Skip to main content

Transfusion-Associated Circulatory Overload

  • Chapter
  • First Online:
Transfusion in the Intensive Care Unit

Abstract

Transfusion-associated circulatory overload (TACO) remains a leading cause of transfusion-related morbidity and mortality, accounting for 21 % of the transfusion-related fatalities reported to the United States Federal Drug Administration in 2012. While its constellation of symptoms has been recognized for over half a century, effective preventative and/or therapeutic interventions for patients with or at risk for TACO remain limited. Presently, we are primarily left with supportive cares such as oxygen supplementation and ventilator support when needed. The intensive care unit (ICU) remains one of the highest utilizers of blood products in the hospital, with one out of every two patients receiving at least one allogeneic blood component during their ICU admission. As such, critical care physicians are in a privileged position whereby accurate identification of TACO cases may not only improve patient outcomes, but may also contribute meaningfully to our understanding of TACO’s epidemiology, pathophysiology, and true attributable burden. Improved case recognition will ultimately depend upon the development and acceptance of a consensus definition for TACO. In the absence of any proven therapeutic measures for TACO, perhaps the most appropriate preventative strategy is the avoidance of unnecessary transfusions through the use of conservative, evidence-based transfusion practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebert PC, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17.

    Article  PubMed  CAS  Google Scholar 

  2. Roback J, et al. AABB technical manual. 16th ed. Bethesda: American Association of Blood Banks; 2011.

    Google Scholar 

  3. Walsh TS, et al. Red cell requirements for intensive care units adhering to evidence-based transfusion guidelines. Transfusion. 2004;44(10):1405–11.

    Article  PubMed  Google Scholar 

  4. Fatalities reported to FDA following blood collection and transfusion: annual summary for fiscal year 2012. 17 July 2013. Available from: http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/ReportaProblem/TransfusionDonationFatalities/ucm346639.htm.

  5. Corwin HL, et al. The CRIT Study: anemia and blood transfusion in the critically ill–current clinical practice in the United States. Crit Care Med. 2004;32(1):39–52.

    Article  PubMed  Google Scholar 

  6. Napolitano LM, Kurek SL, Luchette FA, et al. Clinical practice guideline: red blood cell transfusion in adult trauma and critical care. Crit Care Med. 2009;37(12):3124–57.

    Article  PubMed  Google Scholar 

  7. Vincent JL, et al. Anemia and blood transfusion in critically ill patients. JAMA. 2002;288(12):1499–507.

    Article  PubMed  Google Scholar 

  8. Bolton-Maggs PH, Cohen H. Serious Hazards of Transfusion (SHOT) haemovigilance and progress is improving transfusion safety. Br J Haematol. 2013;163(3):303–14.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Popovsky MA, Taswell HF. Circulatory overload: an underdiagnosed consequence of transfusion. Transfusion. 1985;25(5):469.

    Article  Google Scholar 

  10. Drummond R. Transfusion reactions and fatalities due to circulatory overloading. Br Med J. 1943;2(4314):319–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Narick C, Triulzi DJ, Yazer MH. Transfusion-associated circulatory overload after plasma transfusion. Transfusion. 2012;52(1):160–5.

    Google Scholar 

  12. Clifford L, et al. Electronic health record surveillance algorithms facilitate the detection of transfusion-related pulmonary complications. Transfusion. 2013;53(6):1205–16.

    Google Scholar 

  13. The National Healthcare Safety Network, Biovigilance Component. [cited 2013 January 3rd 2014]. 2013. Available from: http://www.cdc.gov/nhsn/PDFs/hemovigModuleProtocol_current.pdf.

  14. Goldberg AD, Kor DJ. State of the art management of transfusion-related acute lung injury (TRALI). Curr Pharm Des. 2012;18(22):3273–84.

    Article  PubMed  CAS  Google Scholar 

  15. Andrzejewski Jr C, et al. Hemotherapy bedside biovigilance involving vital sign values and characteristics of patients with suspected transfusion reactions associated with fluid challenges: can some cases of transfusion-associated circulatory overload have proinflammatory aspects? Transfusion. 2012;52(11):2310–20.

    Article  PubMed  Google Scholar 

  16. Zhou L, et al. Use of B-natriuretic peptide as a diagnostic marker in the differential diagnosis of transfusion-associated circulatory overload. Transfusion. 2005;45(7):1056–63.

    Article  PubMed  CAS  Google Scholar 

  17. Tobian AA, et al. N-terminal pro-brain natriuretic peptide is a useful diagnostic marker for transfusion-associated circulatory overload. Transfusion. 2008;48(6):1143–50.

    Article  PubMed  CAS  Google Scholar 

  18. Li G, et al. The accuracy of natriuretic peptides (brain natriuretic peptide and N-terminal pro-brain natriuretic) in the differentiation between transfusion-related acute lung injury and transfusion-related circulatory overload in the critically ill. Transfusion. 2009;49(1):13–20.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Clifford L, et al. Natural language processing of chest radiograph reports improves the identification of transfusion-related pulmonary complications. Am J Respir Crit Care Med. 2013;187:A2218.

    Google Scholar 

  20. Audet A, Andrzejewski Jr C, Popovsky M. Red blood cell transfusion practices in patients undergoing orthopedic surgery: a multi-institutional analysis. Orthopedics. 1998;21(8):851–8.

    PubMed  CAS  Google Scholar 

  21. Popovsky MA, Audet AM, Andrzejewski Jr C. Transfusion-associated circulatory overload in orthopedic surgery patients: a multi-institutional study. Immunohematology. 1996;12(2):87–9.

