Skip to main content

Biochar from Biomass: A Strategy for Carbon Dioxide Sequestration, Soil Amendment, Power Generation, and CO2 Utilization

  • Reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation

Abstract

Biochar is a stable form of carbon produced via the pyrolysis of biomass for use in sustainable environmental and agricultural practices. The concept of biochar was originally triggered from the ancient practice in which humans deliberately mixed carbonized biomass into soils to enrich the soil quality and fertility. According to the International Biochar Initiative (IBI), biochar can be defined as “A solid material obtained from the thermo-chemical conversion of biomass in an oxygen-limited environment.” Biomass-derived biochar production has been demonstrated as a potentially viable strategy for developing negative carbon emission technologies for climate change mitigation and also as a material for effective amendment of relatively poor agricultural soils. Most interestingly, ongoing biochar research work has expanded broadly, stretching from its traditional core in the environmental and agricultural science to include studies in the use of biochar for energy generation and as adsorbents for pollution treatment applications. However, the use of biochar for carbon sequestration and soil amendment has attracted more interests by research scientists globally. The use of biochar as a material for soil amendment is closely linked with its potential for climate change mitigation by carbon sequestration. Specifically, the properties of biochar include resistance to microbial degradation and chemical transformations, high surface areas, high water retention capacity, cation-exchange capacity, and its effectiveness as support and substrate for soil microbes. These characteristics endow biochar with a greater potential to become a highly useful source of materials for improving agricultural productivity through soil quality enhancement while simultaneously sequestering CO2 from the atmosphere to mitigate climate change. On a separate front, a recent study of acoustic and photochemical interactions of CO2 with carbonaceous materials seems to warrant feasibility research in the future for exploring novel routes of CO2 utilization and CO2 capture. Moreover, biochar’s ability to absorb electromagnetic radiation and emit far-infrared wavelength radiation has promoted research, development, and commercialization of biochar’s applications in medical and health therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah TM, Mahmoud ME, Ahmed SB, Huff MD, Lee JW, Kumar S (2014) Biochar from woody biomass for removing metal contaminants and carbon sequestration. J Ind Eng Chem doi:10.1016/j.jiec.2014.06.030

    Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D . . . Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. doi:10.1016/j.chemosphere.2013.10.071

    Google Scholar 

  • Angın D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597. doi:10.1016/j.biortech.2012.10.150

    Article  Google Scholar 

  • Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production†. Ind Eng Chem Res 42(8):1619–1640. doi:10.1021/ie0207919

    Article  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil 337(1–2):1–18

    Article  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311(5762):812–815. doi:10.1126/science.1118446

    Article  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287. doi:10.1016/j.envpol.2010.02.003

    Article  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–3282. doi:10.1016/j.envpol.2011.07.023

    Article  Google Scholar 

  • Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJC (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202. doi:10.1016/j.envpol.2013.11.026

    Article  Google Scholar 

  • Bonneau-Gubelmann I, Michel M, Besson B, Ratton S, Desmurs J (1996) Carboxylation of hydroxylation of hydroxy aromatic compounds. Indus Chem Libr 8:116–128

    Article  Google Scholar 

  • Bourke J, Manley-Harris M, Fushimi C, Dowaki K, Nunoura T, Antal MJ (2007) Do All carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal†. Ind Eng Chem Res 46(18):5954–5967. doi:10.1021/ie070415u

    Article  Google Scholar 

  • Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao X, Dugan B. . . Davies CA (2014) New approaches to measuring biochar density and porosity. Biomass Bioenergy 66:176–185. doi:10.1016/j.biombioe.2014.03.059

    Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4(1):1–73. doi:10.1016/S1364-0321(99)00007-6

    Article  Google Scholar 

  • Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30(12):1479–1493. doi:10.1016/S0146-6380(99)00120-5

    Article  Google Scholar 

  • Bridgwater AV, Carson P, Coulson M (2007) A comparison of fast and slow pyrolysis liquids from mallee. Int J Glob Energy Issues 27(2):204–216

    Article  Google Scholar 

  • Brunelli NA, Didas SA, Venkatasubbaiah K, Jones CW (2012). Tuning cooperativity by controlling the linker length of silica-supported amines in catalysis and CO2 capture. J Am Chem Soc 134:13950–13953

    Article  Google Scholar 

  • Carrier M, Hardie AG, Uras U, Gorgens J, Knoetze J (2012) Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J Anal Appl Pyrolysis 96:24–32

    Article  Google Scholar 

  • Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. Biochar Environ Manag Sci Technol 51:67–84

    Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45(8):629–634. doi:10.1071/SR07109

    Article  Google Scholar 

  • Chateauneuf JE, Zhang J, Foote J, Brink J, Perkovic MW (2002) Photochemical fixation of supercritical carbon dioxide: the production of a carboxylic acid from a polyaromatic hydrocarbon. Adv Environ Res 6:487–493

    Article  Google Scholar 

  • Chen WY, Mattern DL, Okinado E, Senter JC, Mattei AA, Redwine CW (2014) Photochemical and acoustic interactions of biochar with CO2 and H2O: applications in power generation and CO2 capture. AIChE J 60:1054–1065

    Article  Google Scholar 

  • Cheng C-H, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37(11):1477–1488. doi:10.1016/j.orggeochem.2006.06.022

    Article  Google Scholar 

  • Cheng C-H, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72(6):1598–1610. doi:10.1016/j.gca.2008.01.010

    Article  Google Scholar 

  • Chia CH, Singh BP, Joseph S, Graber ER, Munroe P (2014) Characterization of an enriched biochar. J Anal Appl Pyrolysis 108:26–34. doi:10.1016/j.jaap.2014.05.021

    Article  Google Scholar 

  • Chintala R, Clay DE, Schumacher TE, Malo DD, Julson JL (2012) Optimization of oxygen parameters for determination of carbon and nitrogen in biochar materials. Anal Lett 46(3):532–538. doi:10.1080/00032719.2012.721103

    Article  Google Scholar 

  • Clemente R, Hartley W, Riby P, Dickinson NM, Lepp NW (2010) Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch. Environ Pollut 158(5):1644–1651. doi:10.1016/j.envpol.2009.12.006

    Article  Google Scholar 

  • Clough TJ, Bertram JE, Ray JL, Condron LM, O’Callaghan M, Sherlock R R, Wells N S (2010) Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Soil Sci Soc Am J 74(3):852–860. doi: 10.2136/sssaj2009.0185

    Google Scholar 

  • Crombie K, Mašek O, Sohi SP, Brownsort P, Cross A (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5(2):122–131. doi:10.1111/gcbb.12030

    Article  Google Scholar 

  • Day D, Evans RJ, Lee JW, Reicosky D (2005) Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 30(14):2558–2579. doi:10.1016/j.energy.2004.07.016

    Article  Google Scholar 

  • Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Soil Sci Soc Am J 74(4):1259–1270. doi: 10.2136/sssaj2009.0115

    Google Scholar 

  • Demiral İ, Ayan EA (2011) Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresour Technol 102(4):3946–3951. doi:10.1016/j.biortech.2010.11.077

    Article  Google Scholar 

  • Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72(2):243–248. doi:10.1016/j.jaap.2004.07.003

    Article  Google Scholar 

  • Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24(5):471–482. doi:10.1080/00908310252889979

    Article  Google Scholar 

  • Dewar MJS, Dieter KM (1988) Mechanism of the chain extension step in the biosynthesis of fatty acids. Biochemistry 27:3302–3308

    Article  Google Scholar 

  • Downie A, Crosky A, Monroe P (2009) Biochar for environmental management: science and technology. Earthscan, London, pp 13–32

    Google Scholar 

  • Duku MH, Gu S, Hagan EB (2011) Biochar production potential in Ghana – a review. Renew Sustain Energy Rev 15(8):3539–3551

    Article  Google Scholar 

  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653. doi:10.1016/j.biortech.2012.03.022

    Article  Google Scholar 

  • Fang Q, Chen B, Lin Y, Guan Y (2013) Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol 48(1):279–288

    Article  Google Scholar 

  • Fernandes MB, Brooks P (2003) Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds. Chemosphere 53(5):447–458. doi:10.1016/s0045-6535(03)00452-1

    Article  Google Scholar 

  • Franklin R (1951) Crystallite growth in graphitizing and non-graphitizing carbons. Math Phys Sci 1097:196–218

    Article  Google Scholar 

  • Galinato SP, Yoder JK, Granatstein D (2011) The economic value of biochar in crop production and carbon sequestration. Energy Policy 39(10):6344–6350

    Article  Google Scholar 

  • Galipo RC, Egan WJ, Aust JF, Myrick ML, Morgan SL (1998) Pyrolysis gas chromatography/mass spectrometry investigation of a thermally cured polymer. J Anal Appl Pyrolysis 45(1):23–40. doi:10.1016/S0165-2370(98)00059-X

    Article  Google Scholar 

  • Garcia R, Pizarro C, Lavin AG, Bueno JL (2013) Biomass proximate analysis using thermogravimetry. Bioresour Technol 139:1–4. doi:10.1016/j.biortech.2013.03.197

    Article  Google Scholar 

  • Gathitu BB, Chen WY, McClure MC (2009) Effects of coal interaction with supercritical CO2: physical structure. Ind Eng Chem Res 48:5024–5034

    Article  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol Fertil Soils 35(4):219–230. doi:10.1007/s00374-002-0466-4

    Article  Google Scholar 

  • Grossman J, O’Neill B, Tsai S, Liang B, Neves E, Lehmann J, Thies J (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60(1):192–205. doi:10.1007/s00248-010-9689-3

    Article  Google Scholar 

  • Gu X, Wang Y, Lai C, Qiu J, Li S, Hou Y, Martens W, Mahmood N, Zhang S (2015) Microporous bamboo biochar for lithium−sulfur batteries. Nano Res 8(1):129–139. Doi:10.1007/s12274-014-0601-1

    Article  Google Scholar 

  • Guo G, Zhou Q, Ma L (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116(1–3):513–528. doi:10.1007/s10661-006-7668-4

    Article  Google Scholar 

  • Hamada Y, Teraoka F, Matsumoto T, Madachi A, Toki F, Uda E, Hase R, Takahashi J, Matsuura N (2003) Effects of far infrared ray on Hela cells and WI-38 cells. Int Congr Ser 1255:339–341

    Article  Google Scholar 

  • Hammes K, Schmidt MWI (2009) Changes of biochar in soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  • Hmid A, Mondelli D, Fiore S, Fanizzi FP, Al Chami Z, Dumontet S (2014) Production and characterization of biochar from three-phase olive mill waste through slow pyrolysis. Biomass Bioenergy. doi:10.1016/j.biombioe.2014.09.024

    Google Scholar 

  • Honda K, Inoue S (1988) Sleep-enhancing effects of far-infrared radiation in rats. Int J Biometeorol 32(2):92–94

    Article  Google Scholar 

  • Hornung A (2013) Intermediate pyrolysis of biomass, Chap 8. In: Rosendahl L (ed) Biomass combustion science. Technology and engineering. Woodhead, Cambridge, pp 172–186

    Chapter  Google Scholar 

  • Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage 92(1):223–228. doi:10.1016/j.jenvman.2010.09.008

    Article  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457. doi:10.1016/j.chemosphere.2013.03.055

    Article  Google Scholar 

  • Ibrahim HM, Al-Wabel MI, Usman ARA, Al-Omran A (2013) Effect of conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci 178(4):165–173. doi: 10.1097/SS.0b013e3182979eac

    Article  Google Scholar 

  • Ince NH, Tezcanli G, Belen RK, Apikyan IG (2001) Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl Catal B Environ 29:167–176

    Article  Google Scholar 

  • Inoue S, Kabaya M (1989) Biological activities caused by far-infrared radiation. Int J Biometeorol 33(3):145–50

    Article  Google Scholar 

  • International Biochar Initiative (IBI) (2012) Standard product definition and product testing guidelines for biochar that is used in soil. http://www.biochar-international.org/newsletter

    Google Scholar 

  • International Energy Agency (IEA) (2007) Bioenergy biomass pyrolysis. IEA Bioenergy. www.ieabioenergy.com

  • IPCC (2005) Special report on carbon dioxide capture and storage, prepared by working group III of the Intergovernmental Panel on Climate Change. In: Sohi et al (eds) Cambridge University Press, Cambridge

    Google Scholar 

  • Ishibashi J, Yamashita K, Ishikawa T, Hosokawa H, Sumida K, Nagayama M, Kitamura S (2008) The effects inhibiting the proliferation of cancer cells by far-infrared radiation (FIR) are controlled by the basal expression level of heat shock protein (HSP) 70A. Med Oncol 25:229–237

    Article  Google Scholar 

  • Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordin Chem Rev 257:171–186

    Article  Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr Ecosyst Environ 144(1):175–187

    Article  Google Scholar 

  • Jindo K, Suto K, Matsumoto K, García C, Sonoki T, Sanchez-Monedero MA (2012) Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresour Technol 110:396–404. doi:10.1016/j.biortech.2012.01.120

    Article  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253. doi:10.1021/es9031419

    Article  Google Scholar 

  • Kim SS, Agblevor FA (2007) Pyrolysis characteristics and kinetics of chicken litter. Waste Manag 27(1):135–140. doi:10.1016/j.wasman.2006.01.012

    Article  Google Scholar 

  • Kim S-J, Jung S-H, Kim J-S (2010) Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresour Technol 101(23):9294–9300. doi:10.1016/j.biortech.2010.06.110

    Article  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26. doi:10.1007/s00253-004-1642-2

    Article  Google Scholar 

  • Kolbe H (1860) Ueber Synthese der Salicylsäure. Annalen der Chemie and Pharmacie 113:125–127

    Article  Google Scholar 

  • Kruse A, Funke A, Titirici M-M (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17(3):515–521. doi:10.1016/j.cbpa.2013.05.004

    Article  Google Scholar 

  • Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A (2012) Photochemical and photoelectrochemical reduction of CO2. Annu Rev Phys Chem 63:541–69

    Article  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41(2):210–219. doi:10.1016/j.soilbio.2008.10.016

    Article  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Agron J 100(1):178–181. doi: 10.2134/agrojnl2007.0161

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627. doi:10.1126/science.1097396

    Article  Google Scholar 

  • Larsen JW, Gurevich I (1996) A method for counting the hydrogen-bond cross-links in coal. Energy Fuels 10:1269–1272

    Article  Google Scholar 

  • Lee JW, Kidder M, Evans BR, Paik S, Buchanan AC 3rd, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20):7970–7974. doi:10.1021/es101337x

    Article  Google Scholar 

  • Lee JW, Buchanan AC, Evans BR, Kidder MK (2011) PCT/US2011/020306

    Google Scholar 

  • Lee JW, Lee J, Buchanan AC III, Evans B, Kidder M (2013) Oxygenation of biochar for enhanced cation exchange capacity. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 35–45

    Google Scholar 

  • Lehmann J (2003) Amazonian dark earths: origin, properties, management. Kluwer, Dordrecht

    Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387

    Article  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. In: Lehmann J, Joseph S (eds), Earth Scan, London & Sterling, VA, 416 p

    Google Scholar 

  • Lehmann J, Rondon M (2006) Bio-char soil management on highly weathered soils in the humid tropics. Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 517–530

    Book  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems–a review. Mitig Adapt Strat Glob Chang 11(2):395–419

    Article  Google Scholar 

  • Lehmann J, Czimczik C, Laird D, Sohi S (2009) Stability of biochar in soil. Biochar Environ Manag Sci Technol. In: Lehmann et al. (eds), Earth Scan, London & Sterling, VA, pp 183–205

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43(9):1812–1836

    Article  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730. doi:10.2136/sssaj2005.0383

    Article  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO . . . Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochimica et Cosmochimica Acta 72(24):6069–6078. doi:10.1016/j.gca.2008.09.028

    Google Scholar 

  • Lindsey AS, Jeskey H (1957) The Kolbe-Schmitt reaction. Chemistry 57:583–620

    Google Scholar 

  • Liu X, Li Z, Zhang Y, Feng R, Mahmood IB (2014) Characterization of human manure-derived biochar and energy-balance analysis of slow pyrolysis process. Waste Manag 34(9):1619–1626. doi:10.1016/j.wasman.2014.05.027

    Article  Google Scholar 

  • Loganathan VA, Feng Y, Sheng GD, Clement TP (2009) Crop-residue-derived char influences sorption, desorption and bioavailability of atrazine in soils all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Soil Sci Soc Am J 73(3):967–974. doi: 10.2136/sssaj2008.0208

    Google Scholar 

  • Lou CW, Lin CW, Lei CH, Su KH, Hsu CH, Liu ZH, Lin JH (2007) PET/PP blend with bamboo activated charcoal to produce functional composites. J Mater Process Technol 192:428–433

    Article  Google Scholar 

  • Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003

    Article  Google Scholar 

  • Manya JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46(15):7939–7954. doi:10.1021/es301029g

    Article  Google Scholar 

  • Mašek O, Budarin V, Gronnow M, Crombie K, Brownsort P, Fitzpatrick E, Hurst P (2013) Microwave and slow pyrolysis biochar: comparison of physical and functional properties. J Anal Appl Pyrolysis 100:41–48. doi:10.1016/j.jaap.2012.11.015

    Article  Google Scholar 

  • Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92(1–4):201–213. doi:10.1016/j.marchem.2004.06.043

    Article  Google Scholar 

  • Mason TJ (1990) Chemistry with ultrasound. In: Mason TJ (ed) Critical reports on applied chemistry 28, Society for Chemical Industry. Elsevier, London

    Google Scholar 

  • Méndez A, Tarquis AM, Saa-Requejo A, Guerrero F, Gascó G (2013) Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil. Chemosphere 93(4):668–676. doi:10.1016/j.chemosphere.2013.06.004

    Article  Google Scholar 

  • Mimmo T, Panzacchi P, Baratieri M, Davies CA, Tonon G (2014) Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 62:149–157. doi:10.1016/j.biombioe.2014.01.004

    Article  Google Scholar 

  • Mirzaeian M, Hall PJ (2006) The interactions of coal with CO2 and its effects on coal structure. Energy Fuels 20:2022–2027

    Article  Google Scholar 

  • Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T (2004) Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour Technol 95:255–257

    Article  Google Scholar 

  • Moon DH, Park JW, Chang YY, Ok YS, Lee SS, Ahmad M, Baek K (2013) Immobilization of lead in contaminated firing range soil using biochar. Environ Sci Pollut Res Int 20(12):8464–8471. doi:10.1007/s11356-013-1964-7

    Article  Google Scholar 

  • Mukome FND, Zhang X, Silva LCR, Six J, Parikh SJ (2013) Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J Agric Food Chem 61(9):2196–2204

    Article  Google Scholar 

  • Nagasawa Y, Udagawa Y, Kiyokawa S (1999) Evidence that irradiation of far-infrared rays inhibits mammary tumour growth in SHN mice. Anticancer Res 19(3A):1797–800

    Google Scholar 

  • Nguyen, HN, Pignatello JJ (2013) Laboratory tests of biochars as absorbents for use in recovery or containment of marine crude oil spills. Environ Eng Sci 30(7):374–380

    Article  Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174(2):105–112. doi:10.1097/SS.1090b1013e3181981d3181989a

    Article  Google Scholar 

  • Okimori Y, Ogawa M, Takahashi F (2003) Potential of Co2 emission reductions by carbonizing biomass waste from industrial tree plantation in South Sumatra, Indonesia. Mitig Adapt Strat Glob Chang 8(3):261–280. doi:10.1023/B:MITI.0000005643.79908.5a

    Article  Google Scholar 

  • O’Neill B, Grossman J, Tsai MT, Gomes JE, Lehmann J, Peterson J, Thies JE (2009) Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58(1):23–35. doi:10.1007/s00248-009-9515-y

    Article  Google Scholar 

  • Ottaway M (1982) Use of thermogravimetry for proximate analysis of coals and cokes. Fuel 61(8):713–716. doi:10.1016/0016-2361(82)90244-7

    Article  Google Scholar 

  • Özçimen D, Karaosmanoğlu F (2004) Production and characterization of bio-oil and biochar from rapeseed cake. Renew Energy 29(5):779–787. doi:10.1016/j.renene.2003.09.006

    Article  Google Scholar 

  • Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48(1):147–163. doi:10.1023/A:1006271331703

    Article  Google Scholar 

  • Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89(2):231–242. doi:10.1034/j.1600-0706.2000.890203.x

    Article  Google Scholar 

  • Pujol D, Liu C, Gominho J, Olivella MÀ, Fiol N, Villaescusa I, Pereira H (2013) The chemical composition of exhausted coffee waste. Ind Crops Prod 50:423–429. doi:10.1016/j.indcrop.2013.07.056

    Article  Google Scholar 

  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman A, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48(3):271–284. doi:10.1007/s00374-011-0624-7

    Article  Google Scholar 

  • Rondon M, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43(6):699–708. doi:10.1007/s00374-006-0152-z

    Article  Google Scholar 

  • Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5(2):104–115. doi:10.1111/gcbb.12018

    Article  Google Scholar 

  • Rutigliano FA, Romano M, Marzaioli R, Baglivo I, Baronti S, Miglietta F, Castaldi S (2014) Effect of biochar addition on soil microbial community in a wheat crop. Eur J Soil Biol 60:9–15. doi:10.1016/j.ejsobi.2013.10.007

    Article  Google Scholar 

  • Schmitt R (1885) Beitrag zur Kenntniss der Kolbe’schen Salicylsäure Synthese. J für Praktische Chemie 31:397–411

    Article  Google Scholar 

  • Shaaban A, Se S-M, Mitan NMM, Dimin MF (2013) Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Eng 68:365–371. doi:10.1016/j.proeng.2013.12.193

    Article  Google Scholar 

  • Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Haszeldine S (2012) Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, part II: field trial results, carbon abatement, economic assessment and conclusions. Energy Policy 41:618–623. doi:10.1016/j.enpol.2011.11.023

    Article  Google Scholar 

  • Slaghuis JH, Raijmakers N (2004) The use of thermogravimetry in establishing the Fischer tar of a series of South African coal types. Fuel 83(4–5):533–536. doi:10.1016/j.fuel.2003.10.002

    Article  Google Scholar 

  • Sohi SP (2012) Agriculture. Carbon storage with benefits. Science 338(6110):1034–1035. doi:10.1126/science.1225987

    Article  Google Scholar 

  • Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  Google Scholar 

  • Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, Dusaire MG, Ro KS (2011) Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85(5):869–882. doi:10.1016/j.chemosphere.2011.06.108

    Article  Google Scholar 

  • Spokas K, Novak J, Venterea R (2012) Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant and Soil 350(1–2):35–42. doi:10.1007/s11104-011-0930-8

    Article  Google Scholar 

  • Srinivasan P, Sarmah AK (2014) Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Sci Total Environ 502c:471–480. doi:10.1016/j.scitotenv.2014.09.048

    Google Scholar 

  • Stanger R, Wall T, Lucas J, Mahoney M (2013) Dynamic Elemental Thermal Analysis (DETA) – a characterisation technique for the production of biochar and bio-oil from biomass resources. Fuel 108:656–667. doi:10.1016/j.fuel.2013.02.065

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  • Steiner C, Teixeira W, Lehmann J, Nehls T, de Macêdo J, Blum WH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil 291(1–2):275–290. doi:10.1007/s11104-007-9193-9

    Article  Google Scholar 

  • Styring P, Jansen D, de Coninck H, Reith H, Armstrong K (2011) Carbon capture and utilisation in the green economy: using CO2 to manufacture fuel, chemicals and materials. Report no. 501, The Centre for Low Carbon Futures 2011 and CO2 Chem Publishing 2012, July 2011

    Google Scholar 

  • Suslick K, Flannigan J (2008) Inside a collapsing bubble: sonoluminesence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683

    Article  Google Scholar 

  • Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6):653–659. doi:10.1016/j.jbiosc.2013.05.035

    Article  Google Scholar 

  • Tazuke S, Ozawa H (1975) Photofixation of carbon dioxide: formation of 9,10-dihydrophenanthrene-9,carboxylic acid from phenanthrene-amine-carbon dioxide systems. J Chem Soc Chem Commun 7:237–238

    Article  Google Scholar 

  • Tazuke S, Kazama S, Kitamura N (1986) Reductive photocarboxylation of aromatic hydrocarbons. J Org Chem 51:4548–4553

    Article  Google Scholar 

  • Teraoka F, Hamada Y, Takahashi J (2004) Bamboo charcoal inhibits growth of HeLa cells in vitro. Dent Mater J 23(4):633–637

    Article  Google Scholar 

  • Uchimiya M, Lima IM, Klasson KT, Wartelle LH (2010) Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80(8):935–940. doi:10.1016/j.chemosphere.2010.05.020

    Article  Google Scholar 

  • Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011a) Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere 82(10):1431–1437. doi:10.1016/j.chemosphere.2010.11.050

    Article  Google Scholar 

  • Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011b) Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms. Chemosphere 82(10):1438–1447. doi:10.1016/j.chemosphere.2010.11.078

    Article  Google Scholar 

  • Udagawa Y, Nagasawa H (2000) Effects of far-infrared ray on reproduction, growth, behaviour and some physiological parameters in mice. In vivo 14(2):321–6

    Google Scholar 

  • U.S. DOE (2010) Biomass multi-year program plan (MYPP). Office of the biomass program. Energy Efficiency and Renewable Energy, U.S. Department of Energy

    Google Scholar 

  • Ussiri DAN, Lal R, Jarecki MK (2009) Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Tillage Res 104(2):247–255. doi:10.1016/j.still.2009.03.001

    Article  Google Scholar 

  • Verheijen F, Jeffery S, Bastos A, Van der Velde M, Diafas I (2010) Biochar application to soils. Institute for Environment and Sustainability, Luxembourg

    Google Scholar 

  • Wall TF, Liu GS, Wu HW, Roberts DG, Benfell KE, Gupta S, Lucas JA, Harris DJ (2002) The effects of pressure on coal reactions during pulverized coal combustion and gasification. Progr Energ Combus 28:405–433

    Article  Google Scholar 

  • Wang GW, Hu GZ, Kong Q, He HB, Xu L (2006) Research progress in properties of bamboo activated charcoal. J Bamboo Res 25(4):9–12

    Google Scholar 

  • Warnock D, Lehmann J, Kuyper T, Rillig M (2007) Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant and Soil 300(1–2):9–20. doi:10.1007/s11104-007-9391-5

    Article  Google Scholar 

  • West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agr Ecosyst Environ 108(2):145–154. doi:10.1016/j.agee.2005.01.002

    Article  Google Scholar 

  • Xu T, Lou L, Luo L, Cao R, Duan D, Chen Y (2012) Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Sci Total Environ 414:727–731. doi:10.1016/j.scitotenv.2011.11.005

    Article  Google Scholar 

  • Yang Y, Sheng G (2003) Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ Sci Technol 37(16):3635–3639. doi:10.1021/es034006a

    Article  Google Scholar 

  • Yang Z-H, Xiong S, Wang B, Li Q, Yang W-C (2013) Cr(III) adsorption by sugarcane pulp residue and biochar. J Cent South Univ 20(5):1319–1325

    Article  Google Scholar 

  • Yang Y, Lin X, Wei B, Zhao Y, Wang J (2014) Evaluation of adsorption potential of bamboo biochar for metal-complex dye: equilibrium, kinetics and artificial neural network modeling. Int J Environ Sci Technol 11(4):1093–1100

    Article  Google Scholar 

  • Yen TF, Erdman JG, Pollack SS (1961) Investigation of the structure of petroleum asphaltenes by X-ray diffraction. Anal Chem 33:1587–1594

    Article  Google Scholar 

  • Yu XY, Ying GG, Kookana RS (2006) Sorption and desorption behaviors of diuron in soils amended with charcoal. J Agric Food Chem 54(22):8545–8550. doi:10.1021/jf061354y

    Article  Google Scholar 

  • Yu X, Pan L, Ying G, Kookana RS (2010) Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. J Environ Sci 22(4):615–620. doi:10.1016/S1001-0742(09)60153-4

    Article  Google Scholar 

  • Zhang H, Tang Y, Liu X, Ke Z, Su X, Cai D, Yu Z (2011) Improved adsorptive capacity of pine wood decayed by fungi Poria cocos for removal of malachite green from aqueous solutions. Desalination 274(1–3):97–104

    Article  Google Scholar 

  • Zhao G, Mu X, Wen Z, Wang F, Gao P (2013a) Soil erosion, conservation, and eco-environment changes in the loess plateau Of China. Land Degrad Dev 24(5):499–510. doi:10.1002/ldr.2246

    Google Scholar 

  • Zhao L, Cao X, Mašek O, Zimmerman A (2013b) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256–257:1–9. doi:10.1016/j.jhazmat.2013.04.015

    Google Scholar 

  • Zhong Z, Flanagan R, Yang H (2010) Bamboo biochar as a potential source of soil humic substance in soil ecosystems. Slides presented at the international symposium on environmental behavior and effects of biomass-derived charcoal, Hangzhou, 9–11 Oct 2010. See http://www.biochar-international.org/sites/default/files/zheke_Zhong.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanisree Mulabagal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Mulabagal, V., Baah, D.A., Egiebor, N.O., Chen, WY. (2017). Biochar from Biomass: A Strategy for Carbon Dioxide Sequestration, Soil Amendment, Power Generation, and CO2 Utilization. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-14409-2_80

Download citation

Publish with us

Policies and ethics