Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFα in NIH-3T3-ras cells. Biochem Biophys Res Commun 241:187–192

    CAS  PubMed  Google Scholar 

  • Mehlen P, Mehlen A, Godet J, Arrigo A-P (1997b) hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem 272:31657–31665

    CAS  PubMed  Google Scholar 

  • Mendez F, Sandigursky M, Franklin WA, Kenny MK, Kureekattil R, Bases R (2000) Heat-shock proteins associated with base excision repair enzymes in HeLa cells. Radiat Res 153(2):186–195

    CAS  PubMed  Google Scholar 

  • Mendillo ML, Santagata S et al (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150(3):549–562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merendino AM, Paul C, Vignola AM, Costa MA, Melis M, Chiappara G, Izzo V, Bousquet J, Arrigo AP (2002) Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress-mediated apoptosis: possible implication in asthma. Cell Stress Chaperones 7(3):269–280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mickler M, Hessling M, Ratzke C, Buchner J, Hugel T (2009) The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat Struct Mol Biol 16(3):281–286

    CAS  PubMed  Google Scholar 

  • Moulick K, Ahn JH et al (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7(11):818–826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7(2):167–176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moyano JV, Evans JR et al (2006) AlphaB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116(1):261–270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muchowski PJ (2002) Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35(1):9–12

    CAS  PubMed  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6(1):11–22

    CAS  PubMed  Google Scholar 

  • Muchowski PJ, Valdez MM, Clark JI (1999) AlphaB-crystallin selectively targets intermediate filament proteins during thermal stress. Invest Ophthalmol Vis Sci 40(5):951–958

    CAS  PubMed  Google Scholar 

  • Mymrikov EV, Seit-Nebi AS, Gusev NB (2011) Large potentials of small heat shock proteins. Physiol Rev 91(4):1123–1159

    CAS  PubMed  Google Scholar 

  • Mymrikov EV, Seit-Nebi AS, Gusev NB (2012) Heterooligomeric complexes of human small heat shock proteins. Cell Stress Chaperones 17(2):157–169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagaraja GM, Kaur P, Neumann W, Asea EE, Bausero MA, Multhoff G, Asea A (2012a) Silencing Hsp25/Hsp27 gene expression augments proteasome activity and increases CD8+ T-cell-mediated tumor killing and memory responses. Cancer Prev Res (Phila) 5(1):122–137

    CAS  Google Scholar 

  • Nagaraja GN, Kaur P, Asea A (2012b) Role of human and mouse HspB1 in metastasis. Curr Mol Med 12(9):1142–1150

    CAS  PubMed  Google Scholar 

  • Neckers L, Mimnaugh E, Schulte TW (1999) Hsp90 as an anti-cancer target. Drug Resist Updat 2(3):165–172

    CAS  PubMed  Google Scholar 

  • Nemes Z, Devreese B, Steinert PM, Van Beeumen J, Fesus L (2004) Cross-linking of ubiquitin, HSP27, parkin, and alpha-synuclein by gamma-glutamyl-epsilon-lysine bonds in Alzheimer’s neurofibrillary tangles. FASEB J 18(10):1135–1137

    CAS  PubMed  Google Scholar 

  • Nivon M, Richet E, Codogno P, Arrigo AP, Kretz-Remy C (2009) Autophagy activation by NFkappaB is essential for cell survival after heat shock. Autophagy 5:766–783

    CAS  PubMed  Google Scholar 

  • Noh SJ, Jeong WJ et al (2008) Sensitization of RPE cells by alphaB-crystallin siRNA to SAHA-induced stage 1 apoptosis through abolishing the association of alphaB-crystallin with HDAC1 in SC35 speckles. Invest Ophthalmol Vis Sci 49(11):4753–4759

    PubMed  Google Scholar 

  • O’Callaghan-Sunol C, Gabai VL, Sherman MY (2007) Hsp27 modulates p53 signaling and suppresses cellular senescence. Cancer Res 67(24):11779–11788

    PubMed  Google Scholar 

  • Ohto-Fujita E, Fujita Y, Atomi Y (2007) Analysis of the alphaB-crystallin domain responsible for inhibiting tubulin aggregation. Cell Stress Chaperones 12(2):163–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ousman SS, Tomooka BH, van Noort JM, Wawrousek EF, O’Connor KC, Hafler DA, Sobel RA, Robinson WH, Steinman L (2007) Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature 448(7152):474–479

    CAS  PubMed  Google Scholar 

  • Outeiro TF, Klucken J, Strathearn KE, Liu F, Nguyen P, Rochet JC, Hyman BT, McLean PJ (2006) Small heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochem Biophys Res Commun 351(3):631–638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey P, Farber R, Nakazawa A, Kumar S, Bharti A, Nalin C, Weichselbaum R, Kufe D, Kharbanda S (2000) Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 19(16):1975–1981

    CAS  PubMed  Google Scholar 

  • Parcellier A, Schmitt E et al (2003) HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 23(16):5790–5802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parcellier A, Brunet M et al (2006) HSP27 favors ubiquitination and proteasomal degradation of p27Kip1 and helps S-phase re-entry in stressed cells. FASEB J 20(8):1179–1181

    CAS  PubMed  Google Scholar 

  • Patil SB, Pawar MD, Bitar KN (2004) Direct association and translocation of PKC-alpha with calponin. Am J Physiol Gastrointest Liver Physiol 286(6):G954–G963

    CAS  PubMed  Google Scholar 

  • Paul C, Arrigo AP (2000) Comparison of the protective activities generated by two survival proteins: Bcl-2 and Hsp27 in L929 murine fibroblasts exposed to menadione or staurosporine. Exp Gerontol 35(6–7):757–766

    CAS  PubMed  Google Scholar 

  • Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, Arrigo AP (2002) Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 22(3):816–834

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paul C, Simon S, Gibert B, Virot S, Manero F, Arrigo AP (2010) Dynamic processes that reflect anti-apoptotic strategies set up by HspB1 (Hsp27). Exp Cell Res 316(9):1535–1552

    CAS  PubMed  Google Scholar 

  • Perng MD, Cairns L, van den IP, Prescott A, Hutcheson AM, Quinlan RA (1999) Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci 112(Pt 13):2099–2112

    CAS  PubMed  Google Scholar 

  • Perrin V, Regulier E, Abbas-Terki T, Hassig R, Brouillet E, Aebischer P, Luthi-Carter R, Deglon N (2007) Neuroprotection by Hsp104 and Hsp27 in lentiviral-based rat models of Huntington’s disease. Mol Ther 15(5):903–911

    CAS  PubMed  Google Scholar 

  • Prabhu S, Raman B, Ramakrishna T, Rao Ch M (2012) HspB2/myotonic dystrophy protein kinase binding protein (MKBP) as a novel molecular chaperone: structural and functional aspects. PLoS One 7(1):e29810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Preville X, Mehlen P, Fabre-Jonca N, Chaufour S, Kretz-Remy C, Michel MR, Arrigo A-P (1996) Biochemical and immunofluorescence analysis of the constitutively expressed hsp27 stress protein in monkey CV-1 cells. J Biosci 21(2):1–14

    Google Scholar 

  • Preville X, Gaestel M, Arrigo AP (1998a) Phosphorylation is not essential for protection of L929 cells by Hsp25 against H2O2-mediated disruption actin cytoskeleton, a protection which appears related to the redox change mediated by Hsp25. Cell Stress Chaperones 3(3):177–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Preville X, Schultz H, Knauf U, Gaestel M, Arrigo AP (1998b) Analysis of the role of Hsp25 phosphorylation reveals the importance of the oligomerization state of this small heat shock protein in its protective function against TNFalpha- and hydrogen peroxide-induced cell death. J Cell Biochem 69(4):436–452

    CAS  PubMed  Google Scholar 

  • Preville X, Salvemini F, Giraud S, Chaufour S, Paul C, Stepien G, Ursini MV, Arrigo AP (1999) Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp Cell Res 247(1):61–78

    CAS  PubMed  Google Scholar 

  • Qi S, Xin Y, Qi Z, Xu Y, Diao Y, Lan L, Luo L, Yin Z (2014) HSP27 phosphorylation modulates TRAIL-induced activation of Src-Akt/ERK signaling through interaction with beta-arrestin2. Cell Signal 26(3):594–602

    CAS  PubMed  Google Scholar 

  • Quraishe S, Asuni A, Boelens WC, O’Connor V, Wyttenbach A (2008) Expression of the small heat shock protein family in the mouse CNS: differential anatomical and biochemical compartmentalization. Neuroscience 153(2):483–491

    CAS  PubMed  Google Scholar 

  • Rane MJ, Coxon PY, Powell DW, Webster R, Klein JB, Pierce W, Ping P, McLeish KR (2001) p38 Kinase-dependent MAPKAPK-2 activation functions as 3- phosphoinositide-dependent kinase-2 for Akt in human neutrophils. J Biol Chem 276(5):3517–3523

    CAS  PubMed  Google Scholar 

  • Rane MJ, Pan Y, Singh S, Powell DW, Wu R, Cummins T, Chen Q, McLeish KR, Klein JB (2003) Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 278(30):27828–27835

    CAS  PubMed  Google Scholar 

  • Rayner K, Chen YX, McNulty M, Simard T, Zhao X, Wells DJ, de Belleroche J, O’Brien ER (2008) Extracellular release of the atheroprotective heat shock protein 27 is mediated by estrogen and competitively inhibits acLDL binding to scavenger receptor-A. Circ Res 103(2):133–141

    CAS  PubMed  Google Scholar 

  • Renkawek K, Bosman GJ, de Jong WW (1994) Expression of small heat-shock protein hsp 27 in reactive gliosis in Alzheimer disease and other types of dementia. Acta Neuropathol (Berl) 87(5):511–519

    CAS  Google Scholar 

  • Rigas PK, Kase S, Rao NA (2009) Expression of alpha-crystallins in human sebaceous carcinoma of the eyelid. Eur J Ophthalmol 19(5):702–707

    PubMed Central  PubMed  Google Scholar 

  • Robertson AL, Headey SJ, Saunders HM, Ecroyd H, Scanlon MJ, Carver JA, Bottomley SP (2010) Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc Natl Acad Sci U S A 107(23):10424–10429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C, Gleave M (2005) Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res 65(23):11083–11093

    CAS  PubMed  Google Scholar 

  • Roelofs MF, Boelens WC, Joosten LA, Abdollahi-Roodsaz S, Geurts J, Wunderink LU, Schreurs BW, van den Berg WB, Radstake TR (2006) Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol 176(11):7021–7027

    CAS  PubMed  Google Scholar 

  • Rogalla T, Ehrnsperger M et al (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274(27):18947–18956

    CAS  PubMed  Google Scholar 

  • Rosenbaum EE, Brehm KS, Vasiljevic E, Liu CH, Hardie RC, Colley NJ (2011) XPORT-dependent transport of TRP and rhodopsin. Neuron 72(4):602–615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rothbard JB, Kurnellas MP et al (2012) Therapeutic effects of systemic administration of chaperone alphaB-crystallin associated with binding proinflammatory plasma proteins. J Biol Chem 287(13):9708–9721

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78(6):1027–1037

    CAS  PubMed  Google Scholar 

  • Ruan Q, Han S, Jiang WG, Boulton ME, Chen ZJ, Law BK, Cai J (2011) alphaB-crystallin, an effector of unfolded protein response, confers anti-VEGF resistance to breast cancer via maintenance of intracrine VEGF in endothelial cells. Mol Cancer Res 9(12):1632–1643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saha S, Das KP (2004) Relationship between chaperone activity and oligomeric size of recombinant human alphaA- and alphaB-crystallin: a tryptic digestion study. Proteins 57(3):610–617

    CAS  PubMed  Google Scholar 

  • Salari S, Seibert T, Chen YX, Hu T, Shi C, Zhao X, Cuerrier CM, Raizman JE, O’Brien ER (2012) Extracellular HSP27 acts as a signaling molecule to activate NF-kappaB in macrophages. Cell Stress Chaperones 18(1):53–63

    PubMed Central  PubMed  Google Scholar 

  • Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170

    CAS  PubMed  Google Scholar 

  • Sayre LM, Perry G, Atwood CS, Smith MA (2000) The role of metals in neurodegenerative diseases. Cell Mol Biol 46:731–741

    Google Scholar 

  • Schultz CR, Golembieski WA, King DA, Brown SL, Brodie C, Rempel SA (2012) Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival. Mol Cancer 11:20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seit-Nebi AS, Gusev NB (2010) Versatility of the small heat shock protein HSPB6 (Hsp20). Cell Stress Chaperones 15(3):233–236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shammas SL, Waudby CA, Wang S, Buell AK, Knowle TP, Ecroyd H, Welland ME, Carver JA, Dobson CM, Meehan S (2011) Binding of the molecular chaperone alphaB-crystallin to Abeta amyloid fibrils inhibits fibril elongation. Biophys J 101:1681–1689

    Google Scholar 

  • Shimura H, Miura-Shimura Y, Kosik KS (2004) Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem 279(17):17957–17962

    CAS  PubMed  Google Scholar 

  • Shinder GA, Lacourse MC, Minotti S, Durham HD (2001) Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J Biol Chem 276(16):12791–12796

    CAS  PubMed  Google Scholar 

  • Shiota M, Bishop JL et al (2013) Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Res 73(10):3109–3119

    CAS  PubMed  Google Scholar 

  • Shoham S, Youdim MB (2000) Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases. Cell Mol Biol (Noisy-le-Grand) 46(4):743–760

    CAS  Google Scholar 

  • Simon S, Fontaine JM, Martin JL, Sun X, Hoppe AD, Welsh MJ, Benndorf R, Vicart P (2007) Myopathy-associated alpha B-crystallin mutants: abnormal phosphorylation, intracellular location, and interactions with other small heat shock proteins. J Biol Chem 82:34276–34287

    Google Scholar 

  • Simon S, Dimitrova V et al (2013) Analysis of the dominant effects mediated by wild type or R120G mutant of alphaB-crystallin (HspB5) towards Hsp27 (HspB1). PLoS One 8(8):e70545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh BN, Rao KS, Ramakrishna T, Rangaraj N, Rao Ch M (2007) Association of alphaB-crystallin, a small heat shock protein, with actin: role in modulating actin filament dynamics in vivo. J Mol Biol 366(3):756–767

    CAS  PubMed  Google Scholar 

  • Sinsimer KS, Gratacos FM et al (2008) Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in AU-rich element-mediated mRNA decay. Mol Cell Biol 28(17):5223–5237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skouri-Panet F, Michiel M, Ferard C, Duprat E, Finet S (2012) Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: role of the in vitro hetero-complex formation in chaperone activity. Biochimie 94(4):975–984

    CAS  PubMed  Google Scholar 

  • Sluchanko NN, Sudnitsyna MV, Chernik IS, Seit-Nebi AS, Gusev NB (2011) Phosphomimicking mutations of human 14-3-3zeta affect its interaction with tau protein and small heat shock protein HspB6. Arch Biochem Biophys 506(1):24–34

    CAS  PubMed  Google Scholar 

  • Smith CC, Li B, Liu J, Lee KS, Aurelian L (2011) The Levels of H11/HspB8 DNA methylation in human melanoma tissues and xenografts are a critical molecular marker for 5-Aza-2′-deoxycytidine therapy. Cancer Invest 29(6):383–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith CC, Lee KS, Li B, Laing JM, Hersl J, Shvartsbeyn M, Aurelian L (2012) Restored expression of the atypical heat shock protein H11/HspB8 inhibits the growth of genetically diverse melanoma tumors through activation of novel TAK1-dependent death pathways. Cell Death Dis 3:e371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solari E, Garrido C (2002) The forgotten chaperones. Nat Cell Biol 4:E125

    Google Scholar 

  • Sreekumar PG, Kannan R, Kitamura M, Spee C, Barron E, Ryan SJ, Hinton DR (2010) alphaB crystallin is apically secreted within exosomes by polarized human retinal pigment epithelium and provides neuroprotection to adjacent cells. PLoS One 5(10):e12578

    PubMed Central  PubMed  Google Scholar 

  • Sreelakshmi Y, Sharma KK (2006) The interaction between alphaA- and alphaB-crystallin is sequence-specific. Mol Vis 12:581–587

    CAS  PubMed  Google Scholar 

  • Srinivas PN, Reddy PY, Reddy GB (2008) Significance of alpha-crystallin heteropolymer with a 3:1 alphaA/alphaB ratio: chaperone-like activity, structure and hydrophobicity. Biochem J 414(3):453–460

    CAS  PubMed  Google Scholar 

  • Srinivasan A, Nagineni C, Bhat S (1992) alpha A-crystallin is expressed in non-ocular tissues. J Biol Chem 267:23337–23341

    CAS  PubMed  Google Scholar 

  • Stengel F, Baldwin AJ, Painter AJ, Jaya N, Basha E, Kay LE, Vierling E, Robinson CV, Benesch JL (2010) Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proc Natl Acad Sci U S A 107(5):2007–2012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stokoe D, Engel K, Campbell D, Cohen P, Gaestel M (1992) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313:307–313

    CAS  PubMed  Google Scholar 

  • Sugiyama Y, Suzuki A, Kishikawa M, Akutsu R, Hirose T, Waye MM, Tsui SK, Yoshida S, Ohno S (2000) Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J Biol Chem 275(2):1095–1104

    CAS  PubMed  Google Scholar 

  • Sun X, Fontaine JM, Rest JS, Shelden EA, Welsh MJ, Benndorf R (2004) Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem 279(4):2394–2402

    CAS  PubMed  Google Scholar 

  • Sun G, Guo M et al (2005) Bovine PrPC directly interacts with alphaB-crystalline. FEBS Lett 579(24):5419–5424

    CAS  PubMed  Google Scholar 

  • Sun Y, Yi H et al (2007) Identification of differential proteins in nasopharyngeal carcinoma cells with p53 silence by proteome analysis. FEBS Lett 581(1):131–139

    CAS  PubMed  Google Scholar 

  • Sun X, Fontaine JM et al (2010) Abnormal interaction of motor neuropathy-associated mutant HspB8 (Hsp22) forms with the RNA helicase Ddx20 (gemin3). Cell Stress Chaperones 15(5):567–582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Zhou M, Fu D, Xu B, Fang T, Ma Y, Chen J, Zhang J (2011) Ubiquitination of heat shock protein 27 is mediated by its interaction with Smad ubiquitination regulatory factor 2 in A549 cells. Exp Lung Res 37:568–573

    CAS  PubMed  Google Scholar 

  • Tabner BJ, Turnbull S, El-Agnaf O, Allsop D (2001) Production of reactive oxygen species from aggregating proteins implicated in Alzheimer’s disease, Parkinson’s disease and other neurodegenerative diseases. Curr Top Med Chem 1(6):507–517

    CAS  PubMed  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11(7):515–528

    CAS  PubMed  Google Scholar 

  • Tang G, Perng MD, Wilk S, Quinlan R, Goldman JE (2010) Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition. J Biol Chem 285(14):10527–10537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanguay R, Wu Y, Khandjian E (1993) Tissue-specific expression of heat shock proteins of the mouse in the absence of stress. Dev Genet 14:112–118

    CAS  PubMed  Google Scholar 

  • Thedieck C, Kalbacher H, Kratzer U, Lammers R, Stevanovic S, Klein G (2008) alpha B-crystallin is a cytoplasmic interaction partner of the kidney-specific cadherin-16. J Mol Biol 378(1):145–153

    CAS  PubMed  Google Scholar 

  • Thuringer D, Jego G et al (2013) Extracellular HSP27 mediates angiogenesis through Toll-like receptor 3. FASEB J 27(10):4169–4183

    CAS  PubMed  Google Scholar 

  • Tsvetkova NM, Horvath I et al (2002) Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci U S A 99(21):13504–13509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turnbull S, Tabner BJ, Brown DR, Allsop D (2003) Copper-dependent generation of hydrogen peroxide from the toxic prion protein fragment PrP106-126. Neurosci Lett 336(3):159–162

    CAS  PubMed  Google Scholar 

  • van de Schootbrugge C, Bussink J, Span PN, Sweep FC, Grenman R, Stegeman H, Pruijn GJ, Kaanders JH, Boelens WC (2013a) alphaB-crystallin stimulates VEGF secretion and tumor cell migration and correlates with enhanced distant metastasis in head and neck squamous cell carcinoma. BMC Cancer 13:128. doi:10.1186/1471-2407-13-128

    PubMed Central  PubMed  Google Scholar 

  • van de Schootbrugge C, van Asten F et al (2013b) alphaB-crystallin expression is correlated with phospho-ERK1/2 expression in human breast cancer. Int J Biol Markers 28(4):e365–e370

    PubMed  Google Scholar 

  • van Noort JM, Bsibsi M et al (2013) Activation of an immune-regulatory macrophage response and inhibition of lung inflammation in a mouse model of COPD using heat-shock protein alpha B-crystallin-loaded PLGA microparticles. Biomaterials 34(3):831–840

    PubMed  Google Scholar 

  • Verschuure P, Croes Y, van den IPR, Quinlan RA, de Jong WW, Boelens WC (2002) Translocation of small heat shock proteins to the actin cytoskeleton upon proteasomal inhibition. J Mol Cell Cardiol 34(2):117–128

    CAS  PubMed  Google Scholar 

  • Vicart P, Caron A et al (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20(1):92–95

    CAS  PubMed  Google Scholar 

  • Vos MJ, Kanon B, Kampinga HH (2009) HSPB7 is a SC35 speckle resident small heat shock protein. Biochim Biophys Acta 1793(8):1343–1353

    CAS  PubMed  Google Scholar 

  • Vos MJ, Zijlstra MP, Kanon B, van Waarde-Verhagen MA, Brunt ER, Oosterveld-Hut HM, Carra S, Sibon OC, Kampinga HH (2010) HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 19(23):4677–4693

    CAS  PubMed  Google Scholar 

  • Wang K, Spector A (1996) alpha-crystallin stabilizes actin filaments and prevents cytochalasin- induced depolymerization in a phosphorylation-dependent manner. Eur J Biochem 242(1):56–66

    CAS  PubMed  Google Scholar 

  • Wang J, Huo K et al (2011) Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol 7:536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warde-Farley D, Donaldson SL et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(Web Server issue):W214–W220. doi:10.1093/nar/gkq537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe G, Kato S, Nakata H, Ishida T, Ohuchi N, Ishioka C (2009) alphaB-crystallin: a novel p53-target gene required for p53-dependent apoptosis. Cancer Sci 100(12):2368–2375

    CAS  PubMed  Google Scholar 

  • Wei L, Liu TT, Wang HH, Hong HM, Yu AL, Feng HP, Chang WW (2011) Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-kappaB. Breast Cancer Res 13(5):R101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Welch WJ, Feramisco JR (1985) Disruption of the three cytoskeletal networks in mammalian cells does not affect transcription, translation, or protein translocation changes induced by heat shock. Mol Cell Biol 5(7):1571–1581

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wettstein G, Bellaye PS, Micheau O, Bonniaud P (2012) Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? Int J Biochem Cell Biol 44(10):1680–1686

    CAS  PubMed  Google Scholar 

  • Wettstein G, Bellaye PS et al (2013) Inhibition of HSP27 blocks fibrosis development and EMT features by promoting Snail degradation. FASEB J 27(4):1549–1560

    CAS  PubMed  Google Scholar 

  • Whitesell L, Santagata S, Lin NU (2012) Inhibiting HSP90 to treat cancer: a strategy in evolution. Curr Mol Med 12(9):1108–1124

    CAS  PubMed  Google Scholar 

  • Wilhelmus MM, Boelens WC, Otte-Holler I, Kamps B, Kusters B, Maat-Schieman ML, de Waal RM, Verbeek MM (2006a) Small heat shock protein HspB8: its distribution in Alzheimer’s disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity. Acta Neuropathol 111(2):139–149

    CAS  PubMed  Google Scholar 

  • Wilhelmus MM, Boelens WC, Otte-Holler I, Kamps B, de Waal RM, Verbeek MM (2006b) Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res 1089:67–78

    Google Scholar 

  • Wu R, Kausar H, Johnson P, Montoya-Durango DE, Merchant M, Rane MJ (2007) Hsp27 regulates Akt activation and polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt signal complex. J Biol Chem 282(30):21598–21608

    CAS  PubMed  Google Scholar 

  • Wu Y, Liu J, Zhang Z, Huang H, Shen J, Zhang S, Jiang Y, Luo L, Yin Z (2009) HSP27 regulates IL-1 stimulated IKK activation through interacting with TRAF6 and affecting its ubiquitination. Cell Signal 21(1):143–150

    CAS  PubMed  Google Scholar 

  • Wyttenbach A (2004) Role of heat shock proteins during polyglutamine neurodegeneration: mechanisms and hypothesis. J Mol Neurosci 23(1–2):69–96

    CAS  PubMed  Google Scholar 

  • Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo AP, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11(9):1137–1151

    CAS  PubMed  Google Scholar 

  • Xi JH, Bai F, McGaha R, Andley UP (2006) Alpha-crystallin expression affects microtubule assembly and prevents their aggregation. FASEB J 20(7):846–857

    CAS  PubMed  Google Scholar 

  • Xu L, Chen S, Bergan RC (2006) MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene 25:2987–2998

    CAS  PubMed  Google Scholar 

  • Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21(19):5164–5172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Ludwig RL et al (2005) Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7(6):547–559

    CAS  PubMed  Google Scholar 

  • Yang K, Meinhardt A, Zhang B, Grzmil P, Adham IM, Hoyer-Fender S (2012) The small heat shock protein ODF1/HSPB10 is essential for tight linkage of sperm head to tail and male fertility in mice. Mol Cell Biol 32(1):216–225

    PubMed Central  PubMed  Google Scholar 

  • Yerbury JJ, Gower D, Vanags L, Roberts K, Lee JA, Ecroyd H (2012) The small heat shock proteins alphaB-crystallin and Hsp27 suppress SOD1 aggregation in vitro. Cell Stress Chaperones 18(2):251–257

    PubMed Central  PubMed  Google Scholar 

  • Zantema A, Vries MV-D, Maasdam D, Bol S, Avd E (1992) Heat shock protein 27 and αB-cristallin can form a complex, which dissociates by heat shock. J Biol Chem 267(18):12936–12941

    CAS  PubMed  Google Scholar 

  • Zha J, Harada H, Osipov K, Jockel J, Waksman G, Korsmeyer SJ (1997) BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J Biol Chem 272(39):24101–24104

    CAS  PubMed  Google Scholar 

  • Zhu Y, Tassi L, Lane W, Mendelsohn ME (1994) Specific binding of the transglutaminase, platelet factor XIII, to HSP27. J Biol Chem 269(35):22379–22384

    CAS  PubMed  Google Scholar 

  • Zhuang H, Jiang W et al (2009) Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis. Lung Cancer 68(1):27–38

    PubMed  Google Scholar 

  • Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P, Nelson C, Gleave M (2007) Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 67(21):10455–10465

    CAS  PubMed  Google Scholar 

  • Zoubeidi A, Zardan A, Wiedmann RM, Locke J, Beraldi E, Fazli L, Gleave ME (2010) Hsp27 promotes insulin-like growth factor-I survival signaling in prostate cancer via p90Rsk-dependent phosphorylation and inactivation of BAD. Cancer Res 70(6):2307–2317

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André-Patrick Arrigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arrigo, AP., Ducarouge, B., Lavial, F., Gibert, B. (2015). Immense Cellular Implications Associated to Small Stress Proteins Expression: Impacts on Human Pathologies. In: Tanguay, R., Hightower, L. (eds) The Big Book on Small Heat Shock Proteins. Heat Shock Proteins, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-16077-1_2

Download citation

Publish with us

Policies and ethics