Skip to main content

Optical Coherence Tomography for Clinical Applications

  • Chapter
  • First Online:
Smart Sensors for Health and Environment Monitoring

Part of the book series: KAIST Research Series ((KAISTRS))

  • 1641 Accesses

Abstract

Optical coherence tomography (OCT) allows cross-sectional imaging of biological tissues at spatial resolutions on the order of several to tens of microns showing potential of detecting or screening for diseases. Until recently, however, OCT has been too slow for large volume imaging that greatly limits its clinical utility. The second-generation OCT technology has recently been developed that solves this problem by providing images at much higher frame rates with high sensitivity. In this chapter, we discuss the emergence and the recent advances of the second-generation OCT technology, and show the new applications and changes that this new technology has brought to the clinical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178–1181

    Article  Google Scholar 

  2. Youngquist RC, Carr S, Davies DE (1987) Optical coherence-domain reflectometry: a new optical evaluation technique. Opt Lett 12:158–160

    Article  Google Scholar 

  3. Takada K, Yokohama I, Chida K, Noda J (1987) New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl Opt 26:1603–1606

    Article  Google Scholar 

  4. Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE, Suter MJ, Chan RC, Evans JA, Jang IK, Nishioka NS, de Boer JF, Bouma BE (2006) Comprehensive volumetric optical microscopy in vivo. Nat Med 12:1429–1433

    Article  Google Scholar 

  5. Tearney GJ, Waxman S, Shishkov M, Vakoc BJ, Suter MJ, Freilich MI, Desjardins AE, Oh WY, Bartlett LA, Rosenberg M, Bouma BE (2008) Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc imaging 1:752–761

    Article  Google Scholar 

  6. Vakoc BJ, Shishkov M, Yun SH, Oh WY, Suter MJ, Desjardins AE, Evans JA, Nishioka NS, Tearney GJ, Bouma BE (2007) Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video). Gastrointest Endosc 65:898–905

    Article  Google Scholar 

  7. Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T, Munn LL, Tearney GJ, Fukumura D, Jain RK, Bouma BE (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15:1219–1223

    Article  Google Scholar 

  8. Oh WY, Yun SH, Vakoc BJ, Shishkov M, Desjardins AE, Park BH, de Boer JF, Tearney GJ, Bouma BE (2008) High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Opt Express 16:1096–1103

    Article  Google Scholar 

  9. Oh WY (2014) 4.12—optical frequency-domain imaging. In: Brahme A (ed) Comprehensive biomedical physics. Elsevier, Oxford, pp 175–188

    Google Scholar 

  10. Yun SH, Tearney GJ, de Boer JF, Iftima N, Bouma BE (2003) High-speed optical frequency-domain imaging. Opt Express 11:2953–2963

    Article  Google Scholar 

  11. Kingsley S, Davies D (1985) OFDR diagnostics for fibre and integrated-optic systems. Electron Lett 21:434–435

    Article  Google Scholar 

  12. Lexer F, Hitzenberger CK, Fercher A, Kulhavy M (1997) Wavelength-tuning interferometry of intraocular distances. Appl Opt 36:6548–6553

    Article  Google Scholar 

  13. Ha G, Lindner MW (1998) “Coherence radar” and “spectral radar”—new tools for dermatological diagnosis. J. Biomed Opt 3:21–31

    Article  Google Scholar 

  14. Choma MA, Sarunic MV, Yang C, Izatt JA (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11:2183–2189

    Article  Google Scholar 

  15. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069

    Article  Google Scholar 

  16. Leitgeb R, Hitzenberger C, Fercher A (2003) Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 11:889–894

    Article  Google Scholar 

  17. Fujimoto JG, Drexler W (2008) Introduction to optical coherence tomography. In: Drexler W, Fujimoto J (eds) Optical coherence tomography. Springer, Berlin, pp 1–45

    Google Scholar 

  18. Jun C, Villiger M, Oh WY, Bouma BE (2014) All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging. Opt Express 22:25805–25814

    Article  Google Scholar 

  19. Hee MR, Huang D, Swanson EA, Fujimoto JG (1992) Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. JOSA B 9:903–908

    Article  Google Scholar 

  20. de Boer JF, Milner TE, van Gemert MJC, Nelson JS (1997) Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 22:934–936

    Article  Google Scholar 

  21. Saxer CE, de Boer JF, Park BH, Zhao Y, Chen Z, Nelson JS (2000) High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin. Opt Lett 25:1355–1357

    Article  Google Scholar 

  22. Park BH, Pierce MC, Cense B, de Boer JF (2003) Real-time multi-functional optical coherence tomography. Opt Express 11:782–793

    Article  Google Scholar 

  23. Park BH, Pierce MC, Cense B, de Boer JF (2004) Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. Opt Lett 29:2512–2514

    Article  Google Scholar 

  24. Pierce MC, Shishkov M, Park BH, Nassif N, Bouma BE, Tearney GJ, de Boer JF (2005) Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography. Opt Express 13:5739–5749

    Article  Google Scholar 

  25. Zhang J, Jung W, Nelson J, Chen Z (2004) Full range polarization-sensitive Fourier domain optical coherence tomography. Opt Express 12:6033–6039

    Article  Google Scholar 

  26. Yun SH, Tearney GJ, de Boer JF, Bouma BE (2004) Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Opt Express 12:4822–4828

    Article  Google Scholar 

  27. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, Choi KB, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39:604–609

    Article  Google Scholar 

  28. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555

    Article  Google Scholar 

  29. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645

    Article  Google Scholar 

  30. Tearney GJ, Jang I-K, Bouma BE (2006) Optical coherence tomography for imaging the vulnerable plaque. J Biomed Opt 11:021002-021002–021010

    Google Scholar 

  31. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    Article  Google Scholar 

  32. Nadkarni SK, Pierce MC, Park BH, de Boer JF, Whittaker P, Bouma BE, Bressner JE, Halpern E, Houser SL, Tearney GJ (2007) Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol 49:1474–1481

    Article  Google Scholar 

  33. Oh WY, Vakoc BJ, Shishkov M, Tearney GJ, Bouma BE (2010) >400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging. Opt Lett 35:2919–2921

    Article  Google Scholar 

  34. Cho HS, Jang S-J, Kim K, Dan-Chin-Yu AV, Shishkov M, Bouma BE, Oh WY (2014) High frame-rate intravascular optical frequency-domain imaging in vivo. Biomed Opt Express 5:223–232

    Article  Google Scholar 

  35. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R (2010) Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express 18:14685–14704

    Article  Google Scholar 

  36. Klein T, Wieser W, Eigenwillig CM, Biedermann BR, Huber R (2011) Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt Express 19:3044–3062

    Article  Google Scholar 

  37. Villiger M, Zhang EZ, Nadkarni SK, Oh WY, Bouma BE, Vakoc BJ (2013) Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion. Opt Lett 38:923–925

    Article  Google Scholar 

  38. Villiger M, Zhang EZ, Nadkarni SK, Oh WY, Vakoc BJ, Bouma BE (2013) Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging. Opt Express 21:16353–16369

    Article  Google Scholar 

  39. Zhang EZ, Oh WY, Villiger ML, Chen L, Bouma BE, Vakoc BJ (2013) Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography. Opt Express 21:1163–1180

    Article  Google Scholar 

  40. Chen Z, Milner TE, Dave D, Nelson JS (1997) Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett 22:64–66

    Article  Google Scholar 

  41. Izatt JA, Kulkarni MD, Yazdanfar S, Barton JK, Welch AJ (1997) In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Optics Lett 22:1439–1441

    Google Scholar 

  42. Zhao Y, Chen Z, Saxer C, Xiang S, de Boer JF, Nelson JS (2000) Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett 25:114

    Article  Google Scholar 

  43. Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MK, Jiang J, Cable A, Wilson BC, Vitkin IA (2008) Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett 33:1530–1532

    Article  Google Scholar 

  44. Blatter C, Weingast J, Alex A, Grajciar B, Wieser W, Drexler W, Huber R, Leitgeb RA (2012) In situ structural and microangiographic assessment of human skin lesions with high-speed OCT. Biomed Opt Express 3:2636–2646

    Article  Google Scholar 

  45. Liu G, Chou L, Jia W, Qi W, Choi B, Chen Z (2011) Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems. Opt Express 19:11429

    Article  Google Scholar 

  46. Motaghiannezam R, Fraser S (2012) Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography. Biomed Opt Express 3:503–521

    Article  Google Scholar 

  47. Nam AS, Chico-Calero I, Vakoc BJ (2014) Complex differential variance algorithm for optical coherence tomography angiography. Biomed Opt Express 5:3822–3832

    Article  Google Scholar 

  48. Srinivasan VJ, Sakadzic S, Gorczynska I, Ruvinskaya S, Wu W, Fujimoto JG, Boas DA (2010) Quantitative cerebral blood flow with optical coherence tomography. Opt Express 18:2477–2494

    Article  Google Scholar 

  49. Wang Y, Fawzi A, Tan O, Gil-Flamer J, Huang D (2009) Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography. Opt Express 17:4061–4073

    Article  Google Scholar 

  50. Blatter C, Coquoz S, Grajciar B, Singh ASG, Bonesi M, Werkmeister RM, Schmetterer L, Leitgeb RA (2013) Dove prism based rotating dual beam bidirectional Doppler OCT. Biomed Opt Express 4:1188–1203

    Article  Google Scholar 

  51. Nassif N, Cense B, Park BH, Pierce M, Yun SH, Bouma BE, Tearney GJ, Chen T, de Boer JF (2004) In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt Express 12:367–376

    Article  Google Scholar 

  52. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS (2005) Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112:1734–1746

    Article  Google Scholar 

  53. Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG (2006) High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 113:2054–2065 (e2053)

    Google Scholar 

  54. Wojtkowski M, Srinivasan VJ, Ko T, Fujimoto JG, Kowalczyk A, Duker J (2004) Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 12:2404–2422

    Article  Google Scholar 

  55. Cense B, Nassif N, Chen T, Pierce M, Yun S-H, Park B, Bouma BE, Tearney GJ, de Boer JF (2004) Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt Express 12:2435–2447

    Article  Google Scholar 

  56. de Bruin DM, Burnes DL, Loewenstein J, Chen Y, Chang S, Chen TC, Esmaili DD, de Boer JF (2008) In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm. Invest Ophthalmol Vis Sci 49:4545–4552

    Article  Google Scholar 

  57. Bourquin S, Aguirre A, Hartl I, Hsiung P, Ko T, Fujimoto JG, Birks T, Wadsworth W, Bünting U, Kopf D (2003) Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd: glass laser and nonlinear fiber. Opt Express 11:3290–3297

    Article  Google Scholar 

  58. Unterhuber A, Považay B, Hermann B, Sattmann H, Chavez-Pirson A, Drexler W (2005) In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid. Opt Express 13:3252–3258

    Article  Google Scholar 

  59. Lee EC, de Boer JF, Mujat M, Lim H, Yun SH (2006) In vivo optical frequency domain imaging of human retina and choroid. Opt Express 14:4403–4411

    Article  Google Scholar 

  60. Potsaid B, Baumann B, Huang D, Barry S, Cable AE, Schuman JS, Duker JS, Fujimoto JG (2010) Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express 18:20029–20048

    Article  Google Scholar 

  61. van Velthoven ME, van der Linden MH, de Smet MD, Faber DJ, Verbraak FD (2006) Influence of cataract on optical coherence tomography image quality and retinal thickness. Br J Ophthalmol 90:1259–1262

    Article  Google Scholar 

  62. Chen Y, Burnes DL, de Bruin M, Mujat M, de Boer JF (2009) Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging. J Biomed Opt 14:024016-024016-024015

    Google Scholar 

  63. Yasuno Y, Miura M, Kawana K, Makita S, Sato M, Okamoto F, Yamanari M, Iwasaki T, Yatagai T, Oshika T (2009) Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci 50:405–413

    Article  Google Scholar 

  64. Esmaeelpour M, Považay B, Hermann B, Hofer B, Kajic V, Kapoor K, Sheen NJ, North RV, Drexler W (2010) Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci 51:5260–5266

    Article  Google Scholar 

  65. Braaf B, Vermeer KA, Vienola KV, de Boer JF (2012) Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. Opt Express 20:20516–20534

    Article  Google Scholar 

  66. Choi W, Mohler KJ, Potsaid B, Lu CD, Liu JJ, Jayaraman V, Cable AE, Duker JS, Huber R, Fujimoto JG (2013) Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS ONE 8:e81499

    Article  Google Scholar 

  67. Blatter C, Klein T, Grajciar B, Schmoll T, Wieser W, Andre R, Huber R, Leitgeb RA (2012) Ultrahigh-speed non-invasive widefield angiography. J Biomed Opt 17:070505

    Article  Google Scholar 

  68. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, Fujimoto JG (1997) In vivo endoscopic optical biopsy with optical coherence tomography. Science 276:2037–2039

    Article  Google Scholar 

  69. Bouma BE, Yun SH, Vakoc BJ, Suter MJ, Tearney GJ (2009) Fourier-domain optical coherence tomography: recent advances toward clinical utility. Curr Opin Biotechnol 20:111–118

    Article  Google Scholar 

  70. MacNeill BD, Lowe HC, Takano M, Fuster V, Jang IK (2003) Intravascular modalities for detection of vulnerable plaque current status. Arterioscler Thromb Vasc Biol 23:1333–1342

    Article  Google Scholar 

  71. Tearney GJ, Brezinski ME, Boppart SA, Bouma BE, Weissman N, Southern JF, Swanson EA, Fujimoto JG (1996) Catheter-based optical imaging of a human coronary artery. Circulation 94:3013

    Article  Google Scholar 

  72. Jang IK, Tearney GJ, Bouma BE (2001) Visualization of tissue prolapse between coronary stent struts by optical coherence tomography comparison with intravascular ultrasound. Circulation 104:2754

    Article  Google Scholar 

  73. Suter MJ, Tearney GJ, Oh WY, Bouma BE (2010) Progress in intracoronary optical coherence tomography. IEEE J Sel Top Quantum Electron 16:706–714

    Google Scholar 

  74. Chen J, Tung C-H, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, Huang PL, Weissleder R, Jaffer FA (2002) In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105:2766–2771

    Article  Google Scholar 

  75. Jaffer FA, Vinegoni C, John MC, Aikawa E, Gold HK, Finn AV, Ntziachristos V, Libby P, Weissleder R (2008) Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation 118:1802–1809

    Article  Google Scholar 

  76. Jaffer FA, Calfon MA, Rosenthal A, Mallas G, Razansky RN, Mauskapf A, Weissleder R, Libby P, Ntziachristos V (2011) Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. J Am Coll Cardiol 57:2516–2526

    Article  Google Scholar 

  77. Yoo H, Kim JW, Shishkov M, Namati E, Morse T, Shubochkin R, McCarthy JR, Ntziachristos V, Bouma BE, Jaffer FA, Tearney GJ (2011) Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med 17:1680–1684

    Article  Google Scholar 

  78. Lee S, Lee MW, Cho HS, Song JW, Nam HS, Oh DJ, Park K, Oh WY, Yoo H, Kim JW (2014) Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence–emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels. Circ Cardiovasc Interv 7:560–569

    Google Scholar 

  79. Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, Ntziachristos V, Weissleder R, Libby P, Jaffer FA (2011) Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med 3:84ra45

    Google Scholar 

  80. Sergeev A, Gelikonov V, Gelikonov G, Feldchtein F, Kuranov R, Gladkova N, Shakhova N, Snopova L, Shakhov A, Kuznetzova I (1997) In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. Opt Express 1:432–440

    Article  Google Scholar 

  81. Bouma BE, Tearney GJ, Compton CC, Nishioka NS (2000) High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. Gastrointest Endosc 51:467–474

    Article  Google Scholar 

  82. Sivak MV Jr, Kobayashi K, Izatt JA, Rollins AM, Ung-Runyawee R, Chak A, Wong RC, Isenberg GA, Willis J (2000) High-resolution endoscopic imaging of the GI tract using optical coherence tomography. Gastrointest Endosc 51:474–479

    Article  Google Scholar 

  83. Poneros JM, Brand S, Bouma BE, Tearney GJ, Compton CC, Nishioka NS (2001) Diagnosis of specialized intestinal metaplasia by optical coherence tomography. Gastroenterology 120:7–12

    Article  Google Scholar 

  84. Pfau PR, Sivak MV Jr, Chak A, Kinnard M, Wong RC, Isenberg GA, Izatt JA, Rollins AM, Westphal V (2003) Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography. Gastrointest Endosc 58:196–202

    Article  Google Scholar 

  85. Evans JA, Poneros JM, Bouma BE, Bressner J, Halpern EF, Shishkov M, Lauwers GY, Mino-Kenudson M, Nishioka NS, Tearney GJ (2006) Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus. Clin Gastroenterol Hep 4:38–43

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NRF of Korea, grant 2010-0017465, and by the MSIP of Korea, grant GFP/(CISS-2012M3A6A6054200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang-Yuhl Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oh, WY. (2015). Optical Coherence Tomography for Clinical Applications. In: Kyung, CM. (eds) Smart Sensors for Health and Environment Monitoring. KAIST Research Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9981-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9981-2_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9980-5

  • Online ISBN: 978-94-017-9981-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics