Skip to main content
Log in

Improved phloroglucinol production by metabolically engineered Escherichia coli

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Phloroglucinol is a valuable chemical which has been successfully produced by metabolically engineered Escherichia coli. However, the low productivity remains a bottleneck for large-scale application and cost-effective production. In the present work, we cloned the key biosynthetic gene, phlD (a type III polyketide synthase), into a bacterial expression vector to produce phloroglucinol in E. coli and developed different strategies to re-engineer the recombinant strain for robust synthesis of phloroglucinol. Overexpression of E. coli marA (multiple antibiotic resistance) gene enhanced phloroglucinol resistance and elevated phloroglucinol production to 0.27 g/g dry cell weight. Augmentation of the intracellular malonyl coenzyme A (malonyl-CoA) level through coordinated expression of four acetyl-CoA carboxylase (ACCase) subunits increased phloroglucinol production to around 0.27 g/g dry cell weight. Furthermore, the coexpression of ACCase and marA caused another marked improvement in phloroglucinol production 0.45 g/g dry cell weight, that is, 3.3-fold to the original strain. Under fed-batch conditions, this finally engineered strain accumulated phloroglucinol up to 3.8 g/L in the culture 12 h after induction, corresponding to a volumetric productivity of 0.32 g/L/h. This result was the highest phloroglucinol production to date and showed promising to make the bioprocess economically feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achkar J, Xian M, Zhao H, Frost JW (2005) Biosynthesis of phloroglucinol. J Am Chem Soc 127:5332–5333

    Article  CAS  Google Scholar 

  • Alekshun MN, Levy SB (1999) Alteration of the repressor activity of MarR, the negative regulator of the Escherichia coli marRAB locus, by multiple chemicals in vitro. J Bacteriol 181:4669–4672

    Article  CAS  Google Scholar 

  • Antoni D, Zverlov V, Schwarz W (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  CAS  Google Scholar 

  • Bangera MG, Thomashow LS (1999) Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 181:3155–3163

    Article  CAS  Google Scholar 

  • Cronan JE, Waldrop GL (2002) Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 41:407–435

    Article  CAS  Google Scholar 

  • Davis MS, Solbiati J, Cronan JE (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275:28593–28598

    Article  CAS  Google Scholar 

  • De La Fuente L, Mavrodi DV, Landa BB, Thomashow LS, Weller DM (2006) PhlD-based genetic diversity and detection of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. FEMS Microbiol Ecol 56:64–78

    Article  Google Scholar 

  • de Werra P, Pechy-Tarr M, Keel C, Maurhofer M (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microbiol 75:4162–4174

    Article  Google Scholar 

  • Fowler ZL, Gikandi WW, Koffas MAG (2009) Increasing malonyl-CoA biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol. doi:AEM.00270-00209

  • Frost JW (2007) Biosynthesis of phloroglucinol and preparation of 1,3-dihydroxybenzene therefrom. Patent application no. US20070178571

  • Gambino L, Gracheck SJ, Miller PF (1993) Overexpression of the MarA positive regulator is sufficient to confer multiple antibiotic resistance in Escherichia coli. J Bacteriol 175:2888–2894

    Article  CAS  Google Scholar 

  • Hayashi O, Satoh K (2006) Determination of acetyl-CoA and malonyl-CoA in germinating rice seeds using the LC-MS/MS technique. Biosci Biotechnol Biochem 70:2676–2681

    Article  CAS  Google Scholar 

  • Hunt DE, Sandham HJ (1969) Improved agar gradient-plate technique. Appl Environ Microbiol 17:329–330

    Article  CAS  Google Scholar 

  • Leonard E, Lim K-H, Saw P-N, Koffas MAG (2007) Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol 73:3877–3886

    Article  CAS  Google Scholar 

  • Mavrodi OV, Gardener BBM, Mavrodi DV, Bonsall RF, Weller DM, Thomashow LS (2001) Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology 91:35–43

    Article  CAS  Google Scholar 

  • Miyahisa I, Kaneko M, Funa N, Kawasaki H, Kojima H, Ohnishi Y, Horinouchi S (2005) Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl Microbiol Biotechnol 68:498–504

    Article  CAS  Google Scholar 

  • Moynihan JA, Morrissey JP, Coppoolse ER, Stiekema WJ, O’Gara F, Boyd EF (2009) Evolutionary history of the phl gene cluster in the plant-associated bacterium Pseudomonas fluorescens. Appl Environ Microbiol 75:2122–2131

    Article  CAS  Google Scholar 

  • Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–1792

    Article  CAS  Google Scholar 

  • Randall LP, Woodward MJ (2002) The multiple antibiotic resistance (mar) locus and its significance. Res Vet Sci 72:87–93

    Article  CAS  Google Scholar 

  • Schneiders T, Barbosa TM, McMurry LM, Levy SB (2004) The Escherichia coli transcriptional regulator MarA directly represses transcription of purA and hdeA. J Biol Chem 279:9037–9042

    Article  CAS  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent Pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    Article  CAS  Google Scholar 

  • Singh IP, Bharate SB (2006) Phloroglucinol compounds of natural origin. Nat Prod Rep 23:558–591

    Article  CAS  Google Scholar 

  • Singh IP, Sidana J, Bansal P, Foley WJ (2009) Phloroglucinol compounds of therapeutic interest: global patent and technology status. Expert Opin Ther Pat 19:847–866

    Article  CAS  Google Scholar 

  • Slininger P, Shea-Andersh M (2005) Proline-based modulation of 2,4-diacetylphloroglucinol and viable cell yields in cultures of Pseudomonas fluorescens wild-type and over-producing strains. Appl Microbiol Biotechnol 68:630–638

    Article  CAS  Google Scholar 

  • Takamura Y, Nomura G (1988) Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. J Gen Microbiol 134:2249–2253

    CAS  PubMed  Google Scholar 

  • Validov S, Mavrodi O, De La Fuente L, Boronin A, Weller D, Thomashow L, Mavrodi D (2005) Antagonistic activity among 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. FEMS Microbiol Lett 242:249–256

    Article  CAS  Google Scholar 

  • Wadler C, Cronan JE (2007) Dephospho-CoA kinase provides a rapid and sensitive radiochemical assay for coenzyme A and its thioesters. Anal Biochem 368:17–23

    Article  CAS  Google Scholar 

  • Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Bankhead SB, Molar RA, Bonsall RF, Mavrodi DV, Thomashow LS (2007) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9:4–20

    Article  CAS  Google Scholar 

  • Willke T, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142

    Article  CAS  Google Scholar 

  • Zha W, Rubin-Pitel SB, Zhao H (2006) Characterization of the substrate specificity of PhlD, a type III polyketide synthase from Pseudomonas fluorescens. J Biol Chem 281:32036–32047

    Article  CAS  Google Scholar 

  • Zha W, Rubin-Pitel SB, Shao Z, Zhao H (2009) Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng 11:192–198

    Article  CAS  Google Scholar 

  • Zhao J, Shimizu K (2003) Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method. J Biotechnol 101:101–117

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was sponsored by National Natural Science Foundation (no. 20872075). The authors would like to thank Dr. Haiyan Yang for ion chromatography analysis and Dr. Cong Wang for LC-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Xian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Jiang, X., Zhang, R. et al. Improved phloroglucinol production by metabolically engineered Escherichia coli . Appl Microbiol Biotechnol 91, 1545–1552 (2011). https://doi.org/10.1007/s00253-011-3304-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3304-5

Keywords

Navigation