Skip to main content

An Update to the Understanding of Nitric Oxide Metabolism in Plants

  • Chapter
  • First Online:
Nitric Oxide in Plants: Metabolism and Role in Stress Physiology

Abstract

Nitric oxide (NO) is an inorganic free radical gaseous molecule which has been shown to play an unprecedented range of roles in biological systems. The potential reactions of NO are numerous and depend on many different factors. The site and source of production, as well as the concentration of NO collectively determine whether NO will elicit direct or indirect effects. In animals, NO is generated by the activity of nitric oxide synthase (NOS). In plants, neither the gene nor protein similar to known NOS has been found. However, different pathways producing NO in plants have been described, and can be classified as either oxidative or reductive steps. These sources of NO seem to cooperate to the growth and development, and to respond to several stress situations like abiotic stress. Chloroplasts are key organelles in plant metabolism and they seem to be involved in NO production, thus, proposed pathways for NO generation in chloroplasts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnaud N, Murgia I, Boucherez J et al (2006) An iron induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem 281:23579–23588

    Article  CAS  PubMed  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A et al (2006) Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J Exp Bot 57:1785–1793

    Article  CAS  PubMed  Google Scholar 

  • Basylinski DA, Hollocher TC (1985) Evidence from the reaction between trioxodinitrate (II) and 15NO that trioxidinitrate (II) decomposes into nitrosyl hydride and nitrite in neutral aqueous solution. Inorg Chem 24:4285–4288

    Article  Google Scholar 

  • Beligni MV, Fath A, Bethke PC et al (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chandok MR, Ytterberg AJ, van Wijk KJ, Klessig DF (2003) The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell 113:469–482

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A et al (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM, Galli M, Tischner R et al (2006) Response to Zemojtel et al.: Plant nitric oxide synthase: back to square one. Trends Plant Sci 11:526–527

    Article  CAS  Google Scholar 

  • Davis KL, Martin E, Turko IV, Murad F (2001) Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 41:203–236

    Article  CAS  PubMed  Google Scholar 

  • del Río LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11

    PubMed  Google Scholar 

  • Flores-Pérez Ú, Sauret-Güeto S, Gas E et al (2008) A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic enzymes in Arabidopsis plastids. Plant Cell 20:1303–1315

    Article  PubMed Central  PubMed  Google Scholar 

  • Foissner I, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  CAS  PubMed  Google Scholar 

  • Ford PC, Wink DA, Stanbury DM (1993) Autoxidation kinetics of aqueous nitric oxide. FEBS Lett 326:1–3

    Article  CAS  PubMed  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G et al (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fröhlich A, Durner J (2011) The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci 181:401–404

    Article  PubMed  Google Scholar 

  • Galatro A, Puntarulo S, Guiamet JJ, Simontacchi M (2013) Chloroplast functionality has a positive effect on nitric oxide level in soybean cotyledons. Plant Physiol Biochem 66:26–33

    Article  CAS  PubMed  Google Scholar 

  • Galatro A, Simontacchi M, Puntarulo S (2004) Effect of nitric oxide exposure on antioxidant capacity of soybean leaves. Current Topics Plant Biol 5:69–79

    CAS  Google Scholar 

  • Gas E, Flores-Pérez Ú, Sauret-Güeto S, Rodríguez-Concepción M (2009) Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. Plant Cell 21:18–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gisone P, Dubner D, Pérez MR et al (2004) The role of nitric oxide in the radiation-induced effects in the developing brain. In vivo 18:281–292

    CAS  PubMed  Google Scholar 

  • Goretski J, Hollocher TC (1988) Trapping of nitric oxide produced during denitrification by extracellular hemoglobin. J Biol Chem 263:2316–2323

    CAS  PubMed  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A et al (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant, Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Guo F-Q, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011a) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Igamberdiev AU, Manjunatha G et al (2011b) The emerging roles of nitric oxide (NO) in plant mitochondria. Plant Sci 181:520–526

    Article  CAS  PubMed  Google Scholar 

  • Henry Y, Ducrocq C, Drapier JC et al (1991) Nitric oxide, a biological effector. Electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells. Eur Biophys J 20:1–15

    Article  CAS  PubMed  Google Scholar 

  • Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klessig DF, Ytterberg AJ, van Wijk KJ (2004) The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell 119:445

    Article  CAS  PubMed  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Lau E, Lam MP et al (2010) OsNOA1/RIF1 is a functional homolog of AtNOA1/RIF1: implication for a highly conserved plant cGTPase essential for chloroplast function. New Phytol 187:83–105

    Article  CAS  PubMed  Google Scholar 

  • Modolo LV, Augusto O, Almeida IMG et al (2005) Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. FEBS Lett 579:3814–3820

    Article  CAS  PubMed  Google Scholar 

  • Moreau M, Lee GI, Wang Y et al (2008) AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 283:32957–32967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rasul S, Wendehenne D, Jeandroz S (2012) Study of oligogalacturonides-triggered nitric oxide (NO) production provokes new questioning about the origin of NO biosynthesis in plants. Plant Signal Behav 7:1031–1033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosales EP, Iannone MF, Groppa MD, Benavides MP (2012) Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide. Amino Acids 42:857–865

    Article  CAS  PubMed  Google Scholar 

  • Rubbo H, Parthasarathy S, Barnes S et al (1995) Nitric oxide inhibition of lipoxygenase-dependent liposome and low density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen containing oxidized lipid derivatives. Arch Biochem Biophys 324:15–25

    Article  CAS  PubMed  Google Scholar 

  • Rümer S, Gupta KJ, Kaiser WM (2009) Plant cells oxidize hydroxylamines to NO. J Exp Bot 60:2065–2072

    Article  PubMed Central  PubMed  Google Scholar 

  • Saran M, Michel C, Bors W (1990) Reaction of NO with O -2 implications for the action of endothelium-derived relaxing factor (EDRF). Free Radic Res Commun 10:221–226

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Article  CAS  PubMed  Google Scholar 

  • Talwar PS, Gupta R, Maurya AK, Deswal R (2012) Brassica juncea nitric oxide synthase like activity is stimulated by PKC activators and calcium suggesting modulation by PKC-like kinase. Plant Physiol Biochem 60:157–164

    Article  CAS  PubMed  Google Scholar 

  • Tewari RK, Prommer J, Watanabe M (2013) Endogenous nitric oxide generation in protoplast chloroplasts. Plant Cell Rep 32:31–44

    Article  CAS  PubMed  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T et al (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  CAS  PubMed  Google Scholar 

  • Van Ree K, Gehl B, Wassim Chehab E et al (2011) Nitric oxide accumulation in Arabidopsis is independent of NOA1 in the presence of sucrose. Plant J 68:225–233

    Article  PubMed  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Osawa Y, Darbyshire JF et al (1993) Inhibition of cytochrome P450 by nitric oxide and a nitric oxide-releasing agent. Arch Biochem Biophys 300:115–123

    Article  CAS  PubMed  Google Scholar 

  • Zemojtel T, Fröhlich A, Palmieri MC et al (2006) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:524–525

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Sheng J, Lv S et al (2011) Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biol Technol 62:121–126

    Article  CAS  Google Scholar 

  • Ziogas V, Tanou G, Filippou P et al (2013) Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiol Biochem 68:118–126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the University of Buenos Aires (UBA) and National Council for Science and Technology (CONICET) and the National Agency of Scientific and Technological Promotion (ANPCyT). Susana Puntarulo and Andrea Galatro are career investigators from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Puntarulo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Galatro, A., Puntarulo, S. (2014). An Update to the Understanding of Nitric Oxide Metabolism in Plants. In: Khan, M., Mobin, M., Mohammad, F., Corpas, F. (eds) Nitric Oxide in Plants: Metabolism and Role in Stress Physiology. Springer, Cham. https://doi.org/10.1007/978-3-319-06710-0_1

Download citation

Publish with us

Policies and ethics