Skip to main content

Biomimetic Strategies to Engineer Mineralized Human Tissues

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

In the last few years, many reports have been describing promising biocompatible and biodegradable materials that can mimic in a certain extent the multidimensional hierarchical structure of the bone and can release bioactive agents or drugs in a controlled manner. Despite these great advances, new developments in the design and fabrication technologies are required to address the need to engineer suitable biomimetic materials to tune cell functions, i.e., enhance cell–biomaterial interactions and promote cell adhesion, proliferation, and differentiation abilities. Scaffolds, hydrogels, fibers, and composite materials are the most commonly used as biomimetics for bone tissue engineering. Dynamic systems such as bioreactors have also been attracting great deal of attention as it allows developing a wide range of novel in vitro strategies for the homogeneous coating of scaffolds and prosthesis with ceramics and production of biomimetic constructs, prior to its implantation in the body. Herein, the biomimetic strategies for bone tissue engineering, recent developments, and future trends are overviewed. Conventional and more recent processing methodologies are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg-Am 84:454–464

    Google Scholar 

  2. Aizenberg J, Weaver J, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278

    Article  Google Scholar 

  3. Sprio S, Ruffini A, Valentini F, D’Alessandro T, Sandri M, Panseri S, Tampieri A (2011) Biomimesis and biomorphic transformations: new concepts applied to bone regeneration. J Biotechnol 156(4):347–355

    Article  Google Scholar 

  4. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030

    Article  Google Scholar 

  5. Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Inj Int J Care Inj 31:37–47

    Article  Google Scholar 

  6. Oliveira JM, Costa SA, Leonor IB, Malafaya PB, Mano JF, Reis RL (2009) Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative “autocatalytic” electroless coprecipitation route. J Biomed Mater Res A 88(2):470–480

    Article  Google Scholar 

  7. Langer R, Tirrell D (2004) Designing materials for biology and medicine. Nature 428:487–492

    Article  Google Scholar 

  8. Oliveira J, Silva S, Malafaya P, Rodrigues M, Kotobuki N, Hirose M, Gomes M, Mano J, Ohgushi H, Reis R (2009) Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. J Biomed Mater Res A 91:175–186

    Article  Google Scholar 

  9. Yan L-P, Correia J, Correia C, Caridade S, Fernandes E, Sousa R, Mano JF, Oliveira J, Oliveira A, Reis RL (2013) Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine 8:359–378

    Article  Google Scholar 

  10. Columbus S, Krishnan L, Kalliyana K (2013) Relating pore size variation of poly (ɛ-caprolactone) scaffolds to molecular weight of porogen and evaluation of scaffold properties after degradation. J Biomed Mater Res B Appl Biomater 102(4):789–796. doi:10.1002/jbm.b.33060

    Article  Google Scholar 

  11. Oliveira A, Sousa E, Silva N, Sousa N, Salgado A, Reis R (2012) Peripheral mineralization of a 3D biodegradable tubular construct as a way to enhance guidance stabilization in spinal cord injury regeneration. J Mater Sci Mater Med 23:2821–2830

    Article  Google Scholar 

  12. Lima M, Pirraco R, Sousa R, Neves N, Marques A, Bhattacharya M, Correlo V, Reis R (2013) Bottom-up approach to construct microfabricated multi-layer scaffolds for bone tissue engineering. Biomed Microdevices 16(1):69–78

    Article  Google Scholar 

  13. Rumian L, Wojak I, Scharnweber D, Pamuła E (2013) Resorbable scaffolds modified with collagen type I or hydroxyapatite: in vitro studies on human mesenchymal stem cells. Acta Bioeng Biomech 15:61–67

    Google Scholar 

  14. Yang P, Huang X, Wang C, Dang X, Wang K (2013) Repair of bone defects using a new biomimetic construction fabricated by adipose-derived stem cells, collagen I, and porous beta-tricalcium phosphate scaffolds. Exp Biol Med 238(12):1331–1343. doi:10.1177/1535370213505827

    Article  Google Scholar 

  15. Zreiqat H (2014) Mimicking bone microenvironment for directing adipose tissue-derived mesenchymal stem cells into osteogenic differentiation. Methods Mol Biol 1202:161–171

    Google Scholar 

  16. Oliveira JM, Rodrigues M, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27:6123–6137

    Article  Google Scholar 

  17. Slaughter B, Khurshid S, Fisher O, Khademhosseini A, Peppas N (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  Google Scholar 

  18. Chung H, Park T (2009) Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4:429–437

    Article  Google Scholar 

  19. Liu S, Tay R, Khan M, Ee P, Hedrick J, Yang Y (2010) Synthetic hydrogels for controlled stem cell differentiation. Soft Matter 6:67–81

    Article  Google Scholar 

  20. Hoffman A (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12

    Article  Google Scholar 

  21. Van Vlierberghe S, Fritzinger B, Martins J, Dubruel P (2010) Hydrogel network formation revised: high-resolution magic angle spinning nuclear magnetic resonance as a powerful tool for measuring absolute hydrogel cross-link efficiencies. Appl Spectrosc 64:1176–1180

    Article  Google Scholar 

  22. Tan H, Marra K (2010) Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3:1746–1767

    Article  Google Scholar 

  23. Kretlow J, Klouda L, Mikos A (2007) Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:263–273

    Article  Google Scholar 

  24. Oliveira JT, Reis RL (2011) Polysaccharide-based materials for cartilage tissue engineering applications. J Tissue Eng Regen Med 5:421–436

    Article  Google Scholar 

  25. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  Google Scholar 

  26. Hiemstra C, van der Aa L, Zhong Z, Kijkstra P, Jan F (2007) Rapidly in situ-forming degradable hydrogels form dextran thiols through Michael addition. Biomacromolecules 8:1548–1556

    Article  Google Scholar 

  27. Wang C, Stewart R, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417–420

    Article  Google Scholar 

  28. Oliveira J, Martins L, Picciochi R, Malafaya P, Sousa R, Neves N, Mano J, Reis R (2010) Gellan gum: a new biomaterial for cartilage tissue engineering applications. J Biomed Mater Res A 93:852

    Google Scholar 

  29. Silva-Correia J, Oliveira J, Caridade S, Oliveira J, Sousa R, Mano J, Reis R (2011) Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J Tissue Eng Regen Med 5:e97–e107

    Article  Google Scholar 

  30. Silva-Correia J, Zavan B, Vindigni V, Silva T, Oliveira J, Abatangelo G, Reis R (2013) Biocompatibility evaluation of ionic- and photo-crosslinked methacrylated gellan gum hydrogels: in vitro and in vivo study. Adv Healthcare Mater 2:568–575

    Article  Google Scholar 

  31. Manda-Guiba G, Oliveira M, Mano J, Marques A, Oliveira J, Correlo V, Reis R (2012) Gellan gum – hydroxyapatite composite hydrogels for bone tissue engineering. J Tissue Eng Reg Med 6(2):15

    Google Scholar 

  32. Pereira D, Canadas R, Silva-Correia J, Marques A, Reis R, Oliveira J (2014) Gellan gum-based hydrogel bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:255–260

    Article  Google Scholar 

  33. Shin H, Jo S, Mikos A (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364

    Article  Google Scholar 

  34. Rada T, Carvalho P, Santos T, Castro A, Reis R, Gomes M (2013) Chondrogenic potential of two hASCs subpopulations loaded onto gellan gum hydrogel evaluated in a nude mice model. Curr Stem Cell Res Ther 8:357–364

    Article  Google Scholar 

  35. Vatankhah E, Semnani D, Prabhakaran MP, Tadayon M, Razavi S, Ramakrishna S (2014) Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater 10:709–721. doi:10.1016/j.actbio.2013.09.015

    Article  Google Scholar 

  36. Ng R, Zang R, Yang K, Liu N, Yang S (2012) Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering. RSC Adv 2:10110–10124

    Article  Google Scholar 

  37. Gomes M, Azevedo H, Moreira A, Ella V, Kellomaki M, Reis R (2008) Starch-poly(epsilon-caprolactone) and starch-poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour. J Tissue Eng Regen Med 2(5):243–252

    Article  Google Scholar 

  38. Oliveira J, Sousa R, Malafaya P, Silva S, Hirose M, Ohgushi H, Mano J, Reis R (2011) In vivo study of dendron-like nanoparticles for stem cells tune-up: from nano to tissues. Nanomed Nanotechnol Biol Med 7:914–924

    Article  Google Scholar 

  39. Cheng Q, B. L-P L, Komvopoulos K, Li S (2013) Engineering the microstructure of electrospun fibrous scaffolds by microtopography. Biomacromolecules 14:1349–1360

    Article  Google Scholar 

  40. Stankus J, Freytes D, Badylak S, Wagner W (2008) Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci Polym Ed 19:635–652

    Article  Google Scholar 

  41. Bhumiratana S, Grayson W, Castaneda A, Rockwood D, Gil E, Kaplan D, Vunjak-Novakovic G (2011) Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials 32:2812–2820

    Article  Google Scholar 

  42. Wang E, Lee SH, Lee SW (2011) Elastin-like polypeptide based hydroxyapatite bionanocomposites. Biomacromolecules 12(3):672–680

    Article  Google Scholar 

  43. Kim HJ, Kim U-J, Kim HS, Li C, Wada M, Leisk GG, Kaplan DL (2008) Bone tissue engineering with premineralized silk scaffolds. Bone 42(6):1226–1234

    Article  Google Scholar 

  44. Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5(9):3847–3854

    Article  Google Scholar 

  45. Wei J, Heo SJ, Liu C, Kim DH, Kim SE, Hyun YT, Shin JW, Shin JW (2009) Preparation and characterization of bioactive calcium silicate and poly(epsilon-caprolactone) nanocomposite for bone tissue regeneration. J Biomed Mater Res A 90(3):702–712

    Article  Google Scholar 

  46. Kotela I, Podporska J, Soltysiak E, Konsztowicz J, Blazewicz M (2009) Polymer nanocomposites for bone tissue substitutes. Ceram Int 35:2475–2480

    Article  Google Scholar 

  47. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  Google Scholar 

  48. Oliveira A, Costa S, Sousa R, Reis R (2009) Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: Effect of static and dynamic coating conditions. Acta Biomater 5:1626–1638

    Article  Google Scholar 

  49. Yeatts AB, Both SK, Yang W, Alghamdi HS, Yang F, Fisher JP, Jansen JA (2013) In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds. Tissue Eng Part A 20(1–2):139–146. doi:10.1089/ten.TEA.2013.0168

    Google Scholar 

  50. Mandoli C, Mecheri B, Forte G, Pagliari F, Pagliari S, Carotenuto F, Fiaccavento R, Rinaldi A, Di Nardo P, Licoccia S, Traversa E (2010) Thick soft tissue reconstruction on highly perfusive biodegradable scaffolds. Macromol Biosci 10:127–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Pina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Pina, S., Oliveira, J.M., Reis, R.L. (2016). Biomimetic Strategies to Engineer Mineralized Human Tissues. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_25

Download citation

Publish with us

Policies and ethics