Skip to main content

The E Factor and Process Mass Intensity

  • Chapter
  • First Online:
Green Chemistry Metrics

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

The environmental (E) factor and process mass intensity (PMI) metrics are introduced and thoroughly analyzed. As indispensable green metrics widely applied throughout the chemical industry, the E factor and PMI are calculated for numerous industrial processes throughout the chapter. A perspective on waste in the context of academic research, industrial synthesis and reactivity within alternative reaction media highlights the importance of material recovery, in particular with regard to reaction solvents. The section on catalysis further expands on the question of waste reduction by considering several important points. Advantages of heterogeneous catalysis which include catalyst recycling and simple product isolation and purification are described. Issues and potential solutions encountered with homogeneous catalysts and potential solutions are also discussed. Finally, the biocatalytic synthesis of pregabalin sheds light on the notions of solvent recovery and water intensity. Limitations of the E factor (which include failure to address the nature of the waste produced) provide for an introduction to process mass intensity. After explaining the simple relationship between PMI and E factor, the chapter turns to the benefits of PMI as a more robust front-end approach for evaluating the material efficiency of a process. This idea is captured by considering the biocatalytic synthesis of Singulair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheldon RA (1992) Organic synthesis—past, present and future. Chem Ind 903–906

    Google Scholar 

  2. Sheldon RA (1997) Catalysis and pollution prevention. Chem Ind 12–15

    Google Scholar 

  3. Sheldon RA (2007) The E Factor: fifteen years on. Green Chem 1273–1283. doi:10.1039/b713736m

  4. Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun 29:3352–3365. doi:10.1039/b803584a

  5. Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451. doi:10.1039/c1cs15219j

    Article  CAS  Google Scholar 

  6. Thayer AM (2007) Chemists are finding asymmetric synthesis increasingly handy for making pharmaceutical compounds at large scale. Chem Eng News 85:11–19

    Google Scholar 

  7. Andraos J (2005) Unification of reaction metrics for green chemistry: applications to reaction analysis. Org Process Res Dev 9:149–163. doi:10.1021/op049803n

    Article  CAS  Google Scholar 

  8. Calvo-Flores FG (2009) Sustainable chemistry metrics. ChemSusChem 2:905–919. doi:10.1002/cssc.200900128

    Article  CAS  Google Scholar 

  9. Yang F, Cao J (2012) Biosynthesis of phloroglucinol compounds in microorganisms—review. Appl Microbiol Biotechnol 93:487–495. doi:10.1007/s00253-011-3712-6

    Article  CAS  Google Scholar 

  10. Cao J, Jiang X, Zhang R, Xian M (2011) Improved phloroglucinol production by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 91:1545–1552. doi:10.1007/s00253-011-3304-5

    Article  CAS  Google Scholar 

  11. Rao G, Lee J-K, Zhao H (2013) Directed evolution of phloroglucinol synthase PhlD with increased stability for phloroglucinol production. Appl Microbiol Biotechnol 97:5861–5867. doi:10.1007/s00253-013-4713-4

    Article  CAS  Google Scholar 

  12. Climent MJ, Corma A, Iborra S, Mifsud M, Velty A (2010) New one-pot multistep process with multifunctional catalysts: decreasing the E factor in the synthesis of fine chemicals. Green Chem 12:99–107. doi:10.1039/b919660a

    Article  CAS  Google Scholar 

  13. Stacey JM, Dicks AP, Goodwin AA, Rush BM, Nigam M (2013) Green carbonyl condensation reactions demonstrating solvent and organocatalyst recyclability. J Chem Educ 90:1067–1070. doi:10.1021/ed300819r

    Article  CAS  Google Scholar 

  14. Aktoudianakis E, Chan E, Edward AR, Jarosz I, Lee V, Mui L, Thatipamala SS, Dicks AP (2009) Comparing the traditional with the modern: a greener, solvent-free dihydropyrimidone synthesis. J Chem Educ 86:730–732. doi:10.1021/ed086p730

    Article  CAS  Google Scholar 

  15. Andraos J, Dicks AP (2012) Green chemistry teaching in higher education: a review of effective practices. Chem Educ Res Pract 13:69–79. doi:10.1039/c1rp90065j

    Article  CAS  Google Scholar 

  16. Van Arnum SD (2005) An approach towards teaching green chemistry fundamentals. J Chem Educ 82:1689–1692. doi:10.1021/ed082p1689

    Article  Google Scholar 

  17. McKenzie LC, Huffman LM, Hutchison JE (2005) The evolution of a green chemistry laboratory experiment: greener brominations of stilbene. J Chem Educ 82:306–310. doi:10.1021/ed082p306

    Article  CAS  Google Scholar 

  18. Eissen M (2012) Sustainable production of chemicals—an educational perspective. Chem Educ Res Pract 13:103–111. doi:10.1039/c2rp90002e

    Article  CAS  Google Scholar 

  19. Blacker AJ, Williams MT (2011) Pharmaceutical process development: current chemical and engineering challenges. Royal Society of Chemistry, Cambridge, pp 251–252

    Google Scholar 

  20. Strappaveccia G, Lanari D, Gelman D, Pizzo F, Rosati O, Curini M, Vaccaro L (2013) Efficient synthesis of cyanohydrin trimethylsilyl ethers via 1,2-chemoselective cyanosilylation of carbonyls. Green Chem 15:199–204. doi:10.1039/c2gc36442e

    Article  CAS  Google Scholar 

  21. Ballerini E, Crotti P, Frau I, Lanari D, Pizzo F, Vaccaro L (2013) A waste-minimized protocol for the preparation of 1,2-azido alcohols and 1,2-amino alcohols. Green Chem 15:2394–2400. doi:10.1039/c3gc40988k

    Article  CAS  Google Scholar 

  22. Song JJ, Reeves JT, Fandrick DR, Tan Z, Yee NK, Senanayake CH (2008) Achieving synthetic efficiency through new method development. Green Chem Lett Rev 1:141–148. doi:10.1080/17518250802592360

    Article  CAS  Google Scholar 

  23. Mayo DW, Pike RM, Forbes DC (2013) Microscale organic laboratory with multistep and multiscale syntheses, 6th edn. Wiley, Hoboken, pp 421–427

    Google Scholar 

  24. Comerford JW, Clark JH, Macquarrie DJ, Breeden SW (2009) Clean, reusable and low cost heterogeneous catalyst for amide synthesis. Chem Commun 2562–2564. doi:10.1039/b901581g

  25. Chaudhari PS, Salim SD, Sawant RV, Akamanchi K (2010) Sulfated tungstate: a new solid heterogeneous catalyst for amide synthesis. Green Chem 12:1707–1710. doi:10.1039/c0gc00053a

    Article  CAS  Google Scholar 

  26. Ghosh S, Bhaumik A, Mondal J, Mallik A, Sengupta S, Mukhopadhyay C (2012) Direct amide bond formation from carboxylic acids and amines using activated alumina balls as a new, convenient, clean, reusable and low cost heterogeneous catalyst. Green Chem 14:3220–3229. doi:10.1039/c2gc35880h

    Article  CAS  Google Scholar 

  27. Wang Z (2009) Comprehensive organic name reactions and reagents. Wiley, Hoboken, pp 2399–2404

    Google Scholar 

  28. Katkar VK, Chaudhari PS, Akamanchi KG (2011) Sulfated tungstate: an efficient catalyst for the Ritter reaction. Green Chem 13:835–838. doi:10.1039/c0gc00759e

    Article  CAS  Google Scholar 

  29. Ichihashi H, Kitamura M (2002) Some aspects of the vapor phase Beckmann rearrangement for the production of ε-caprolactam over high silica MFI zeolites. Catal Today 73:23–28. doi:10.1016/S0920-5861(01)00514-4

    Article  CAS  Google Scholar 

  30. Ichihashi H, Sato H (2001) The development of new heterogeneous catalytic processes for the production of ε-caprolactam. Appl Catal A 221:359–366. doi:10.1016/S0926-860X(01)00887-0

    Article  CAS  Google Scholar 

  31. Sheldon RA, Dakka J (1994) Heterogeneous catalytic oxidations in the manufacture of fine chemicals. Catal Today 19:215–246. doi:10.1016/0920-5861(94)80186-X

    Article  CAS  Google Scholar 

  32. Brown SH (2009) Zeolites in catalysis. In: Crabtree RH (ed) Handbook of green chemistry volume 2: heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  33. Bellussi G, Perego C (2000) Industrial catalytic aspects of the synthesis of monomers for nylon production. CATTECH 4:4–16. doi:10.1023/A:1011905009608

    Article  CAS  Google Scholar 

  34. Heveling J (2012) Heterogeneous catalytic chemistry by example of industrial applications. J Chem Educ 89:1530–1536. doi:10.1021/ed200816g

    CAS  Google Scholar 

  35. Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278. doi:10.1039/b418069k

    Article  CAS  Google Scholar 

  36. Papadogianakis G, Maat L, Sheldon RA (1997) Catalytic conversions in water. Part 5: Carbonylation of 1-(4-isobutylphenyl)ethanol to ibuprofen catalysed by water-soluble palladium–phosphine complexes in a two-phase system. J Chem Technol Biotechnol 70:83–91. doi:10.1002/(SICI)1097-4660(199709)70:1<83:AID-JCTB679>3.0.CO;2-7

    Article  CAS  Google Scholar 

  37. Hintermair U, Francio G, Leitner W (2011) Continuous flow organometallic catalysis: new wind in old sails. Chem Commun 47:3691–3701. doi:10.1039/c0cc04958a

    Article  CAS  Google Scholar 

  38. Pavia C, Ballerini E, Bivona LA, Giacalone F, Aprile C, Vaccaro L, Gruttadauria M (2013) Palladium supported on cross-linked imidazolium network on silica as highly sustainable catalysts for the Suzuki reaction under flow conditions. Adv Synth Catal 355:2007–2018. doi:10.1002/adsc.201300215

    Article  CAS  Google Scholar 

  39. Cornils B, Herrmann WA, Horvath IT, Leitner W, Mecking S, Oliver-Bourbigou H, Vogt D (2005) Multiphase homogeneous catalysis, vol 1. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim

    Book  Google Scholar 

  40. Sheldon RA (2000) Atom efficiency and catalysis in organic synthesis. Pure Appl Chem 72:1233–1246. doi:10.1351/pac200072071233

    Article  CAS  Google Scholar 

  41. Clark JH (2002) Solid acids for green chemistry. Acc Chem Res 35:791–797. doi:10.1021/ar010072a

    Article  CAS  Google Scholar 

  42. Sheldon RA (1997) Catalysis: the key to waste minimization. J Chem Technol Biotechnol 68:381–388. doi:10.1002/(SICI)1097-4660(199704)68:4<381:AID-JCTB620>3.0.CO;2-3

    Article  CAS  Google Scholar 

  43. Bonollo S, Lanari D, Longo JM, Vaccaro L (2012) E-factor minimized protocols for the polystyryl-BEMP catalyzed conjugate additions of various nucleophiles to α, β-unsaturated carbonyl compounds. Green Chem 14:164–169. doi:10.1039/c1gc16088e

    Article  CAS  Google Scholar 

  44. Dehaudt J, Husson J, Guyard L (2011) A more efficient synthesis of 4,4′,4″-tricarboxy-2,2′:6′,2″-terpyridine. Green Chem 13:3337–3340. doi:10.1039/c1gc15808b

    Article  CAS  Google Scholar 

  45. Ciriminna R, Pagliaro M (2013) Green chemistry in the fine chemicals and pharmaceutical industries. Org Process Res Dev 17:1479–1484. doi:10.1021/op400258a

    Article  CAS  Google Scholar 

  46. Sheldon RA, Arends IWCE, Hanefeld U (2007) Green chemistry and catalysis. Wiley-VCH Verlag, Weinheim, pp 29–34

    Book  Google Scholar 

  47. Sheldon RA (2004) Green chemistry and catalysis for sustainable organic synthesis, Lecture given at University Pierre et Marie Curie, Paris, May 12, 2004. http://www.ed406.upmc.fr/cours/shaldon.pdf. Accessed 3 Feb 2014

  48. Dunn PJ (2012) The importance of green chemistry in process research and development. Chem Soc Rev 41:1452–1461. doi:10.1039/c1cs15041c

    Article  CAS  Google Scholar 

  49. Dunn PJ, Hettenbach K, Kelleher P, Martinez CA (2010) The development of a green, energy efficient, chemoenzymatic manufacturing process for pregabalin. In: Dunn PJ, Wells AS, Williams MT (eds) Green chemistry in the pharmaceutical industry. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Chapter  Google Scholar 

  50. Leuchs S, Na’amnieh S, Greiner L (2013) Enantioselective reduction of sparingly water-soluble ketones: continuous process and recycle of the aqueous buffer system. Green Chem 15:167–176. doi:10.1039/c2gc36558h

    Article  CAS  Google Scholar 

  51. Wenda S, Illner S, Mell A, Kragl U (2011) Industrial biotechnology—the future of green chemistry? Green Chem 13:3007–3047. doi:10.1039/c1gc15579b

    Article  CAS  Google Scholar 

  52. Constable DJC, Jimenez-Gonzalez C, Henderson RK (2007) Perspective on solvent use in the pharmaceutical industry. Org Process Res Dev 11:133–137. doi:10.1021/op060170h

    Article  CAS  Google Scholar 

  53. Jimenez-Gonzalez C, Ponder CS, Broxterman QB, Manley JB (2011) Using the right green yardstick: why process mass intensity is used in the pharmaceutical industry to drive more sustainable processes. Org Process Res Dev 15:912–917. doi:10.1021/op200097d

    Article  CAS  Google Scholar 

  54. Sauer ELO (2012) Organic reactions under aqueous conditions. In: Dicks AP (ed) Green organic chemistry in lecture and laboratory. CRC Press, Taylor and Francis Group, Boca Raton

    Google Scholar 

  55. Li CJ (2010) Handbook of green chemistry volume 5, green solvents: reactions in water. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–3, 151, 207–210, 215, 363–408

    Google Scholar 

  56. Cornils B, Herrmann WA (2004) Aqueous-phase organometallic catalysis, 2nd edn. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Book  Google Scholar 

  57. Isley NA, Gallou F, Lipshutz BH (2013) Transforming Suzuki—Miyaura cross-couplings of MIDA boronates into a green technology: no organic solvents. J Am Chem Soc 135:17707–17710. doi:10.1021/ja409663q

    Article  CAS  Google Scholar 

  58. Leitner W, Jessop PG (2010) Handbook of green chemistry volume 4, green solvents: supercritical solvents. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–6, 77–79, 189–241

    Google Scholar 

  59. Kerton FM, Marriott R (2013) Alternative solvents for green chemistry, 2nd edn. RSC Publishing, Cambridge

    Google Scholar 

  60. Munshi P, Bhaduri S (2009) Supercritical CO2: a twenty-first century solvent for the chemical industry. Curr Sci 97:63–72

    CAS  Google Scholar 

  61. Krӓmer A, Sabine M, Vogel H (1999) Hydrolysis of nitriles in supercritical water. Chem Eng Technol 22:494–500. doi:10.1002/(SICI)1521-4125(199906)22:6<494:AID-CEAT494>3.0.CO;2-U

    Article  Google Scholar 

  62. Ranke J, Stolte S, Störmann R, Arning J, Jastorff B (2007) Design of sustainable chemical products—the example of ionic liquids. Chem Rev 107:2183–2206. doi:10.1021/cr050942s

    Article  CAS  Google Scholar 

  63. Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637. doi:10.1039/b817717c

    Article  CAS  Google Scholar 

  64. Wasserscheid P, Stark A (2010) Handbook of green chemistry volume 6, green solvents: ionic liquids. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 3–38

    Google Scholar 

  65. Kohlmann C, Leuchs S, Greiner L, Leitner W (2011) Continuous biocatalytic synthesis of (R)-2-octanol with integrated product separation. Green Chem 13:1430–1436. doi:10.1039/c0gc00790k

    Article  CAS  Google Scholar 

  66. Constable DJC, Curzons AD, Cunningham VL (2002) Metrics to “green” chemistry—which are the best? Green Chem 4:521–527. doi:10.1039/b206169b

    Article  CAS  Google Scholar 

  67. Martins MAP, Frizzo CP, Moreira DN, Buriol L, Machado P (2009) Solvent-free heterocyclic synthesis. Chem Rev 109:4140–4182. doi:10.1021/cr9001098

    Article  CAS  Google Scholar 

  68. Dunn PJ, Galvin S, Hettenbach K (2004) The development of an environmentally benign synthesis of sildenafil citrate (Viagra™) and its assessment by green chemistry metrics. Green Chem 6:43–48. doi:10.1039/b312329d

    Article  CAS  Google Scholar 

  69. Taber GP, Pfisterer DM, Colberg JC (2004) A new and simplified process for preparing N-[4-(3,4-dichlorophenyl)-3,4-dihydro-1(2H)-naphthalenylidene]methanamine and a telescoped process for the synthesis of (1S-cis)-4-(3,4-dichlorophenol)-1,2,3,4-tetrahydro-N-methyl-1-naphthalenamine mandelate: key intermediates in the synthesis of sertraline hydrochloride. Org Process Res Dev 8:385–388. doi:10.1021/op0341465

    Article  CAS  Google Scholar 

  70. Rocha-Martin J, Velasco-Lozano S, Guisan JM, Lopez-Gallego F (2014) Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production. Green Chem 16:303–311. doi:10.1039/c3gc41456f

    Article  CAS  Google Scholar 

  71. Sheykhan M, Ranjbar ZR, Morsali A, Heydari A (2012) Minimisation of E-Factor in the synthesis of N-hydroxylamines: the role of silver(I)-based coordination polymers. Green Chem 14:1971–1978. doi:10.1039/c2gc35076a

    Article  CAS  Google Scholar 

  72. Gruttadauria M, Giacalone F, Noto R (2013) “Release and catch” catalytic systems. Green Chem 15:2608–2618. doi:10.1039/c3gc41132j

    Article  CAS  Google Scholar 

  73. Rundquist EM, Pink CJ, Livingston AG (2012) Organic solvent nanofiltration: a potential alternative to distillation for solvent recovery from crystallisation mother liquors. Green Chem 14:2197–2205. doi:10.1039/c2gc35216h

    Article  CAS  Google Scholar 

  74. Content S, Dupont T, Fedou NM, Smith JD, Twiddle SJR (2013) Optimization of the manufacturing route to PF-610355 (1): synthesis of intermediate 5. Org Process Res Dev 17:193–201. doi:10.1021/op300341n

    Article  CAS  Google Scholar 

  75. Prat D, Pardigon O, Flemming H-W, Letestu S, Ducandas V, Isnard P, Guntrum E, Senac T, Ruisseau S, Cruciani P, Hosek P (2013) Sanofi’s solvent selection guide: a step toward more sustainable processes. Org Process Res Dev 17:1517–1525. doi:10.1021/op4002565

    Article  CAS  Google Scholar 

  76. Trost BM (1991) The atom economy—a search for synthetic efficiency. Science 254:1471–1477. doi:10.1126/science.1962206

    Article  CAS  Google Scholar 

  77. Heinzle E, Weirich D, Brogli F, Hoffmann VH, Koller G, Verduyn MA, Hungerbuhler K (1998) Ecological and economic objective functions for screening in integrated development of fine chemical processes. 1. flexible and expandable framework using indices. Ind Eng Chem Res 37:3395–3407. doi:10.1021/ie9708539

    Article  CAS  Google Scholar 

  78. Eissen M, Metzger JO (2002) Environmental performance metrics for daily use in synthetic chemistry. Chem Eur J 8:3580–3585. doi:10.1002/1521-3765(20020816)8:16<3580:AID-CHEM3580>3.0.CO;2-J

    Article  CAS  Google Scholar 

  79. Watson WJW (2012) How do the fine chemical, pharmaceutical, and related industries approach green chemistry and sustainability? Green Chem 14:251–259. doi:10.1039/c1gc15904f

    Article  CAS  Google Scholar 

  80. Jimenez-Gonzalez C, Constable DJC, Ponder CS (2012) Evaluating the “Greenness” of chemical processes and products in the pharmaceutical industry—a green metrics primer. Chem Soc Rev 41:1485–1498. doi:10.1039/c1cs15215g

    Article  CAS  Google Scholar 

  81. Das VK, Borah M, Thakur AJ (2013) Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener “nanoparticle-catalyzed organic synthesis enhancement” approach. J Org Chem 78:3361–3366. doi:10.1021/jo302682k

    Article  CAS  Google Scholar 

  82. Federsel H-J (2013) En route to full implementation: driving the green chemistry agenda in the pharmaceutical industry. Green Chem 15:3105–3115. doi:10.1039/c3gc41629a

    Article  CAS  Google Scholar 

  83. Auge J (2008) A new rationale of reaction metrics for green chemistry. Mathematical expression of the environmental impact factor of chemical processes. Green Chem 10:225–231. doi:10.1039/b711274b

    Article  CAS  Google Scholar 

  84. Auge J, Scherrmann M-C (2012) Determination of the global material economy (GME) of synthesis sequences—a green chemistry metric to evaluate the greenness of products. New J Chem 36:1091–1098. doi:10.1039/c2nj20998e

    Article  CAS  Google Scholar 

  85. Eissen M, Mazur R, Quebbbemann H-G, Pennemann K-H (2004) Atom economy and yield of synthesis sequences. Helv Chim Acta 87:524–535. doi:10.1002/hlca.200490050

    Article  CAS  Google Scholar 

  86. Liang J, Lalonde J, Borup B, Mitchell V, Mundorff E, Trinh N, Kochrekar DA, Cherat RN, Pai GG (2010) Development of a biocatalytic process as an alternative to the (−)-DIP-Cl-mediated asymmetric reduction of a key intermediate of montelukast. Org Process Res Dev 14:193–198. doi:10.1021/op900272d

    Article  CAS  Google Scholar 

  87. Gallou F, Seeger-Weibel M, Chassagne P (2013) Development of a robust and sustainable process for nucleoside formation. Org Process Res Dev 17:390–396. doi:10.1021/op300335d

    Article  CAS  Google Scholar 

  88. Tian J, Shi H, Li X, Yin Y, Chen L (2012) Coupling mass balance analysis and multi-criteria ranking to assess the commercial-scale synthetic alternatives: a case study on glyphosate. Green Chem 14:1990–2000. doi:10.1039/c2gc35349k

    Article  CAS  Google Scholar 

  89. Turgis R, Billault I, Acherar S, Auge J, Scherrmann M-C (2013) Total synthesis of high loading capacity PEG-based supports: evaluation and improvement of the process by use of ultrafiltration and PEG as a solvent. Green Chem 15:1016–1029. doi:10.1039/c3gc37097f

    Article  CAS  Google Scholar 

  90. Laird T (2013) Green chemistry is good process chemistry. Org Process Res Dev 16:1–2. doi:10.1021/op200366y

    Article  Google Scholar 

  91. Leahy DK, Tucker JL, Mergelsberg I, Dunn PJ, Kopach ME, Purohit VC (2013) Seven important elements for an effective green chemistry program: an IQ consortium perspective. Org Process Res Dev 17:1099–1109. doi:10.1021/op400192h

    Article  CAS  Google Scholar 

  92. Kjell DP, Watson IA, Wolfe CN, Spitler JT (2013) Complexity-based metric for process mass intensity in the pharmaceutical industry. Org Process Res Dev 17:169–174. doi:10.1021/op3002917

    Article  CAS  Google Scholar 

  93. Jimenez-Gonzalez C, Ollech C, Pyrz W, Hughes D, Broxterman QB, Bhathela N (2013) Expanding the boundaries: developing a streamlined tool for eco-footprinting of pharmaceuticals. Org Process Res Dev 17:239–246. doi:10.1021/op3003079

    Article  CAS  Google Scholar 

  94. Kim JF, Szekely G, Valtcheva IB, Livingston AG (2014) Increasing the sustainability of membrane processes through cascade approach and solvent recovery—pharmaceutical purification case study. Green Chem 16:133–145. doi:10.1039/c3gc41402g

    Article  Google Scholar 

  95. Dicks AP, Batey RA (2013) ConfChem conference on educating the next generation: green and sustainable chemistry—greening the organic curriculum: development of an undergraduate catalytic chemistry course. J Chem Educ 90:519–520. doi:10.1021/ed2004998

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Dicks .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Dicks, A.P., Hent, A. (2015). The E Factor and Process Mass Intensity. In: Green Chemistry Metrics. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-10500-0_3

Download citation

Publish with us

Policies and ethics