    PubMed  CAS  Google Scholar 

  22. PHBBolton-Maggs (Ed), Poles D, Watt A, Thomas D, Cohen H. on behalf of the Serious Hazards of Transfusion (SHOT) Steering Group. The 2012 annual SHOT Report. 2013.

    Google Scholar 

  23. Li G, Rachmale S, Kojicic M. Incidence and transfusion risk factors for transfusion-associated circulatory overload among medical intensive care unit patients. Transfusion. 2011;51:338–43.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rana R, et al. Transfusion related pulmonary edema in the intensive care unit. Chest. 2005;128(4):Supplement 130s.

    Google Scholar 

  25. Murphy EL, et al. Risk factors and outcomes in transfusion-associated circulatory overload. Am J Med. 2013;126(4):357.e29–38.

    Article  Google Scholar 

  26. Vamvakas EC, Blajchman MA. Blood still kills: six strategies to further reduce allogeneic blood transfusion-related mortality. Transfus Med Rev. 2010;24(2):77–124.

    Article  PubMed  Google Scholar 

  27. Popovsky MA. The Emily Cooley Lecture 2009 To breathe or not to breathe-that is the question. Transfusion. 2010;50(9):2057–62.

    Google Scholar 

  28. Robillard P, Itaj N, Chapdelaine A. Increasing incidence of transfusion-associated circulatory overload reported to the Quebec Hemovigilance System, 2000–2006. Transfusion. 2008;48(S2):204A.

    Google Scholar 

  29. Singel DJ, Stamler JS. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol. 2005;67:99–145.

    Article  PubMed  CAS  Google Scholar 

  30. Donadee C, et al. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation. 2011;124(4):465–76.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Celis R, Torre-Martinez G, Torre-Amione G. Evidence for activation of immune system in heart failure: is there a role for anti-inflammatory therapy? Curr Opin Cardiol. 2008;23(3):254–60.

    Article  PubMed  Google Scholar 

  32. Andrzejewski C, Casey Jr MA, Popovsky MA. How we view and approach transfusion-associated circulatory overload: pathogenesis, diagnosis, management, mitigation, and prevention. Transfusion. 2013;53(12):3037–47.

    Article  PubMed  Google Scholar 

  33. Blumberg N, et al. An association between decreased cardiopulmonary complications (transfusion-related acute lung injury and transfusion-associated circulatory overload) and implementation of universal leukoreduction of blood transfusions. Transfusion. 2010;50(12):2738–44.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Popovsky M. Transfusion-associated circulatory overload. In: Popovsky M, editor. Transfusion reactions. Bethesda: AABB Press; 2012. p. 326–37.

    Google Scholar 

  35. AABB. Standards for blood banks and transfusion services. 28th ed. Bethesda: American Association of Blood Banks; 2012.

    Google Scholar 

  36. Jessup M, et al. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119(14):1977–2016.

    Article  PubMed  Google Scholar 

  37. Winck JC, et al. Efficacy and safety of non-invasive ventilation in the treatment of acute cardiogenic pulmonary edema–a systematic review and meta-analysis. Crit Care. 2006;10(2):R69.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Masip J, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema: systematic review and meta-analysis. JAMA. 2005;294(24):3124–30.

    Article  PubMed  CAS  Google Scholar 

  39. Schmickl CN, et al. The accuracy and efficiency of electronic screening for recruitment into a clinical trial on COPD. Respir Med. 2011;105(10):1501–6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peter JV, et al. Effect of non-invasive positive pressure ventilation (NIPPV) on mortality in patients with acute cardiogenic pulmonary oedema: a meta-analysis. Lancet. 2006;367(9517):1155–63.

    Article  PubMed  Google Scholar 

  41. Putensen C, et al. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med. 2009;151(8):566–76.

    Article  PubMed  Google Scholar 

  42. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342(18):1301–8.

    Google Scholar 

  43. David B. Haemovigilance: a comparison of three national systems. In: Proceeding of the 27th congress of the international society of blood transfusion. Vancouver; 2002.

    Google Scholar 

  44. Li G, et al. Long-term survival and quality of life after transfusion-associated pulmonary edema in critically ill medical patients. Chest. 2010;137(4):783–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Carson JL, et al. Red blood cell transfusion: a clinical practice guideline from the AABB*. Ann Intern Med. 2012;157(1):49–58.

    Article  PubMed  Google Scholar 

  46. Alam A, et al. The prevention of transfusion-associated circulatory overload. Transfus Med Rev. 2013;27(2):105–12.

    Article  PubMed  Google Scholar 

  47. Dzik W, Rao A. Why do physicians request fresh frozen plasma? Transfusion. 2004;44(9):1393–4.

    Article  PubMed  Google Scholar 

  48. Lieberman L, et al. A retrospective review of patient factors, transfusion practices, and outcomes in patients with transfusion-associated circulatory overload. Transfus Med Rev. 2013;27(4):206–12.

    Article  PubMed  Google Scholar 

  49. Silvergleid AJ. Up-to-date: transfusion reactions caused by chemical and physical agents. Transfusion Associated Circulatory Overload 2013. 10 Sept 2013. Available from: http://www.uptodate.com/contents/transfusion-reactions-caused-by-chemical-and-physical-agents?source=see_link&anchor=H2#H2.

  50. Franchini M, Lippi G. Prothrombin complex concentrates: an update. Blood Transfus. 2010;8(3):149–54.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryl J. Kor MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Clifford, L., Kor, D.J. (2015). Transfusion-Associated Circulatory Overload. In: Juffermans, N., Walsh, T. (eds) Transfusion in the Intensive Care Unit. Springer, Cham. https://doi.org/10.1007/978-3-319-08735-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08735-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08734-4

  • Online ISBN: 978-3-319-08735-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics