Skip to main content

Disregarding Duration Uncertainty in Partial Order Schedules? Yes, We Can!

  • Conference paper
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2014)

Abstract

In the context of Scheduling under uncertainty, Partial Order Schedules (POS) provide a convenient way to build flexible solutions. A POS is obtained from a Project Graph by adding precedence constraints so that no resource conflict can arise, for any possible assignment of the activity durations. In this paper, we use a simulation approach to evaluate the expected makespan of a number of POSs, obtained by solving scheduling benchmarks via multiple approaches. Our evaluation leads us to the discovery of a striking correlation between the expected makespan and the makespan obtained by simply fixing all durations to their average. The strength of the correlation is such that it is possible to disregard completely the uncertainty during the schedule construction and yet obtain a very accurate estimation of the expected makespan. We provide a thorough empirical and theoretical analysis of this result, showing the existence of solid ground for finding a similarly strong relation on a broad class of scheduling problems of practical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aloulou, M.A., Portmann, M.C.: An efficient proactive reactive scheduling approach to hedge against shop floor disturbances. In: Proc. of MISTA, pp. 223–246 (2005)

    Google Scholar 

  2. Beck, J.C., Davenport, A.J.: A survey of techniques for scheduling with uncertainty (2002), http://www.eil.utoronto.ca/profiles/chris/gz/uncertainty-survey.ps

  3. Beck, J.C., Wilson, N.: Proactive Algorithms for Job Shop Scheduling with Probabilistic Durations. Journal on Artificial Intelligence Research (JAIR) 28, 183–232 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonfietti, A., Lombardi, M., Milano, M.: Disregarding Duration Uncertainty in Partial Order Schedules? Yes, we can! Technical Report LIA-001-14, LIA Series no. 101. University of Bologna, Italy (February 2014), http://www.lia.deis.unibo.it/Research/TechReport/LIA-001-14.pdf

  5. Cesta, A., Oddi, A., Smith, S.F.: Scheduling Multi-Capacitated Resources under Complex Temporal Constraints. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 465–465. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Godard, D., Laborie, P., Nuijten, W.: Randomized Large Neighborhood Search for Cumulative Scheduling. In: Proc. of ICAPS, pp. 81–89 (2005)

    Google Scholar 

  7. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American statistical association 58(301), 13–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Igelmund, G., Radermacher, F.J.: Preselective strategies for the optimization of stochastic project networks under resource constraints. Networks 13(1), 1–28 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30(1), 175–193 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kolisch, R.: PSPLIB - A project scheduling problem library. European Journal of Operational Research 96(1), 205–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Laborie, P.: Complete MCS-Based Search: Application to Resource Constrained Project Scheduling. In: Proc. of IJCAI, pp. 181–186. Professional Book Center (2005)

    Google Scholar 

  12. Lombardi, M., Milano, M., Benini, L.: Robust Scheduling of Task Graphs under Execution Time Uncertainty. IEEE Transactions on Computers 62(1), 98–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Policella, N., Cesta, A., Oddi, A., Smith, S.F.: From precedence constraint posting to partial order schedules: A CSP approach to Robust Scheduling. AI Communications 20(3), 163–180 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Policella, N., Smith, S.F., Cesta, A., Oddi, A.: Generating Robust Schedules through Temporal Flexibility. In: Proc. of ICAPS, pp. 209–218 (2004)

    Google Scholar 

  15. Rasconi, R., Policella, N., Cesta, A.: SEaM: Analyzing schedule executability through simulation. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 410–420. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64(2), 278–285 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Van de Vonder, S.: A classification of predictive-reactive project scheduling procedures. Journal of Scheduling 10(3), 195–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Van de Vonder, S.: Proactive heuristic procedures for robust project scheduling: An experimental analysis. European Journal of Operational Research 189(3), 723–733 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bonfietti, A., Lombardi, M., Milano, M. (2014). Disregarding Duration Uncertainty in Partial Order Schedules? Yes, We Can!. In: Simonis, H. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2014. Lecture Notes in Computer Science, vol 8451. Springer, Cham. https://doi.org/10.1007/978-3-319-07046-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07046-9_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07045-2

  • Online ISBN: 978-3-319-07046-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics