Skip to main content

Optical Coherence Microscopy

  • Reference work entry
Optical Coherence Tomography

Abstract

Cellular imaging of human tissues remains an important advance for many clinical applications of optical coherence tomography (OCT). Imaging cells with traditional OCT systems has not been possible due to the limited transverse resolution of such techniques. Optical coherence microscopy (OCM) refers to OCT methods that achieve high transverse resolution to visualize cells and subcellular features. This chapter provides a comprehensive discussion of the rationale for cellular imaging in human tissues as well as a review of the key technological advances required to achieve it. Time domain and Fourier domain OCM approaches are described with an emphasis on state of the art system designs, including miniaturized endoscopic imaging probes. Clinical applications are discussed and multiple examples of cellular imaging in human tissues are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Minsky, Microscopy Apparatus, (U.S.A., 1961)

    Google Scholar 

  2. D.R. Sandison, W.W. Webb, Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes. Appl. Opt. 33, 603–615 (1994)

    Article  ADS  Google Scholar 

  3. T. Corle, G. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, 1996)

    Google Scholar 

  4. M. Rajadhyaksha, R.R. Anderson, R.H. Webb, Video-rate confocal scanning laser microscope for imaging human tissues in vivo. Appl. Opt. 38, 2105–2115 (1999)

    Article  ADS  Google Scholar 

  5. M. Rajadhyaksha, S. Gonzalez, J.M. Zavislan, R.R. Anderson, R.H. Webb, In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J. Investig. Dermatol. 113, 293–303 (1999)

    Article  Google Scholar 

  6. P. Davidovits, M.D. Egger, Scanning laser microscope. Nature 223, 831 (1969)

    Article  ADS  Google Scholar 

  7. P. Davidovits, M.D. Egger, Scanning laser microscope for biological investigations. Appl. Opt. 10, 1615–1619 (1971)

    Article  ADS  Google Scholar 

  8. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R.H. Webb, R.R. Anderson, In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J. Invest. Dermatol. 104, 946–952 (1995)

    Article  Google Scholar 

  9. M. Rajadhyaksha, S. Gonzalez, J.M. Zavislan, R.R. Anderson, R.H. Webb, In Vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J. Invest. Dermatol. 113, 293–303 (1999)

    Article  Google Scholar 

  10. M. Rajadhyaksha, G. Menaker, T. Flotte, P. Dwyer, S. Gonzalez, Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide mohs micrographic surgery without frozen histopathology. J. Invest. Dermatol. 117, 1137–1143 (2001)

    Article  Google Scholar 

  11. M. Huzaira, F. Rius, M. Rajadhyaksha, R. Anderson, S. Gonzalez, Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy. J. Invest. Dermatol. 116, 846–852 (2001)

    Article  Google Scholar 

  12. R. Langley, M. Rajadhyaksha, P. Dwyer, A. Sober, T. Flotte, R. Anderson, Confocal scanning laser microscopy of benign and malignant melanocytic skin lesions in vivo. J. Am. Acad. Dermatol. 45, 365–376 (2001)

    Article  Google Scholar 

  13. S. Gonzalez, Characterization of psoriasis in vivo by confocal reflectance microscopy. J. Med. 30, 337–356 (1999)

    Google Scholar 

  14. W.M. White, M. Rajadhyaksha, R.L. Fabian, R.R. Anderson, Noninvasive imaging of human oral mucosa in vivo by confocal reflectance microscopy. Laryngoscope 109, 1709–1717 (1999)

    Article  Google Scholar 

  15. R.A. Drezek, T. Collier, C.K. Brookner, A. Malpica, R. Lotan, R.R. Richards-Kortum, M. Follen, Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid. Am. J. Obstet. Gynecol. 182, 1135–1139 (2000)

    Article  Google Scholar 

  16. K.B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues. IEEE Trans. Biomed. Eng. 49, 1168–1172 (2002)

    Article  Google Scholar 

  17. C. Pitris, B.E. Bouma, M. Shiskov, G.J. Tearney, A GRISM-based probe for spectrally encoded confocal microscopy. Opt. Express 11, 120–124 (2003)

    Article  ADS  Google Scholar 

  18. A.L. Polglase, W.J. McLaren, S.A. Skinner, R. Kiesslich, M.F. Neurath, P.M. Delaney, A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract. Gastrointest. Endosc. 62, 686–695 (2005)

    Article  Google Scholar 

  19. A.R. Rouse, A. Kano, J.A. Udovich, S.M. Kroto, A.F. Gmitro, Design and demonstration of a miniature catheter for a confocal microendoscope. Appl. Opt. 43, 5763–5771 (2004)

    Article  ADS  Google Scholar 

  20. P.M. Delaney, M.R. Harris, R.G. King, Fiberoptic laser-scanning confocal microscope suitable for fluorescence imaging. Appl. Opt. 33, 573–577 (1994)

    Article  ADS  Google Scholar 

  21. R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P.R. Galle, M.F. Neurath, Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127, 706–713 (2004)

    Article  Google Scholar 

  22. M. Bajbouj, M. Vieth, T. Rosch, S. Miehlke, V. Becker, M. Anders, H. Pohl, A. Madisch, T. Schuster, R.M. Schmid, A. Meining, Probe-based confocal laser endomicroscopy compared with standard four-quadrant biopsy for evaluation of neoplasia in Barrett’s esophagus. Endoscopy 42, 435–440 (2010)

    Article  Google Scholar 

  23. P. Sharma, A.R. Meining, E. Coron, C.J. Lightdale, H.C. Wolfsen, A. Bansal, M. Bajbouj, J.P. Galmiche, J.A. Abrams, A. Rastogi, N. Gupta, J.E. Michalek, G.Y. Lauwers, M.B. Wallace, Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest. Endosc. 74, 465–472 (2011)

    Article  Google Scholar 

  24. M.B. Sturm, C. Piraka, B.J. Elmunzer, R.S. Kwon, B.P. Joshi, H.D. Appelman, D.K. Turgeon, T.D. Wang, In vivo molecular imaging of Barrett’s esophagus with confocal laser endomicroscopy. Gastroenterology 145, 56–58 (2013)

    Article  Google Scholar 

  25. J.M. Schmitt, S.L. Lee, K.M. Yung, An optical coherence microscope with enhanced resolving power in thick tissue. Opt. Commun. 142, 203–207 (1997)

    Article  ADS  Google Scholar 

  26. F. Lexer, C.K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A.F. Fercher, Dynamic coherent focus OCT with depth-independent transversal resolution. J. Mod. Opt. 46, 541–553 (1999)

    Article  ADS  Google Scholar 

  27. B. Qi, A.P. Himmer, L.M. Gordon, X.D.V. Yang, L.D. Dickensheets, I.A. Vitkin, Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror. Opt. Commun. 232, 123–128 (2004)

    Article  ADS  Google Scholar 

  28. V.X. Yang, Y. Mao, B.A. Standish, N.R. Munce, S. Chiu, D. Burnes, B.C. Wilson, I.A. Vitkin, P.A. Himmer, D.L. Dickensheets, Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking. Opt. Lett. 31, 1262–1264 (2006)

    Article  ADS  Google Scholar 

  29. A. Divetia, T.H. Hsieh, J. Zhang, Z.P. Chen, M. Bachman, G.P. Li, Dynamically focused optical coherence tomography for endoscopic applications. Appl. Phys. Lett. 86, 103902 (2005)

    Article  ADS  Google Scholar 

  30. S. Murali, K.P. Thompson, J.P. Rolland, Three-dimensional adaptive microscopy using embedded liquid lens. Opt. Lett. 34, 145–147 (2009)

    Article  ADS  Google Scholar 

  31. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)

    Article  ADS  Google Scholar 

  32. M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)

    Article  ADS  Google Scholar 

  33. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003)

    Article  ADS  Google Scholar 

  34. N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, J.F. de Boer, In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt. Lett. 29, 480–482 (2004)

    Article  ADS  Google Scholar 

  35. M. Wojtkowski, T. Bajraszewski, P. Targowski, A. Kowalczyk, Real-time in vivo imaging by high-speed spectral optical coherence tomography. Opt. Lett. 28, 1745–1747 (2003)

    Article  ADS  Google Scholar 

  36. H.C. Lowe, J. Narula, J.G. Fujimoto, I.K. Jang, Intracoronary optical diagnostics current status, limitations, and potential. JACC Cardiovasc. Interv. 4, 1257–1270 (2011)

    Article  Google Scholar 

  37. W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, J.G. Fujimoto, In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24, 1221–1223 (1999)

    Article  ADS  Google Scholar 

  38. R. Huber, M. Wojtkowski, J.G. Fujimoto, J.Y. Jiang, A.E. Cable, Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt. Express 13, 10523–10538 (2005)

    Article  ADS  Google Scholar 

  39. J.P. Rolland, P. Meemon, S. Murali, K.P. Thompson, K.S. Lee, Gabor-based fusion technique for optical coherence microscopy. Opt. Express 18, 3632–3642 (2010)

    Article  ADS  Google Scholar 

  40. V.X. Yang, N. Munce, J. Pekar, M.L. Gordon, S. Lo, N.E. Marcon, B.C. Wilson, I.A. Vitkin, Micromachined array tip for multifocus fiber-based optical coherence tomography. Opt. Lett. 29, 1754–1756 (2004)

    Article  ADS  Google Scholar 

  41. Z. Ding, H. Ren, Y. Zhao, J.S. Nelson, Z. Chen, High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt. Lett. 27, 243–245 (2002)

    Article  ADS  Google Scholar 

  42. R.A. Leitgeb, M. Villiger, A.H. Bachmann, L. Steinmann, T. Lasser, Extended focus depth for Fourier domain optical coherence microscopy. Opt. Lett. 31, 2450–2452 (2006)

    Article  ADS  Google Scholar 

  43. L.B. Liu, J.A. Gardecki, S.K. Nadkarni, J.D. Toussaint, Y. Yagi, B.E. Bouma, G.J. Tearney, Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat. Med. 17, 1010–U1132 (2011)

    Article  Google Scholar 

  44. L. Liu, K.K. Chu, G.H. Houser, B.J. Diephuis, Y. Li, E.J. Wilsterman, S. Shastry, G. Dierksen, S.E. Birket, M. Mazur, S. Byan-Parker, W.E. Grizzle, E.J. Sorscher, S.M. Rowe, G.J. Tearney, Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography. PLoS One 8, e54473 (2013)

    Article  ADS  Google Scholar 

  45. T.S. Ralston, D.L. Marks, F. Kamalabadi, S.A. Boppart, Deconvolution methods for mitigation of transverse blurring in optical coherence tomography. IEEE Trans. Image Process. 14, 1254–1264 (2005)

    Article  ADS  Google Scholar 

  46. T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, Interferometric synthetic aperture microscopy. Nat. Phys. 3, 129–134 (2007)

    Article  Google Scholar 

  47. S.G. Adie, B.W. Graf, A. Ahmad, P.S. Carney, S.A. Boppart, Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proc. Natl. Acad. Sci. U. S. A. 109, 7175–7180 (2012)

    Article  ADS  Google Scholar 

  48. A. Ahmad, N.D. Shemonski, S.G. Adie, H.S. Kim, W.M.W. Hwu, P.S. Carney, S.A. Boppart, Real-time in vivo computed optical interferometric tomography. Nat. Photonics 7, 445–449 (2013)

    Article  ADS  Google Scholar 

  49. A.G. Podoleanu, J.A. Rogers, D.A. Jackson, S. Dunne, Three dimensional OCT images from retina and skin. Opt. Express 7, 292–298 (2000)

    Article  ADS  Google Scholar 

  50. M.J. Cobb, X. Liu, X. Li, Continuous focus tracking for real-time optical coherence tomography. Opt. Lett. 30, 1680–1682 (2005)

    Article  ADS  Google Scholar 

  51. J.A. Izatt, M.R. Hee, G.M. Owen, E.A. Swanson, J.G. Fujimoto, Optical coherence microscopy in scattering media. Opt. Lett. 19, 590–592 (1994)

    Article  ADS  Google Scholar 

  52. T. Sawatari, Optical heterodyne scanning microscope. Appl. Opt. 12, 2768–2772 (1973)

    Article  ADS  Google Scholar 

  53. D.K. Hamilton, C.J.R. Sheppard, A confocal interference microscope. Optica Acta 29, 1573–1577 (1982)

    Article  ADS  Google Scholar 

  54. M. Gu, C.J.R. Sheppard, Fiberoptic confocal scanning interference microscopy. Opt. Commun. 100, 79–86 (1993)

    Article  ADS  Google Scholar 

  55. M. Gu, C.J.R. Sheppard, Experimental investigation of fiberoptic confocal scanning microscopy – including a comparison with pinhole detection. Micron 24, 557–565 (1993)

    Article  Google Scholar 

  56. H. Zhou, C.J.R. Sheppard, M. Gu, A compact confocal interference microscope based on a four-port single-mode fibre coupler. Optik 103, 45–48 (1996)

    Google Scholar 

  57. M. Kempe, W. Rudolph, Analysis of heterodyne and confocal microscopy for illumination with broad-bandwidth light. J. Mod. Opt. 43, 2189–2204 (1996)

    Article  ADS  Google Scholar 

  58. M. Kempe, W. Rudolph, E. Welsch, Comparative study of confocal and heterodyne microscopy for imaging through scattering media. J. Opt. Soc. Am.Opt. Image Sci. Vis. 13, 46–52 (1996)

    Article  ADS  Google Scholar 

  59. J.A. Izatt, M.D. Kulkarni, H.-W. Wang, K. Kobayashi, M.V. Sivak Jr., Optical coherence tomography and microscopy in gastrointestinal tissues. IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996)

    Article  Google Scholar 

  60. A.G. Podoleanu, M. Seeger, G.M. Dobre, D.J. Webb, D.A. Jackson, F.W. Fitzke, Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry. J. Biomed. Opt. 3, 12–20 (1998)

    Article  ADS  Google Scholar 

  61. S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, B.E. Bouma, High-speed optical frequency-domain imaging. Opt. Express 11, 2953–2963 (2003)

    Article  ADS  Google Scholar 

  62. R. Huber, M. Wojtkowski, K. Taira, J.G. Fujimoto, K. Hsu, Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express 13, 3513–3528 (2005)

    Article  ADS  Google Scholar 

  63. M.A. Choma, A.K. Ellerbee, C. Yang, T.L. Creazzo, J.A. Izatt, Spectral-domain phase microscopy. Opt. Lett. 30, 1162–1164 (2005)

    Article  ADS  Google Scholar 

  64. C. Joo, T. Akkin, B. Cense, B.H. Park, J.F. de Boer, Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. Opt. Lett. 30, 2131–2133 (2005)

    Article  ADS  Google Scholar 

  65. M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, J.S. Duker, Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 12, 2404–2422 (2004)

    Article  ADS  Google Scholar 

  66. C. Xu, C. Vinegoni, T.S. Ralston, W. Luo, W. Tan, S.A. Boppart, Spectroscopic spectral-domain optical coherence microscopy. Opt. Lett. 31, 1079–1081 (2006)

    Article  ADS  Google Scholar 

  67. W. Wieser, B.R. Biedermann, T. Klein, C.M. Eigenwillig, R. Huber, Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt. Express 18, 14685–14704 (2010)

    Article  ADS  Google Scholar 

  68. V. Jayaraman, G.D. Cole, M. Robertson, A. Uddin, A. Cable, High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range. Electron. Lett. 48, 867–868 (2012)

    Article  Google Scholar 

  69. T.H. Tsai, B. Potsaid, Y.K. Tao, V. Jayaraman, J. Jiang, P.J.S. Heim, M.F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, A.E. Cable, J.G. Fujimoto, Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology. Biomed. Opt. Express 4, 1119–1132 (2013)

    Article  Google Scholar 

  70. M. Hee, Optical coherence tomography: theory, in Handbook of Optical Coherence Tomography, ed. by B. Bouma, G. Tearney (Marcel Dekker, New York, 2002)

    Google Scholar 

  71. M. Gu, C.J.R. Sheppard, X. Gan, Image-formation in a fiberoptic confocal scanning microscope. J. Opt. Soc. Am.Opt. Image Sci. Vis. 8, 1755–1761 (1991)

    Article  ADS  Google Scholar 

  72. H.-W. Wang, J. Izatt, M. Kulkarni, Optical coherence microscopy, in Handbook of Optical Coherence Tomography, ed. by B. Bouma, G. Tearney (Marcel Dekker, New York, 2002), pp. 275–298

    Google Scholar 

  73. C.J.R. Sheppard, M. Gu, K. Brain, H. Zhou, Influence of spherical-aberration on axial imaging of confocal reflection microscopy. Appl. Opt. 33, 616–624 (1994)

    Article  ADS  Google Scholar 

  74. C.L. Smithpeter, A.K. Dunn, A.J. Welch, R. Richards-Kortum, Penetration depth limits of in vivo confocal reflectance imaging. Appl. Opt. 37, 2749–2754 (1998)

    Article  ADS  Google Scholar 

  75. J.M. Schmitt, K. BenLetaief, Efficient monte carlo simulation of confocal microscopy in biological tissue. J. Opt. Soc. Am.Opt. Image Sci. Vis. 13, 952–961 (1996)

    Article  ADS  Google Scholar 

  76. J.M. Schmitt, A. Knuttel, M. Yadlowsky, Confocal microscopy in turbid media. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2226–2235 (1994)

    Article  ADS  Google Scholar 

  77. J.M. Schmitt, A. Knuttel, Model of optical coherence tomography of heterogeneous tissue. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 1231–1242 (1997)

    Article  ADS  Google Scholar 

  78. A.L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A.K. El-Naggar, R. Richards-Kortum, Detection and diagnosis of oral neoplasia with an optical coherence microscope. J. Biomed. Opt. 9, 1271–1280 (2004)

    Article  ADS  Google Scholar 

  79. K. Bizheva, Low Coherence Interferometry in Turbid Media: The Effect of Multiply Scattered Light Detection on Image Quality (Department of Physics and Astronomy, Tufts University, Boston, 2001), p. 168

    Google Scholar 

  80. A.D. Aguirre, P. Hsiung, T.H. Ko, I. Hartl, J.G. Fujimoto, High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. Opt. Lett. 28, 2064–2066 (2003)

    Article  ADS  Google Scholar 

  81. C. Liang, K.B. Sung, R.R. Richards-Kortum, M.R. Descour, Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Appl. Opt. 41, 4603–4610 (2002)

    Article  ADS  Google Scholar 

  82. O.O. Ahsen, Y.K. Tao, B.M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.H. Tsai, V. Jayaraman, M.F. Kraus, J.L. Connolly, J. Hornegger, A. Cable, J.G. Fujimoto, Swept source optical coherence microscopy using a 1310 nm VCSEL light source. Opt. Express 21, 18021–18033 (2013)

    Article  ADS  Google Scholar 

  83. S. Bourquin, A.D. Aguirre, I. Hartl, P. Hsiung, T.H. Ko, J.G. Fujimoto, T.A. Birks, W.J. Wadsworth, U. Bunting, D. Kopf, Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd: glass laser and nonlinear fiber. Opt. Express 11, 3290–3297 (2003)

    Article  ADS  Google Scholar 

  84. Y.M. Wang, J.S. Nelson, Z.P. Chen, B.J. Reiser, R.S. Chuck, R.S. Windeler, Optimal wavelength for ultrahigh-resolution optical coherence tomography. Opt. Express 11, 1411–1417 (2003)

    Article  ADS  Google Scholar 

  85. K.B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, R. Richards-Kortum, Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved. J. Microsc. 207, 137–145 (2002)

    Article  MathSciNet  Google Scholar 

  86. F.E. Robles, C. Wilson, G. Grant, A. Wax, Molecular imaging true-colour spectroscopic optical coherence tomography. Nat. Photonics 5, 744–747 (2011)

    Article  ADS  Google Scholar 

  87. R. Huber, M. Wojtkowski, J.G. Fujimoto, Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14, 3225–3237 (2006)

    Article  ADS  Google Scholar 

  88. B.M. Hoeling, A.D. Fernandez, R.C. Haskell, D.C. Petersen, Phase modulation at 125 kHz in a Michelson interferometer using an inexpensive piezoelectric stack driven at resonance. Rev. Sci. Instrum. 72, 1630–1633 (2001)

    Article  ADS  Google Scholar 

  89. G.J. Tearney, B.E. Bouma, J.G. Fujimoto, High-speed phase- and group-delay scanning with a grating-based phase control delay line. Opt. Lett. 22, 1811–1813 (1997)

    Article  ADS  Google Scholar 

  90. A.M. Rollins, M.D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J.A. Izatt, In vivo video rate optical coherence tomography. Opt. Express 3, 219–229 (1998)

    Article  ADS  Google Scholar 

  91. A.V. Zvyagin, D.D. Sampson, Achromatic optical phase shifter-modulator. Opt. Lett. 26, 187–189 (2001)

    Article  ADS  Google Scholar 

  92. V. Westphal, S. Yazdanfar, A.M. Rollins, J.A. Izatt, Real-time, high velocity-resolution color Doppler optical coherence tomography. Opt. Lett. 27, 34–36 (2002)

    Article  ADS  Google Scholar 

  93. J.F. de Boer, C.E. Saxer, J.S. Nelson, Stable carrier generation and phase-resolved digital data processing in optical coherence tomography. Appl. Opt. 40, 5787–5790 (2001)

    Article  ADS  Google Scholar 

  94. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, J.S. Nelson, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25, 114–116 (2000)

    Article  ADS  Google Scholar 

  95. T.Q. Xie, Z.G. Wang, Y.T. Pan, High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation. Opt. Express 11, 3210–3219 (2003)

    Article  ADS  Google Scholar 

  96. M. Pircher, E. Goetzinger, R. Leitgeb, C.K. Hitzenberger, Transversal phase resolved polarization sensitive optical coherence tomography. Phys. Med. Biol. 49, 1257–1263 (2004)

    Article  Google Scholar 

  97. T.Q. Xie, Z.G. Wang, Y.T. Pan, Dispersion compensation in high-speed optical coherence tomography by acousto-optic modulation. Appl. Opt. 44, 4272–4280 (2005)

    Article  ADS  Google Scholar 

  98. K. Wiesauer, M. Pircher, E. Gotzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grutzner, C.K. Hitzenberger, D. Stifter, En-face scanning optical coherence tomography with ultra-high resolution for material investigation. Opt. Express 13, 1015–1024 (2005)

    Article  ADS  Google Scholar 

  99. Y.C. Chen, X.D. Li, Dispersion management up to the third order for real-time optical coherence tomography involving a phase or frequency modulator. Opt. Express 12, 5968–5978 (2004)

    Article  ADS  Google Scholar 

  100. Y.C. Chen, X.M. Liu, M.J. Cobb, M.T. Myaing, T. Sun, X.D. Li, Optimization of optical spectral throughput of acousto-optic modulators for high-speed optical coherence tomography. Opt. Express 13, 7816–7822 (2005)

    Article  ADS  Google Scholar 

  101. A.G. Podoleanu, G.M. Dobre, D.J. Webb, D.A. Jackson, Coherence imaging by use of a Newton rings sampling function. Opt. Lett. 21, 1789–1791 (1996)

    Article  ADS  Google Scholar 

  102. A.G. Podoleanu, G.M. Dobre, D.A. Jackson, En-face coherence imaging using galvanometer scanner modulation. Opt. Lett. 23, 147–149 (1998)

    Article  ADS  Google Scholar 

  103. Z. Yaqoob, J. Fingler, X. Heng, C. Yang, Homodyne en face optical coherence tomography. Opt. Lett. 31, 1815–1817 (2006)

    Article  ADS  Google Scholar 

  104. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner, Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun. 188, 267–273 (2001)

    Article  ADS  Google Scholar 

  105. P.M. Lane, A.L.P. Dlugan, R. Richards-Kortum, C.E. MacAulay, Fiber-optic confocal microscopy using a spatial light modulator. Opt. Lett. 25, 1780–1782 (2000)

    Article  ADS  Google Scholar 

  106. Y.S. Sabharwal, A.R. Rouse, L. Donaldson, M.F. Hopkins, A.F. Gmitro, Slit-scanning confocal microendoscope for high-resolution in vivo imaging. Appl. Opt. 38, 7133–7144 (1999)

    Article  ADS  Google Scholar 

  107. A.F. Gmitro, D. Aziz, Confocal microscopy through a fiberoptic imaging bundle. Opt. Lett. 18, 565–567 (1993)

    Article  ADS  Google Scholar 

  108. T. Xie, D. Mukai, S. Guo, M. Brenner, Z. Chen, Fiber-optic-bundle-based optical coherence tomography. Opt. Lett. 30, 1803–1805 (2005)

    Article  ADS  Google Scholar 

  109. F. Helmchen, M.S. Fee, D.W. Tank, W. Denk, A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001)

    Article  Google Scholar 

  110. L.D. Swindle, S.G. Thomas, M. Freeman, P.M. Delaney, View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging. J. Investig. Dermatol. 121, 706–712 (2003)

    Article  Google Scholar 

  111. E.J. Seibel, Q.Y.J. Smithwick, Unique features of optical scanning, single fiber endoscopy. Lasers Surg. Med. 30, 177–183 (2002)

    Article  Google Scholar 

  112. X. Liu, M.J. Cobb, Y. Chen, M.B. Kimmey, X. Li, Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography. Opt. Lett. 29, 1763–1765 (2004)

    Article  ADS  Google Scholar 

  113. M.T. Myaing, D.J. MacDonald, X.D. Li, Fiber-optic scanning two-photon fluorescence endoscope. Opt. Lett. 31, 1076–1078 (2006)

    Article  ADS  Google Scholar 

  114. Y. Wu, Y. Leng, J. Xi, X. Li, Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues. Opt. Express 17, 7907–7915 (2009)

    Article  ADS  Google Scholar 

  115. J. Sawinski, W. Denk, Miniature random-access fiber scanner for in vivo multiphoton imaging. J. Appl. Phys. 102, 034701 (2007)

    Article  ADS  Google Scholar 

  116. J. Sawinski, D.J. Wallace, D.S. Greenberg, S. Grossmann, W. Denk, J.N. Kerr, Visually evoked activity in cortical cells imaged in freely moving animals. Proc. Natl. Acad. Sci. U. S. A. 106, 19557–19562 (2009)

    Article  ADS  Google Scholar 

  117. A.D. Aguirre, J. Sawinski, S.W. Huang, C. Zhou, W. Denk, J.G. Fujimoto, High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe. Opt. Express 18, 4222–4239 (2010)

    Article  ADS  Google Scholar 

  118. D.L. Dickensheets, G.S. Kino, Silicon-micromachined scanning confocal optical microscope. J. Microelectromech. Syst. 7, 38–47 (1998)

    Article  Google Scholar 

  119. Y. Pan, H. Xie, G.K. Fedder, Endoscopic optical coherence tomography based on a microelectromechanical mirror. Opt. Lett. 26, 1966–1968 (2001)

    Article  ADS  Google Scholar 

  120. J.M. Zara, S. Yazdanfar, K.D. Rao, J.A. Izatt, S.W. Smith, Electrostatic micromachine scanning mirror for optical coherence tomography. Opt. Lett. 28, 628–630 (2003)

    Article  ADS  Google Scholar 

  121. J.T.W. Yeow, V.X.D. Yang, A. Chahwan, M.L. Gordon, B. Qi, I.A. Vitkin, B.C. Wilson, A.A. Goldenberg, Micromachined 2-D scanner for 3-D optical coherence tomography. Sensors Actuators A Phys. 117, 331–340 (2005)

    Article  Google Scholar 

  122. A. Jain, A. Kopa, Y.T. Pan, G.K. Fedder, H.K. Xie, A two-axis electrothermal micromirror for endoscopic optical coherence tomography. IEEE J. Sel. Top. Quantum Electron. 10, 636–642 (2004)

    Article  Google Scholar 

  123. W. Piyawattanametha, P.R. Patterson, D. Hah, H. Toshiyoshi, M.C. Wu, Surface- and bulk-micromachined two-dimensional scanner driven by angular vertical comb actuators. J. Microelectromech. Syst. 14, 1329–1338 (2005)

    Article  Google Scholar 

  124. J. Sun, S. Guo, L. Wu, L. Liu, S.W. Choe, B.S. Sorg, H. Xie, 3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror. Opt. Express 18, 12065–12075 (2010)

    Article  ADS  Google Scholar 

  125. K.H. Kim, B.H. Park, G.N. Maguluri, T.W. Lee, F.J. Rogomentich, M.G. Bancu, B.E. Bouma, J.F. de Boer, J.J. Bernstein, Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography. Opt. Express 15, 18130–18140 (2007)

    Article  ADS  Google Scholar 

  126. J. Su, J. Zhang, L. Yu, Z. Chen, In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography. Opt. Express 15, 10390–10396 (2007)

    Article  ADS  Google Scholar 

  127. D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J.S. Ma, H. Xie, Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror. J. Biomed. Opt. 18, 86005 (2013)

    Article  Google Scholar 

  128. A.D. Aguirre, P.R. Hertz, Y. Chen, J.G. Fujimoto, W. Piyawattanametha, L. Fan, M.C. Wu, Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging. Opt. Express 15, 2445–2453 (2007)

    Article  ADS  Google Scholar 

  129. J.M. Schmitt, G. Kumar, Turbulent nature of refractive-index variations in biological tissue. Opt. Lett. 21, 1310–1312 (1996)

    Article  ADS  Google Scholar 

  130. B.W. Graf, S.G. Adie, S.A. Boppart, Correction of coherence gate curvature in high numerical aperture optical coherence imaging. Opt. Lett. 35, 3120–3122 (2010)

    Article  ADS  Google Scholar 

  131. H.-C. Lee, J.J. Liu, Y. Sheikine, A.D. Aguirre, J.L. Connolly, J.G. Fujimoto, Ultrahigh speed spectral-domain optical coherence microscopy. Biomed. Opt. Express 4, 1236–1254 (2013)

    Article  Google Scholar 

  132. A.D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J.L. Connolly, J.G. Fujimoto, Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy. J. Biomed. Opt. 15, 016025 (2010)

    Article  ADS  Google Scholar 

  133. C. Zhou, D.W. Cohen, Y.H. Wang, H.C. Lee, A.E. Mondelblatt, T.H. Tsai, A.D. Aguirre, J.G. Fujimoto, J.L. Connolly, Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues. Cancer Res. 70, 10071–10079 (2010)

    Article  Google Scholar 

  134. C. Zhou, Y.H. Wang, A.D. Aguirre, T.H. Tsai, D.W. Cohen, J.L. Connolly, J.G. Fujimoto, Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy. J. Biomed. Opt. 15, 016001 (2010)

    Article  ADS  Google Scholar 

  135. H.C. Lee, C. Zhou, D.W. Cohen, A.E. Mondelblatt, Y.H. Wang, A.D. Aguirre, D.J. Shen, Y. Sheikine, J.G. Fujimoto, J.L. Connolly, Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues. J. Urol. 187, 691–699 (2012)

    Article  Google Scholar 

  136. S.W. Huang, A.D. Aguirre, R.A. Huber, D.C. Adler, J.G. Fujimoto, Swept source optical coherence microscopy using a Fourier domain mode-locked laser. Opt. Express 15, 6210–6217 (2007)

    Article  ADS  Google Scholar 

  137. J.W. Hettinger, M. de la Pena Mattozzi, W.R. Myers, M.E. Williams, A. Reeves, R.L. Parsons, R.C. Haskell, D.C. Petersen, R. Wang, J.I. Medford, Optical coherence microscopy. A technology for rapid, in vivo, non-destructive visualization of plants and plant cells. Plant Physiol. 123, 3–16 (2000)

    Article  Google Scholar 

  138. B.M. Hoeling, A.D. Fernandez, R.C. Haskell, E. Huang, W.R. Myers, D.C. Petersen, S.E. Ungersma, R.Y. Wang, M.E. Williams, S.E. Fraser, An optical coherence microscope for 3-dimensional imaging in developmental biology. Opt. Express 6, 136–146 (2000)

    Article  ADS  Google Scholar 

  139. S.H. Yun, G.J. Tearney, B.J. Vakoc, M. Shishkov, W.Y. Oh, A.E. Desjardins, M.J. Suter, R.C. Chan, J.A. Evans, I.K. Jang, N.S. Nishioka, J.F. de Boer, B.E. Bouma, Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12, 1429–1433 (2006)

    Article  Google Scholar 

  140. D.C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, J.G. Fujimoto, Three-dimensional endomicroscopy using optical coherence tomography. Nat. Photonics 1, 709–716 (2007)

    Article  ADS  Google Scholar 

  141. D.S. Gareau, Y. Li, B. Huang, Z. Eastman, K.S. Nehal, M. Rajadhyaksha, Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology. J. Biomed. Opt. 13, 054001 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge scientific discussions and contributions from Drs. Yu Chen, James Connolly, Shu-Wei Huang, Robert Huber, Desmond Adler, Norihiko Nishizawa, Joseph Schmitt. This research was sponsored in part by the National Institutes of Health R01-CA75289, R01-EY11289, and R01-CA178636; the Air Force Office of Scientific Research FA9550-040-1-0011 and F∼9550-12-1-0499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron D. Aguirre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Aguirre, A.D., Zhou, C., Lee, HC., Ahsen, O.O., Fujimoto, J.G. (2015). Optical Coherence Microscopy. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_29

Download citation

Publish with us

Policies and ethics