Skip to main content

MicroRNA Expression and Regulation During Plant Somatic Embryogenesis

  • Chapter
  • First Online:
Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications

Abstract

Small RNAs play important regulatory roles in gene expression during development, stress response and phytohormone signaling. Two major classes of sRNAs are found: microRNAs (miRNAs), and small interferent RNAs (siRNA). These molecules are usually 20–24 bases long, present high complementarity to their mRNAs targets and regulate the transcription or translation processes. In spite of the substantial amount of experimental work with plant small RNAs, little is known about their expression pattern and function during somatic embryogenesis, a process commonly used for genetic transformation, plant propagation and artificial seed production. In this chapter, an overview of the studies involving microRNAs in plant somatic embryogenesis is approached with a particular emphasis in maize embryogenic callus induction, subculture and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164:207–214

    Article  CAS  PubMed  Google Scholar 

  • Armstrong CL, Green CE, Phillips RL (1991) Development and availability of germoplasm with high Type II culture formation response. Maize Genet Coop Newsl 65:92–93

    Google Scholar 

  • Bordersen P, Sakvarelidze-Achard L, Baruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibitory plant miRNAs and siRNAs. Science 320:1185–1190

    Article  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev 35:21–44

    Article  Google Scholar 

  • Chen CJ, Liu Q, Zhang YC, Qu LH, Chen YQ, Gautheret D (2011) Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol 8:538–547

    Article  CAS  PubMed  Google Scholar 

  • Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154:1470–1480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dodeman VL, Le Guilloux M, Ducreux G, de Vienne D (1998) Somatic and zygotic embryos of Daucus carota L. display different protein patterns until conversion to plants. Plant Cell Physiol 39:1104–1110

    Article  CAS  PubMed  Google Scholar 

  • Duncan DR, Williams ME, Zehr BE, Widholm JM (1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165:322–332

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer P, Voinnet O (2009) Movement of RNA silencing between plant cells: is the question now behind us? Trends Plant Sci 14:643–644

    Article  CAS  PubMed  Google Scholar 

  • Garrocho-Villegas V, Jesus-Olivera MT, Sánchez QE (2012) Maize somatic embryogenesis: recent features to improve plant regeneration. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols, vol 877, Methods in molecular biology. Springer, Berlin, pp 173–182

    Chapter  Google Scholar 

  • Garrocho-Villegas V, Jesus-Olivera MT, Sanchez-Quintanar E (2013) Maize somatic embryogenesis: recent features to improve plant regeneration. Plant Cell Cult Protoc Meth Mol Biol 877:173–182

    Article  Google Scholar 

  • German MA, Pillay M, Jeong DH, Hetawal A, Luo S et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  CAS  PubMed  Google Scholar 

  • Goldberg RB, Barker SJ, Perez-Grau L (1989) Regulation of gene expression during plant embryogenesis. Cell 56:149–160

    Article  CAS  PubMed  Google Scholar 

  • Green CE, Philips RL (1975) Plant regeneration from tissue cultures of maize. Crop Sci 15:417–421

    Article  Google Scholar 

  • Halperln W (1966) Alternative morphogenetic events in cell suspensions. Am J Bot 53:443–451

    Article  Google Scholar 

  • Hodges TK, Kamo KK, Imbrie CW, Becwar MR (1986) Genotype specificity of somatic embryogenesis and regeneration in maize. Biotechnology 4:219–223

    Article  Google Scholar 

  • Huang Y, Ji L, Huang Q, Vassylyev DG, Chen X et al (2009) Structural insights into mechanisms of the small RNA methyltransferase HEN1. Nature 461:823–827

    Article  CAS  PubMed  Google Scholar 

  • Jakubekova M, Pretova A, Obert B (2011) Somatic embryogenesis and plant regeneration from immature embryo induced callus of maize (Zea Mays L.). J Microbiol Biotechnol Food Sci 1:478–487

    Google Scholar 

  • Jiménez VM, Bangerth F (2001) Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus cultures derived from them as related to morphogenesis in vitro. Plant Sci 160:247–257

    Article  PubMed  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee H (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  • Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P et al (2009) Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 21:1762–1768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larkin PJ, Scowcroft WR (1988) Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Li T, Chen J, Qiu S, Zhang Y, Wang P, Yang L, Lu Y, Shi J (2012) Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar. PLoS One 7:e43451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin Y, Lai Z (2013) Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in longan (Dimocarpus longan Lour). PLoS ONE 8:e60337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo YC, Zhou H, Li Y, Chen JY, Yang JH et al (2006) Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett 580:5111–5116

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related smallRNAs in plants. Nat Genet Suppl 38:S31–S36

    Article  CAS  Google Scholar 

  • Nomura K, Komamine A (1985) Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol 79:988–991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nomura K, Komamine A (1986) Somatic embryogenesis in carrot cells. Dev Growth Differ 28:511–517

    Article  Google Scholar 

  • Obert B, Pretova A, Samaj J (2009) Somatic and gametic embryogenesis in maize. Cell Biol Appl 23:468–480

    Google Scholar 

  • Rodriguez-Enriquez J, Dickinson HG, Grant-Downton RT (2011) MicroRNA misregulation: an overlooked factor generating somaclonal variation. Trends Plant Sci 16:242

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Jiang Z, Yao X, Zhang Z, Lin H, Zhao M, Liu H, Peng H, Li S, Pan G (2012) Genome expression profile analysis of the immature maize embryo during dedifferentiation. PLoS One 7:e32237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  • Steward FC (1958) Growth and development of cultured cells. Interpretations of the growth from free cell to carrot plant. Am J Bot 45:709–713

    Article  Google Scholar 

  • Takahata K (2008) Isolation of carrot Argonaute1 from subtractive somatic embryogenesis cDNA library. Biosci Biotechnol Biochem 72:900–904

    Article  CAS  PubMed  Google Scholar 

  • Tandurzic M, Vaughn MW, Jiang H, Lee T-H, Slotkin RK, Sosinski B, Thompson WF, Doerge RW, Martienssen RA (2008) Epigenomic consequences of immortalized plan cell suspension culture. PLOS Biol 6:e302

    Article  Google Scholar 

  • Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vazquez F (2006) Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci 11:460–468

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Wu XM, Liu MY, Ge XX, Xu Q, Guo WW (2011) Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta 233:495–505

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang L, Yuan D, Lindsey K, Zhang X (2013) Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot 64:1521–1536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L (2010) Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 398:355–360

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L (2012) Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236:647–657

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Dirección General de Apoyo a Personal Académico, UNAM PAPIIT IN210912 and Instituto de Ciencia y Tecnología del Distrito Federal PIUTE 10-55/2010. The authors acknowledge the technical assistance by M.T.J. Olivera-Flores in maize tissue culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzvetanka D. Dinkova .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dinkova, T.D., Alejandri-Ramirez, N.D. (2014). MicroRNA Expression and Regulation During Plant Somatic Embryogenesis. In: Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-07971-4_7

Download citation

Publish with us

Policies and ethics