Skip to main content

Abstract

The Yucatán Peninsula has opposing gradients of precipitation and evaporation from north to south: as precipitation increases, evaporation rates decrease. Also, due to bedrock composed primarily of limestone, the area presents high porosity and rainfall infiltrates quickly, resulting in no superficial runoff. Natural disturbances such as hurricanes and fires are also common. The interaction of these factors has created a mosaic of environmental conditions that has given rise to a series of physiological adaptations in the plant species of the area. This chapter focuses mainly on the morphophysiological responses and adaptations of native plant species of the Yucatán to natural conditions, and on how plants respond to environmental factors at the level of the individual, species, population and/or functional groups. In this chapter, species were grouped according to their metabolic pathway (C3 species or crassulacean acid metabolism species (CAM)), and discussed based on adaptations to limiting resources: water, nutrients, temperature, and light. For C3 species only trees were included, and studies incorporated in this section spanned from plant establishment, growth, water use and water relations, alternative water sources, and carbon and nutrient flow. For the section on CAM the focus was on the factors that affect CAM plants in the microenvironments in which they occur. Other issues analyzed include plant physiological responses to natural disturbances, the potential impact of climate change on plant populations, and gaps in information as well as additional perspectives of study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade JL. Dew deposition on epiphytic bromeliad leaves: an important event in a Mexican tropical dry deciduous forest. J Trop Ecol. 2003;19:479–88.

    Article  Google Scholar 

  • Andrade JL, Rengifo E, Ricalde MF, Simá JL, Cervera JC, Vargas-Soto G. Microambientes de luz, crecimiento y fotosíntesis de la pitahaya (Hylocereus undatus) en un agrosistema de Yucatán, México. Agrociencia. 2006;40:687–97.

    Google Scholar 

  • Andrade JL, de la Barrera E, Reyes-García C, Ricalde MF, Vargas-Soto G, Cervera JC. El metabolismo ácido de las crasuláceas: diversidad, fisiología ambiental y productividad. Bol Soc Bot Mex. 2007;81:37–51.

    Google Scholar 

  • Andrade JL, Cervera JC, Graham EA. Microenvironments, water relations and productivity of CAM plants. In: de la Barrera E, Smith WK, editors. Perspectives in biophysical plant ecophysiology: a tribute to Park S. Nobel. Mexico: Universidad Nacional Autónoma de México; 2009. p. 95–120.

    Google Scholar 

  • Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 2008;59:89–113.

    Article  CAS  PubMed  Google Scholar 

  • Barcikowski W, Nobel PS. Water relations of cacti during desiccation: distribution of water in tissues. Bot Gaz. 1984;145:110–5.

    Article  Google Scholar 

  • Bejarano-Castillo M. Dinámica del C y del N en el suelo de bosques tropicales estacionalmente secos ante los escenarios de incremento en la deposición atmosférica. PhD Dissertation. México DF: Universidad Nacional Autónoma de México; 2012.

    Google Scholar 

  • Benzing DH. Vascular epiphytes. General biology and related biota. Nueva York: Cambridge University Press; 1990.

    Book  Google Scholar 

  • Benzing DH. Bromeliaceae: a profile of an adaptative radiation. Cambridge: Cambridge University Press; 2000.

    Book  Google Scholar 

  • Benzing DH, Renfrow A. Significance of the patterns of CO2 exchange to the ecology and phylogeny of the Tillandsioideae (Bromeliaceae). Bull Torrey Bot Club. 1971;98:322–7.

    Article  Google Scholar 

  • Billings FH. A study of Tillandsia usneoides. Bot Gaz. 1904;38:99–121.

    Article  Google Scholar 

  • Björkman O, Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 1987;170:489–504.

    Article  PubMed  Google Scholar 

  • Boose ER, Foster D, Barker Plotkin A, Hall B. Geographical and historical variation in hurricanes across the Yucatán Peninsula. In: Gomez-Pompa A, Allen M, Fedick SL, Jimenez-Osornio JJ, editors. The Lowland Maya: three millennia at the human–wildland interface. Binghamton, NY: Haworth Press; 2003. p. 495–516.

    Google Scholar 

  • Borchert R. Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology. 1994;75(5):1437–49.

    Article  Google Scholar 

  • Cabrera E, Sousa M, Téllez O. Imágenes de la Flora Quintanarroense. México, DF: CIQRO-UNAM; 1982. p. 219.

    Google Scholar 

  • Cach-Pérez MJ. Bromeliáceas epifitas de la Península de Yucatán como indicadoras de los posibles efectos del cambio climático regional. PhD Dissertation. Mérida, México: Centro de Investigación Científica de Yucatán; 2013.

    Google Scholar 

  • Cach-Pérez MJ, Andrade JL, Chilpa-Galván N, Tamayo-Chim M, Orellana R, Reyes-García C. Climatic and structural factors influencing epiphytic bromeliad community assemblage along a gradient of water-limited environments in the Yucatán Peninsula, Mexico. Trop Conserv Sci. 2013;6:283–302.

    Google Scholar 

  • Cach-Pérez M, Andrade JL, Reyes-García C. La susceptibilidad de las bromeliáceas epífitas al cambio climático. Bot Sci. 2014;92:157–68.

    Article  Google Scholar 

  • Ceccon E, Olmsted I, Vázquez-Yanes C, Campo-Alves J. Vegetation and soil properties in two tropical dry forests of differing regeneration status in Yucatán. Agrociencia. 2002;36:621–31.

    Google Scholar 

  • Ceccon E, Huante P, Campo J. Effects of nitrogen and phosphorus fertilization on the survival and recruitment of seedlings of dominant tree species in two abandoned tropical dry forests in Yucatán, Mexico. Forest Ecol Manage. 2003;182:387–402.

    Article  Google Scholar 

  • Ceccon E, Sánchez S, Campo J. Tree seedling dynamics in two abandoned tropical dry forest of differing successional status in Yucatán, Mexico: a field experiment with N and P fertilization. Plant Ecol. 2004;170:277–85.

    Article  Google Scholar 

  • Cervantes S, Graham E, Andrade JL. Light microhabitats, growth and photosynthesis of an epiphytic bromeliad in a tropical dry forest. Plant Ecol. 2005;179:107–18.

    Article  Google Scholar 

  • Cervera JC, Andrade JL, Simá JL, Graham EA. Microhabitats, germination, and establishment for Mammillaria gaumeri (Cactaceae), a rare species from Yucatán. Int J Plant Sci. 2006;167:311–9.

    Article  Google Scholar 

  • Cervera JC, Andrade JL, Graham EA, Durán R, Jackson PC, Simá JL. Photosynthesis and optimal light microhabitats for a rare cactus, Mammillaria gaumeri, in two tropical ecosystems. Biotropica. 2007;39:620–7.

    Article  Google Scholar 

  • Chán-Dzul A. Diversidad florística y funcional a través de una cronosecuencia de la selva mediana subperennifolia en la zona de influencia de la Reserva de la Biosfera Calakmul, Campeche, México. MSc. Dissertation. Turrialba, Costa Rica: Centro Agronómico Tropical de Investigación y Enseñanza; 2010.

    Google Scholar 

  • Chávez-Sahagún E. Microhabitats y estacionalidad en Aechmea bracteata (Sw.) Griseb (Bromeliaceae) en la selva baja de Dzibilchaltún, Yucatán. Master thesis. Mérida, México: Centro de Investigación Científica de Yucatán, AC; 2014.

    Google Scholar 

  • Chazdon RL. Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst. 2003;6:51–71.

    Article  Google Scholar 

  • Chilpa-Galván N, Tamayo-Chim M, Andrade JL, Reyes-García C. Water table depth may influence the asymmetric arrangement of epiphytic bromeliads in a tropical dry forest. Plant Ecol. 2013;214:1037–48.

    Article  Google Scholar 

  • Cushman JC. Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol. 2001;127:1439–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de la Barrera E, Andrade JL. Challenges to plant megadiversity: how environmental physiology can help? New Phytol. 2005;167:5–8.

    Article  PubMed  Google Scholar 

  • de la Rosa E, Andrade JL, Zotz G, Reyes-Garcia C. Epiphytic orchids in tropical dry forests of Yucatán, Mexico—Species occurrence, abundance and correlations with host tree characteristics and environmental conditions. Flora. 2014a;209:100–9.

    Article  Google Scholar 

  • de la Rosa E, Andrade JL, Zotz G, Reyes-García C. Respuestas fisiológicas a la sequía de cinco especies de orquídeas epífitas en dos selvas secas de la Península de Yucatán. Bot Sci. 2014b;92:607–16.

    Google Scholar 

  • Demmig-Adams B, Cohu CM, Muller O, Adams III WW. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res. 2012;113:75–88.

    Article  CAS  PubMed  Google Scholar 

  • des Grades E. Limiting factors for the establishment of Cordia dodecandra ADC and Bixa orellana Lon semi-arid calcareous soils in Yucatán, Mexico. PhD Dissertation. Herford, Germany: Center for Development Research (Zef) Department of Ecology and Natural Resource Management, Rheinischen Friedrich-Wilhelms-Universität zu Bonn; 2006.

    Google Scholar 

  • Dodd AN, Borland AM, Haslam RP, Griffiths H, Maxwell K. Crassulacean acid metabolism: plastic, fantastic. J Exp Bot. 2002;53:569–80.

    Article  CAS  PubMed  Google Scholar 

  • Drennan PM, Nobel PS. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ. 2000;23:767–81.

    Article  CAS  Google Scholar 

  • Duno R, Ramírez Morillo IM, Tapia-Muñoz JL, Carnevali G. Plantas vasculares de Quintana Roo. In: Pozo de la Tijera C, editor. Riqueza biológica del estado de Quintana Roo: un análisis para su conservación (tomo 2). México, D.F: ECOSUR-CONABIO-Gobierno del Estado de Quintana Roo, Programa de Pequeñas Donaciones (PNUD); 2011. p. 607.

    Google Scholar 

  • Espadas C, Durán R, Argáez J. Phytogeographic analysis of taxa endemic to the Yucatán peninsula using geographic information systems, the domain heuristic method and parsimony analysis of endemicity. Divers Distrib. 2003;9:313–30.

    Article  Google Scholar 

  • Esparza-Olguín L, Valverde T, Vilchis-Anaya E. Demographic analysis of a rare columnar cactus (Neobuxbaumia macrocephala) in the Tehuacán Valley, Mexico. Conserv Biol. 2002;103:349–59.

    Article  Google Scholar 

  • Espejel I. A phytogeographical analysis of coastal vegetation in the Yucatán Peninsula. J Biogeogra. 1987;14:499–519.

    Article  Google Scholar 

  • Estrada-Medina H, Graham RC, Allen MF, Jiménez-Osornio JJ, Robles-Casolco S. The importance of limestone bedrock and dissolution karst features on tree root distribution in northern Yucatán, México. Plant Soil. 2013;362:37–50.

    Article  CAS  Google Scholar 

  • Ferrer M, Durán R, Méndez M, Dorantes A, Dzib G. Dinámica poblacional de genets y ramets de Mammillaria gaumeri cactácea endémica de Yucatán. Bol Soc Bot Mex. 2011;89:83–105.

    Google Scholar 

  • Flores Guido JS, Duran Garcia RD, Ortiz Diaz JJ. Comunidades vegetales terrestres. In: Durán R, Méndez M, editors. Biodiversidad y desarrollo humano en Yucatán. México: CICY, PPD-FMAM, CONABIO, SEDUMA; 2010. p. 125–9.

    Google Scholar 

  • Flores J, Briones O, Flores A, Sánchez-Colón S. Effect of predation and solar exposure on the emergence and survival of desert seedlings of contrasting life-forms. J Arid Environ. 2004;58:1–18.

    Article  Google Scholar 

  • García-Quintanilla A. Los tiempos en Yucatán. Editorial Claves Latinoamericanas. Mexico City, Mexico; 1986. p. 166.

    Google Scholar 

  • Giovanetti M, Cervera JC, Andrade JL. Pollinators of an endemic and endangered species Mammillaria gaumeri (Cactaceae) in its natural habitat (coastal dune) and in a botanical garden. Madroño. 2007;54:286–92.

    Article  Google Scholar 

  • Goldstein G, Andrade JL, Nobel PS. Differences in water relations parameters for the chlorenchyma and the parenchyma of Opuntia ficus-indica under wet versus dry conditions. Aust J Plant Physiol. 1991;18:95–107.

    Article  Google Scholar 

  • González-Iturbe JA, Olmsted I, Tun-Dzul F. Tropical dry forest recovery after long term Henequen (sisal, Agave fourcroydes Lem.) plantation in northern Yucatán, Mexico. Forest Ecol Manage. 2002;167:67–82.

    Article  Google Scholar 

  • González-Salvatierra C. Antioxidantes y fotoprotección en dos especies con metabolismo ácido de las crasuláceas en una selva baja de Yucatán. PhD Dissertation. Mérida, México: Centro de Investigación Científica de Yucatán; 2009. p. 177.

    Google Scholar 

  • González-Salvatierra C, Andrade JL, Escalante-Erosa F, García-Sosa K, Peña-Rodríguez LM. Antioxidant content in two CAM bromeliad species as a response to seasonal light changes in a tropical dry deciduous forest. J Plant Physiol. 2010;167:792–9.

    Article  PubMed  CAS  Google Scholar 

  • González-Salvatierra C, Andrade JL, Orellana R, Peña-Rodríguez LM, Reyes-García C. Microambientes de luz y morfología y fisiología foliar de Bromelia karatas (Bromeliaceae) en una selva baja caducifolia de Yucatán, México. Bot Sci. 2013;91:75–84.

    Article  Google Scholar 

  • Goode LK, Allen FA. The impacts of hurricane Wilma on the epiphytes of El Edén Ecological Reserve, Quintana Roo, México. J Torrey Bot Soc. 2008;135(3):377–87.

    Article  Google Scholar 

  • Goode LK, Allen FA. Seed germination conditions and implications for establishment of an epiphyte, Aechmea bracteata (Bromeliaceae). Plant Ecol. 2009;204:179–88.

    Article  Google Scholar 

  • Goode LK, Erhardt EB, Santiago LS, Allen MF. Carbon stable isotopic composition of soluble sugars in Tillandsia epiphytes varies in response to shifts in habitat. Oecologia. 2010;163:583–90.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gould KS, Markham KR, Smith RH, Goris JJ. Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. J Exp Bot. 2000;51:1107–15.

    Article  CAS  PubMed  Google Scholar 

  • Graham E, Andrade JL. Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest. Am J Botany. 2004;91:699–706.

    Article  Google Scholar 

  • Griffiths H. Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant Cell Environ. 1992;15:1051–62.

    Article  CAS  Google Scholar 

  • Griffiths H, Smith JAC. Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM. Oecologia. 1983;60:176–84.

    Article  Google Scholar 

  • Griffiths H, Lüttge U, Stimmel KH, Crook CE, Griffiths NM, Smith JAC. Comparative ecophysiology of CAM and C3 bromeliads. III. Environmental influences on CO2 assimilation and transpiration. Plant Cell Environ. 1986;9:385–93.

    Article  Google Scholar 

  • Hasselquist NJ, Allen MF, Santiago LS. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia. 2010a;164:881–90.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hasselquist NJ, Santiago LS, Allen MF. Belowground nitrogen dynamics in relation to hurricane damage along a tropical dry forest chronosequence. Biogeochemistry. 2010b;98:89–100.

    Article  Google Scholar 

  • Horton P, Ruban A, Walters R. Regulation of light harvesting in green plants. Annu Rev Plant Biol. 1996;47:655–84.

    Article  CAS  Google Scholar 

  • Ibarra-Manríquez G, Villaseñor JL, Durán-García R. Riqueza de especies y endemismo del componente arbóreo de la Península de Yucatán, México. Bol Soc Bot Mex. 1995;57:49–77.

    Google Scholar 

  • IPCC. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental. 2013. http://www.ipcc.ch/report/ar5/wg1/. Accessed 20 Jun 2014.

  • Jackson PC, Meinzer FC, Bustamante M, Goldstein G, Franco A, Rundel PW, Caldas L, Igler E, Causin F. Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem. Tree Physiol. 1999;19:717–24.

    Article  PubMed  Google Scholar 

  • Keeley JE, Rundel PW. Evolution of CAM and C4 carbon-concentrating mechanisms. Int J Plant Sci. 2003;164(3 Suppl):S55–77.

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS, Pons TL. Plant physiological ecology. New York, NY: Springer; 1998.

    Book  Google Scholar 

  • Laube S, Zotz G. Which abiotic factors limit vegetative growth in a vascular epiphyte? Funct Ecol. 2003;17:598–604.

    Article  Google Scholar 

  • Long SP, Humphries S, Falkowski P. Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol. 1994;45:633–62.

    Article  CAS  Google Scholar 

  • Luna-Flores W, Estrada-Medina H, Jiménez-Osornio JJ, Pinzón-López LL. Efecto del estrés hídrico sobre el crecimiento y eficiencia del uso del agua en plántulas de tres especies arbóreas caducifolias. Terra Latinoamericana. 2012;30(4):343–53.

    Google Scholar 

  • Lüttge U. Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot. 2004;93:629–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lüttge U. Photosynthetic flexibility and ecophysiological plasticity: questions and lessons from Clusia, the only CAM tree in the neotropics. New Phytol. 2006;171:7–25.

    Article  PubMed  CAS  Google Scholar 

  • Martin EG. Physiological ecology of the Bromeliaceae. Bot Rev. 1994;60:1–82.

    Article  Google Scholar 

  • Maxwell K, Johnson G. Chlorophyll fluorescence—a practical guide. J Exp Bot. 2000;51:659–68.

    Article  CAS  PubMed  Google Scholar 

  • Mondragón D, Durán R, Ramírez I, Valverde T. Temporal variation in the demography of the clonal epiphyte Tillandsia brachycaulos (Bromeliaceae) in the Yucatán Peninsula, Mexico. J Trop Ecol. 2004;20:189–200.

    Article  Google Scholar 

  • Niewiadomska E, Borland AM. Crassulacean acid metabolism: a cause or consequence of oxidative stress in planta? In: Lüttge U, Beyschlag W, Murata J, editors. Progress in botany 69. Berlin: Springer; 2008. p. 247–66.

    Chapter  Google Scholar 

  • Niklas KJ, Hammond T. Biophysical effects on plant competition and coexistence. Funct Ecol. 2013;27:854–64.

    Article  Google Scholar 

  • Niyogi KK. Safety valves for photosynthesis. Curr Op Plant Biol. 2000;3:455–60.

    Article  CAS  Google Scholar 

  • Nobel PS. PAR, water and temperature limitations on the productivity of cultivated Agave fourcroydes (henequen). J Appl Ecol. 1985;22:157–73.

    Article  Google Scholar 

  • Nobel PS. Environmental biology of Agaves and Cacti. New York, NY: Cambridge University Press; 1988.

    Google Scholar 

  • Nobel PS. Responses of some North American CAM plants to freezing temperatures and doubled CO2 concentrations: implications of global climate change for extending cultivation. J Arid Environ. 1996;34(2):187–96.

    Article  Google Scholar 

  • Nobel PS, de la Barrera E. High temperatures and net CO2 uptake, growth, and stem damage for the hemiepiphytic cactus Hylocereus undatus. Biotropica. 2002;34:225–31

    Google Scholar 

  • O’Leary MH. Carbon isotopes in photosynthesis. Fractionation techniques may reveal new aspects carbon dynamics in plants. BioScience. 1988;38:328–36.

    Article  Google Scholar 

  • Orellana R, Espadas C, Conde C, Gay C. Atlas. Escenarios de cambio climático en la Península de Yucatán. Centro de Investigación Científica de Yucatán, A.C., Universidad Nacional Autónoma de México, Consejo Nacional de Ciencia y Tecnología, Gobierno de Yucatán, Mérida; 2009. p. 111.

    Google Scholar 

  • Orellana R, Carrillo L, Espadas C. Las arecáceas de la península de Yucatán ante el cambio climático: aproximación ecofisiológica y de distribución. In: Sánchez-Rojas G, Ballesteros-Barrera C, Pavón NP, editors. Cambio climático aproximaciones para el estudio de su efecto sobre la biodiversidad. México: Universidad Autónoma del Estado de Hidalgo; 2011. p. 79–114.

    Google Scholar 

  • Palomo-Kumul J. Diferencias estacionales en la densidad de madera y el contenido relativo de agua en 16 especies arbóreas tropicales. Dissertation. Quintana Roo, México: Instituto Tecnológico de Chetumal; 2013.

    Google Scholar 

  • Pittendrigh CS. The bromeliad-anopheles-malaria complex in Trinidad. I-The bromeliad flora. Evolution. 1948;2:58–89.

    Article  CAS  PubMed  Google Scholar 

  • Powers JS, Montgomery RA, Adair EC, Brearley FQ, DeWalt SJ, Castanho CT, Chave J, Deinert E, Ganzhorn JU, Gilbert M, González-Iturbe JA, Bunyavejchewin S, Grau HR, Harms KE, Hiremath A, Iriarte-Vivar S, Manzane E, De Oliveira AA, Poorter L, Ramanamanjato JB, Salk C, Varel A, Weiblen GD, Lerdau MT. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol. 2009;97:801–11.

    Article  CAS  Google Scholar 

  • Querejeta JI, Estrada-Medina H, Allen MF, Jiménez-Osornio JJ, Ruenes R. Utilization of bedrock water by Brosimum alicastrum tres growing on shallow soil a top limestone in a dry tropical climate. Plant Soil. 2006;287:187–97.

    Article  CAS  Google Scholar 

  • Querejeta JI, Estrada-Medina H, Allen MF, Jiménez-Osornio JJ. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia. 2007;152:26–36.

    Article  PubMed  Google Scholar 

  • Ramírez Morillo IM, Carnevali G, Chi F. Guía ilustrada de las Bromeliaceae de la porción mexicana de la Península de Yucatán. México: Centro de Investigación Científica de Yucatán; 2004.

    Google Scholar 

  • Reyes-García C, Andrade JL. Crassulacean acid metabolism under global climate change. New Phytol. 2009;181:754–7.

    Article  PubMed  Google Scholar 

  • Reyes-García C, Griffiths H. Strategies for survival of perennial bromeliads in seasonally dry forests. In: de la Barrera E, Smith WK, editors. Perspectives in biophysical plant ecophysiology: a tribute to Park S. Nobel. Mexico: Universidad Nacional Autónoma de México; 2009. p. 121–51.

    Google Scholar 

  • Reyes-García C, Andrade JL, Simá JL, Us-Santamaría R, Jackson PC. Sapwood to heartwood ratio affects whole-tree water use in dry forest legume and non-legume trees. Trees. 2012a;26(4):1317–30.

    Article  Google Scholar 

  • Reyes-García C, Mejia-Chang M, Griffiths H. High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community. New Phytol. 2012b;193:745–54.

    Article  PubMed  Google Scholar 

  • Ricalde MF, Andrade JL, Durán R, Dupuy JM, Simá JL, Us-Santamaría R, Santiago L. Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient. Oecologia. 2013;164:871–80.

    Article  Google Scholar 

  • Ricalde-Pérez MF. Fisiología ecológica de plantas CAM en dos hábitats de la penínusula de Yucatán: matorral de duna costera y selva baja caducifolia. PhD Dissertation. Mérida, México: Centro de Investigación Científica de Yucatán, A. C.; 2010.

    Google Scholar 

  • Roa-Fuentes L, Campo J, Parra-Tabla V. Plant biomass allocation across a precipitation gradient: an approach to seasonally dry tropical forest at Yucatán, Mexico. Ecosystems. 2012;15(8):1234–44.

    Article  Google Scholar 

  • Roig FA, Jimenez-Osornio JJ, Villanueva-Diaz J, Luckmand B, Tiessene H, Medina A, Noellemeyerf EJ. Anatomy of growth rings at the Yucatán Peninsula. Dendrochronologia. 2005;22:187–93.

    Article  Google Scholar 

  • Saito N, Harborne JB. A cyaniding glycoside giving scarlet coloration in plants of the Bromeliaceae. Phytochemistry. 1983;22:1735–40.

    Article  CAS  Google Scholar 

  • Salinas-Peba L, Parra-Tabla V, Munguia-Rosas M, Campo J. Survival and growth of dominant tree seedlings in a tropical dry forests of Yucatán: site and fertilization effects. J Plant Ecol. 2013. doi:10.1093/jpe/rtt055.

    Google Scholar 

  • Sánchez SO, Islebe G. Tropical forest communities in southeastern Mexico. Plant Ecol. 2002;158:183–200.

    Article  Google Scholar 

  • Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G. Tree and forest functioning in response to global warming. New Phytol. 2001;149(3):369–99.

    Article  CAS  Google Scholar 

  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol. 2002;155:349–61.

    Article  CAS  Google Scholar 

  • Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 2008;13:178–82.

    Article  CAS  PubMed  Google Scholar 

  • Tamayo-Chim M, Reyes-García C, Orellana R. A Combination of forage species with different responses to drought can increase year-round productivity in seasonally dry silvopastoral systems. Agrofor Syst. 2012;84(2):287–97.

    Article  Google Scholar 

  • Ter Steege H, Cornelissen JHC. Distribution and ecology of vascular epiphytes in lowland rain forest of Guayana. Biotropica. 1989;21:331–9.

    Article  Google Scholar 

  • Torres W, Méndez M, Dorantes A, Durán R. Estructura, composición y diversidad del matorral de duna costera en el litoral yucateco. Bol Soc Bot Méx. 2010;86:37–51.

    Google Scholar 

  • Valdez-Hernández M, Andrade JL, Jackson PC, Rebolledo-Vieyra M. Phenology of five tree species of a tropical dry forest in Yucatán, Mexico: effects of environmental and physiological factors. Plant Soil. 2010;329:155–71.

    Article  CAS  Google Scholar 

  • Valdez-Hernández M, Sánchez O, Islebe GA, Snook LK, Negreros-Castillo P. Recovery and early succession after experimental disturbance in a seasonally dry tropical forest in Mexico. Forest Ecol Manage. 2014;334:331–43.

    Article  Google Scholar 

  • Vargas R. How a hurricane disturbance influences extreme CO2 fluxes and variance in a tropical forest. Environ Res Lett. 2012;7:035704. doi:10.1088/17489326/7/3/035704.

    Article  CAS  Google Scholar 

  • Vargas R, Allen MF. Diel patterns of soil respiration in a tropical forest after hurricane Wilma. J Geophys Res. 2008;113, G03021. doi:10.1029/2007JG000620.

    Google Scholar 

  • Vargas R, Trumbore SE, Allen MF. Evidence of old carbon used to grow new fine roots in a tropical forest. New Phytol. 2009;182(3):710–8.

    Article  PubMed  CAS  Google Scholar 

  • Vargas R, Hasselquist N, Allen EB, Allen MF. Effects of a hurricane disturbance on aboveground forest structure, arbuscular mycorrhizae and belowground carbon in a restored tropical forest. Ecosystems. 2010;13:118–28.

    Article  CAS  Google Scholar 

  • Vargas-Soto G. Regulación ambiental de la fotosíntesis de algunas especies de Clusia L. (Clusiaceae) en México. PhD Dissertation. Mérida, México: Centro de Investigación Científica de Yucatán, AC; 2010.

    Google Scholar 

  • Vargas-Soto G, Andrade JL, Winter K. Carbon isotope composition and mode of photosynthesis in Clusia species from Mexico. Photosynthetica. 2009;47:33–40.

    Article  CAS  Google Scholar 

  • White DA, Hood CS. Vegetation patterns and environmental gradients in tropical dry forests of the northern Yucatán Peninsula. J Veg Sci. 2004;15:151–60.

    Article  Google Scholar 

  • Winter K, Smith JAC. An introduction to crassulacean acid metabolism: biochemical principles and biological diversity. In: Winter K, Smith JAC, editors. Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Berlin: Springer; 1996.

    Chapter  Google Scholar 

  • Winter K, Aranda J, Holtum JAM. Carbon isotope composition and water-use efficiency in plants with Crassulacean acid metabolism. Funct Plant Biol. 2005;32:381–8.

    Article  CAS  Google Scholar 

  • Zaldivar-Jimenez A, Herrera-Silveira JA, Teutli-Hernandez C, Comin FA, Andrade JL, Coronado-Molina C, Perez-Ceballos R. Conceptual framework for mangrove restoration in the Yucatán Peninsula. Ecol Res. 2010;28:333–4.

    Article  Google Scholar 

  • Zimmerman KJ, Olmsted CI. Host tree utilization by vascular epiphytes in a seasonally inundated forest (Tintal) in Mexico. Biotropica. 1992;24:402–7.

    Article  Google Scholar 

  • Zotz G, Hietz P. The physiological ecology of vascular epiphytes: current knowledge, open questions. J Exp Bot. 2001;52(364):2067–78.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank EA Graham, PS Nobel, R Orellana, C Cervera, MF Ricalde, E de la Barrera, E Rengifo, R Barceló, L Simá, M Mandujano, R Us-Santamaría, G Vargas-Soto, K Winter, M Giovanetti, L Santiago, M Cach-Pérez, O Hernández-González, E Chávez-Sahagún, J Palomo-Kumul, T McElroy, A Rosado-Calderón, NC Chilpa-Galván, M. Tamayo-Chim, D Mondragón, E de la Rosa-Manzano, S. Cervantes and undergraduate students from Kennesaw State University (Georgia, USA), for their contribution to our studies. We are grateful for funding from CONAFOR-CONACYT 9765, Fondo Mixto CONACYT-gobierno del estado de Yucatán YUC-2003-C02-042, SEP-CONACYT 36931, UC Mexus-CONACYT, SEP-CONACYT 48344/24588, CONABIO GU002, SEP-CONACYT 177842, SEP-CONACYT 80181, SEMARNAT-CONACYT 107916 and NSF RUI 0516387.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirna Valdez-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Valdez-Hernández, M., González-Salvatierra, C., Reyes-García, C., Jackson, P.C., Andrade, J.L. (2015). Physiological Ecology of Vascular Plants. In: Islebe, G., Calmé, S., León-Cortés, J., Schmook, B. (eds) Biodiversity and Conservation of the Yucatán Peninsula. Springer, Cham. https://doi.org/10.1007/978-3-319-06529-8_5

Download citation

Publish with us

Policies and ethics