Skip to main content

Large-Scale Production of Algal Biomass: Photobioreactors

  • Chapter
  • First Online:
Algae Biotechnology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Photobioreactors have been used extensively for the cultivation of microalgae for a variety of applications from biofuels to high value products. The ability to cultivate monocultures of algae with high biomass yields and significantly smaller footprints has made photobioreactors a very attractive technology for specific applications. This chapter deals with photobioreactor design, application, efficiencies, and factors affecting their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Local specific radiant energy absorbed (μmol s−1 kg−1)

a light :

Specific illuminated area for the photobioreactor (m−1)

C X :

Biomass concentration (kg m−3)

D :

Dilution rate (h−1 or s−1)

E a :

Mass absorption coefficient (m2 kg−1)

f d :

Design dark volume fraction of any photobioreactor (dimensionless)

G :

Local irradiance (μmol s−1 m−2)

G c :

Compensation irradiance value (μmol s−1 m−2)

K :

Half saturation constant for photosynthesis (μmol s−1 m−2)

L :

Depth of the rectangular photobioreactor (m)

M X :

C-molar mass for the biomass (kgX mol −1X )

q :

Photon flux density on a given surface (PFD) (μmol s−1 m−2)

Q :

Volume liquid flow rate (m3 d−1)

r X :

Biomass volumetric growth rate (productivity) (kg m−3 s−1 or kg m−3 h−1)

S light :

Illuminated surface of the photobioreactor (m2)

PS :

Areal biomass productivity (kg m−2 d−1)

P V :

Volumetric biomass productivity (kg m−3 d−1)

t :

Time (days or s)

V r :

Photobioreactor volume (m3)

x d :

Diffuse fraction for incident PFD at any location (−)

z :

Depth of culture (m)

α :

Linear scattering modulus (dimensionless)

β :

Inclination of the photobioreactor surface (rad)

γ :

Fraction for working illuminated volume in the photobioreactor (dimensionless)

δ :

Extinction coefficient for the two-flux method (m−1)

θ :

Incident angle (defined from the outward normal of the PBR) (rad)

λ :

Wavelength (m)

ρ M :

Maximum energy yield for photon conversion (dimensionless)

τ p :

Residence time (h)

τλ :

Absorption optical thickness, τλ = Eaλ C X/a light (dimensionless)

\(\varphi^{\prime}_{X}\) :

Biomass mole quantum yield for the Z-scheme of photosynthesis (molX μmol −1 )

max:

Related to maximum available value

opt:

Related to the optimal value for residence time

\(\langle {X} \rangle = \frac{1}{V}\iiint\limits_{V} X{\text{d}}V\) :

Spatially-averaged property

\(\overline{X}\, = \,\frac{1}{\Delta \,t}\int\limits_{\Delta \,t} X {\text{d}}t\) :

Time-averaged property

PAR:

Photosynthetically active radiation

PBR:

Photobioreactor

PFD:

Photon flux density

References

  • Acién Fernández, F. G., Fernández Sevilla, J. M., Sánchez Pérez, J. A., Molina Grima, E. & Chisti, Y. (2001). Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: Assessment of design and performance. Chemical Engineering Science, 56, 2721–2732.

    Google Scholar 

  • Aiba, S. (1982). Growth kinetics of photosynthetic microorganisms. Advances in Biochemical Engineering and Biotechnology, 23, 85–156.

    Google Scholar 

  • Bejan, A. (2000). Shape and structure, from engineering to nature. Cambridge, UK: Cambridge University Press.

    MATH  Google Scholar 

  • Bejan, A., & Lorente, S. (2012). The physics of spreading ideas. International Journal of Heat and Mass Transfer, 55, 802–807.

    Article  Google Scholar 

  • Borowitzka, M. A. (1999). Commercial production of microalgae: ponds, tanks, and fermenters. Progress in Industrial Microbiology, 35, 313–321.

    Article  Google Scholar 

  • Carvalho, A. P., Meireles, L. A., & Malcata, F. X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnology Progress, 22, 1490–1506.

    Article  Google Scholar 

  • Carvalho, A. P., Silva, S. O., Baptista, J. M., & Malcata, F. X. (2011). Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Applied Microbiology and Biotechnology, 89, 88–1275.

    Google Scholar 

  • Cassano, A. E., Martin, C. A., Brandi, R. J., & Alfano, O. M. (1995). Photoreactor analysis and design: fundamentals and applications. Industrial and Engineering Chemistry Research, 34, 2155–2201.

    Article  Google Scholar 

  • Chini Zitelli, G. C., Pastorelli, R., & Tredici, M. R. (2000). A modular flat panel photobioreactor (MFPP) for indoor mass cultivation of Nannochloropsis sp. under artificial illumination. Journal of Applied Phycology, 12, 521–526.

    Article  Google Scholar 

  • Chini Zittelli, G., Rodolfi, L., Biondi, N., & Tredici, M. R. (2006). Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 261, 932–943.

    Article  Google Scholar 

  • Cornet, J. F., Dussap, C. G., Cluzel, P., & Dubertret, G. (1992a). A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors. 1. Coupling between light transfer and growth kinetics. Biotechnology and Bioengineering, 40, 817–825.

    Article  Google Scholar 

  • Cornet, J. F., Dussap, C. G., Cluzel, P., & Dubertret, G. (1992b). A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors. 2. Identification of kinetic parameters under light and mineral limitations. Biotechnology and Bioengineering, 40, 826–834.

    Article  Google Scholar 

  • Cornet, J. F., Dussap, C. G., & Gros, J. B. (1994). Conversion of radiant light energy in photobioreactors. AIChE Journal, 40, 1055–1066.

    Article  Google Scholar 

  • Cornet, J. F., Dussap, C. G., & Gros, J. B. (1995). A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors. Chemical Engineering Science, 50, 1489–1500.

    Article  Google Scholar 

  • Cornet, J. F., & Dussap, C. G. (2009). A simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors. Biotechnology Progress, 25, 424–435.

    Article  Google Scholar 

  • Cornet, J.-F. (2010). Calculation of optimal design and ideal productivities of volumetrically lightened photobioreactors using the constructal approach. Chemical Engineering Science, 65, 985–998.

    Article  Google Scholar 

  • Csogör, Z., Herrenbauer, M., Schmidt, K., & Posten, C. (2001). Light distribution in a novel photobioreactor—modelling for optimization. Journal of Applied Phycology, 13, 325–333.

    Article  Google Scholar 

  • Dauchet, J., Blanco, S., Cornet, J. F., El Hafi, M., Eymet, V., & Fournier, R. (2013). The practice of recent radiative transfer Monte Carlo advances and its contribution to the field of microorganisms cultivation in photobioreactors. Journal of Quantitative Spectroscopy & Radiative Transfer, 128, 52–59.

    Article  Google Scholar 

  • Degrenne, B., Pruvost, J., Christophe, G., Cornet, J. F., Cogne, G., & Legrand, J. (2010). Investigation of the combined effects of acetate and photobioreactor illuminated fraction in the induction of anoxia for hydrogen production by Chlamydomonas reinhardtii. International Journal of Hydrogen Energy, 35, 10741–10749.

    Article  Google Scholar 

  • Doucha, J., & Livansky, K. (2006). Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactorsoperated in a Middle and Southern European climate. Journal of Applied Phycology, 18, 811–826.

    Article  Google Scholar 

  • Duffie, J. A., & Beckman, W. A. (2006). Solar engineering of thermal processes. New York, NY: John Wiley & Sons.

    Google Scholar 

  • Goetz, V., LE Borgne, F., Pruvost, J., Plantard, G. & Legrand, J. 2011. A generic temperature model for solar photobioreactors. Chemical Engineering Journal, 175, 443–449.

    Google Scholar 

  • Gonzalez De La Vara, L., & Gomez-lojero, C. (1986). Participation of plastoquinone, cytochrome c553 and ferredoxin-NADP + oxido reductase in both photosynthesis and respiration in Spirulina maxima. Photosynthesis Research, 8, 65–78.

    Article  Google Scholar 

  • Molina Grima, E., Acien Fernandez, F. G., Garcia Camacho, F., & Chisti, Y. (1999). Photobioreactors: light regime, mass transfer, and scaleup. Jounal of Biotechnology, 70, 231–247.

    Google Scholar 

  • Grobbelaar, J. U. (2008). Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. Journal of Applied Phycology, 21, 489–492.

    Article  Google Scholar 

  • Grognard, F., Akhmetzhanov, A. R., & Bernard, O. (2014). Optimal strategies for biomass productivity maximization in a photobioreactor using natural light. Automatica, 50, 359–368.

    Article  MathSciNet  Google Scholar 

  • Hindersin, S. 2013. Photosynthetic efficiency of microalgae and optimization of biomass production in photobioreactors. PhD Thesis, Hamburg University.

    Google Scholar 

  • Hindersin, S., Leupold, M., Kerner, M., & Hanelt, D. (2013). Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors. Bioprocess and Biosystems Engineering, 36, 55–345.

    Article  Google Scholar 

  • Hindersin, S., Leupold, M., Kerner, M., & Hanelt, D. (2014). Key parameters for outdoor biomass production of Scenedesmus obliquus in solar tracked photobioreactors. Journal of Applied Phycology, 26, 2315–2325.

    Article  Google Scholar 

  • Hsieh, C. H., & Wu, W. T. (2009). A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae. Biochemical Engineering Journal, 46, 300–305.

    Article  Google Scholar 

  • Hu, Q., Guterman, H., & Richmond, A. (1996). A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnology and Bioengineering, 51, 51–60.

    Article  Google Scholar 

  • Ifrim, G. A., Titica, M., Cogne, G., Boillereaux, L., Legrand, J., & CARAMAN, S. 2014. Dynamic pH model for autotrophic growth of microalgae in photobioreactor: A tool for monitoring and control purposes. AIChE Journal, 60, 585–599.

    Google Scholar 

  • Kandilian, R., Lee, E., & Pilon, L. (2013). Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra. Bioresource Technology, 137, 63–73.

    Article  Google Scholar 

  • Kandilian, R., Tsao, T.-C., & Pilon, L. (2014). Control of incident irradiance on a batch operated flat-plate photobioreactor. Chemical Engineering Science, 119, 99–108.

    Article  Google Scholar 

  • Le Borgne, F. (2011). Développement d’un photobioréacteur solaire intensifié en vue de la production à grande échelle de biomasse microalgale. Thèse de doctorat: Université de Nantes.

    Google Scholar 

  • Lee, E., Pruvost, J., He, X., Munipalli, R., & Pilon, L. (2014). Design tool and guidelines for outdoor photobioreactors. Chemical Engineering Science, 106, 18–29.

    Article  Google Scholar 

  • Lee, Y.-K., & Low, C.-S. (1991). Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnology and Bioengineering, 38, 995–1000.

    Article  Google Scholar 

  • Molina, E., Fernández, J., Acién, F. G., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.

    Article  Google Scholar 

  • Morweiser, M., Kruse, O., Hankamer, B., & Posten, C. (2010). Developments and perspectives of photobioreactors for biofuel production. Applied Microbiology and Biotechnology, 87, 301–1291.

    Article  Google Scholar 

  • Ogbonna, J. C., Yada, H., Masui, H., & Tanaka, H. (1996). A novel internally illuminated stirred tank photobioreactor for large-scale cultivation of photosynthetic cells. Journal of Fermentation and Bioengineering, 82, 61–67.

    Article  Google Scholar 

  • Oswald, W. J. 1988. Large-scale algal culture systems (engineering aspects). In Borowitska, M. (ed.) Microalgal Biotechnology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pilon, L., Berberoglu, H., & Kandilian, R. (2011). Radiation transfer in photobiological carbon dioxide fixation and fuel production by microalgae. Journal of Quantitative Spectroscopy & Radiative Transfer, 112, 2639–2660.

    Article  Google Scholar 

  • Pruvost, J., Van Vooren, G., Cogne, G., & Legrand, J. (2009). Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresource Technology, 100, 5988–5995.

    Article  Google Scholar 

  • Pruvost, J. 2011. Cultivation of algae in photobioreactors for biodiesel production. In: USA, E. I. (ed.) Biofuels: alternative feedstocks and conversion processes. A Pandey, C Larroche, SC Ricke and CG Dussap.

    Google Scholar 

  • Pruvost, J., Cornet, J. F., Goetz, V., & Legrand, J. (2011a). Modeling dynamic functioning of rectangular photobioreactors in solar conditions. AIChE Journal, 57, 1947–1960.

    Article  Google Scholar 

  • Pruvost, J., Van Vooren, G., Le Gouic, B., Couzinet-Mossion, A., & Legrand, J. (2011b). Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresource Technology, 102, 150–158.

    Article  Google Scholar 

  • Pruvost, J. & Cornet, J. F. 2012. Knowledge models for engineering and optimization of photobioreactors. In: C.Walter, C. P. A. (ed.) Microalgal Biotechnology. De Gruyter GmbH & Co. KG.

    Google Scholar 

  • Pruvost, J., Cornet, J. F., Goetz, V., & Legrand, J. (2012). Theoretical investigation of biomass productivities achievable in solar rectangular photobioreactors for the cyanobacterium Arthrospira platensis. Biotechnology Progress, 28, 699–714.

    Article  Google Scholar 

  • Pulz, O. (2001). Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57, 287–293.

    Article  Google Scholar 

  • Quinn, J., De Winter, L., & Bradley, T. (2011). Microalgae bulk growth model with application to industrial scale systems. Bioresource Technology, 102, 5083–5092.

    Article  Google Scholar 

  • Richmond, A., & Cheng-Wu, Z. (2001). Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. Journal of Biotechnology, 85, 259–269.

    Article  Google Scholar 

  • Richmond, A. (2004a). Handbook of microalgal culture: biotechnology and applied phycology. Oxford: UK, Blackwell Sciences Ltd.

    Google Scholar 

  • Richmond, A. (2004b). Principles for attaining maximal microalgal productivity in photobioreactors: An overview. Hydrobiologia, 512, 33–37.

    Article  Google Scholar 

  • Slegers, P. M., Wijffels, R. H., Van Straten, G., & Van Boxtel, A. J. B. (2011). Design scenarios for flat panel photobioreactors. Journal of Applied Energy, 88, 3342–3353.

    Article  Google Scholar 

  • Slegers, P. M., Lösing, M. B., Wijffels, R. H., Van Straten, G., & Van Boxtel, A. J. B. (2013a). Scenario evaluation of open pond microalgae production. Algal Research, 2, 358–368.

    Article  Google Scholar 

  • Slegers, P. M., Van Beveren, P. J. M., Wijffels, R. H., Van Straten, G. & Van Boxtel, A. J. B. (2013b). Scenario analysis of large scale algae production in tubular photobioreactors. Applied Energy, 105, 395–406.

    Google Scholar 

  • Takache, H., Christophe, G., Cornet, J. F., & Pruvost, J. (2010). Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Biotechnology Progress, 26, 431–440.

    Google Scholar 

  • Torzillo, G., Accolla, P., Pinzani, E., & Masojidek, J. (1996). In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. Journal of Applied Phycology, 8, 283–291.

    Article  Google Scholar 

  • Ugwu, C. U., Aoyagia, H., & Uchiyamaa, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99, 4021–4028.

    Article  Google Scholar 

  • Wilhelm, C., & Selmar, D. (2011). Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis. Journal of Plant Physiology, 168, 79–87.

    Article  Google Scholar 

  • Zijffers, J. W., Janssen, M., Tramper, J., & Wijffels, R. H. (2008). Design process of an area-efficient photobioreactor. Marine Biotechnology, 10, 404–415.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Research Agency project DIESALG (ANR-12-BIME-0001-02) for biodiesel production based on solar production of microalgae, and is part of the French “BIOSOLIS” research program on developing photobioreactor technologies for mass-scale solar production (http://www.biosolis.org/). Laurent Pilon is grateful to the Région Pays de la Loire for the Research Chair for International Junior Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Pruvost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pruvost, J., Cornet, JF., Pilon, L. (2016). Large-Scale Production of Algal Biomass: Photobioreactors. In: Bux, F., Chisti, Y. (eds) Algae Biotechnology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-12334-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12334-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12333-2

  • Online ISBN: 978-3-319-12334-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics