Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 492))

Abstract

An overview of modeling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Parcular emphasis is given to computation fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modeling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modeling are presented. An overview of a well established numerical solution method used is also given. Examples are shown for several gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columsns and stirred tanks.

This chapter is based on the work that the author and his colleagues have preformed in the field of multiphase flow odeling over the last two decades at his two affiliations Telemark University College, Porsgrunn, Norway and his present affiliation Aalborg University Esbjerg, Denmark. The author will take this opportunity to thank and acknowledge his present and previous collaborators: Prof., Dr. T. Solberg, Dr. K. Morud, Dr. A. E. Samuelsberg, Dr. E. Manger, Dr. V. Mathiesen, Mr. T. Solbakken, Ms. T. Teppen, Dr. P. Chr. Friberg, Dr. C.H. Ibsen, Dr. N. G. Deen, Dr. K. Granly Hansen, Dr. S. Bove, Dr. J. Madsen, Mr. R. Hansen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • K. Agrawal, P.N. Loezos, M. Syamlal and S. Sundaresan (2001). The role of meso-scale structures in rapid gas-solid flows. Journal of Fluid Mechanics, 445:151–185.

    MATH  Google Scholar 

  • A. Albrecht, O. Simonin, D. Barthod and D. Vedrine (2001). Multidimensional numerical simulation of the liquid feed injection in an Industrial FCC Riser, in: M. Kwauk, J. Li, W.-C. Yang (Eds.), Fluidization X. Engineering Foundation 349–356.

    Google Scholar 

  • A.A. Aris, (1962). Introduction to fluid Mechanics. Springer-Verlag. New York.

    Google Scholar 

  • S. Benyahia, A. G. Ortiz and J.I.P. Paredes (2003): Numerical analysis of a reacting gas/solid flow in the riser of an industrial fluid catalytic cracking unit. International Journal of Chemical Reactor Engineering, 1 (A.41).

    Google Scholar 

  • G.A. Bokkers, M. van Sint Annaland and J.A.M. Kuipers (2004). Mixing and segregation in a bidisperse gas-solid fluidised bed: a numerical and experimental study. Powder Technology, 140:176–186.

    Article  Google Scholar 

  • S. Bove (2005). Computational fluid dynamics of gas-liquid flows including bubble population balances, PhD thesis, Aalborg University Esbjerg.

    Google Scholar 

  • S. Bove, T. Solberg and B. H. Hjertager (2004). Numerical aspects of bubble column simulations. International Journal of Chemical Reactor Engineering, A:A1.

    Google Scholar 

  • A. Brucato, M. Ciofalo, F. Grisafi and G. Micale (1994). Complete numerical simulation of flow fields in bafled stirred vessels: the inner-outer approach. IChemE Symposium Series. 136:155–162.

    Google Scholar 

  • P.H. Calderbank (1958). Physical rate processes in industrial fermentation. Part 1. The interfacial area in gas-liquid contacting with mechanical agitation. Transaction of IChemE, 36:443–463.

    Google Scholar 

  • J. Chahed, V. Roig, and L. Masbernat (2003). Euleran-eulerian two-fluid model for turbulent gas-liquid bubbly flows. International Journal of Multiphase Flow, 29:23–49.

    Article  MATH  Google Scholar 

  • S. Chapman and G. Cowling (1970). The mathematical theory of non-uniform gases. 3ed., Cambridge University Press

    Google Scholar 

  • R. Clift, J.R. Grace and M.E. Weber (1978). Bubbles, drops and particles. Academic Press, London.

    Google Scholar 

  • T.L. Cook and F.H. Harlow (1986). Vortices in bubby two-phase flow. International Journal of Multiphase Flow, 12:35–61.

    Article  Google Scholar 

  • J.W. Deardorff (1971). On the magnitude of the subgrid scale eddy coefficient. Journal of Computational Physics, 7:120–133.

    Article  MATH  Google Scholar 

  • N.G. Deen, T. Solberg and B.H. Hjertager (2001). Large eddy simulations of the gas-liquid flow in a square cross-sectioned bubble column. Chemical Engineering Science, 56:6341–6349.

    Article  Google Scholar 

  • N.G. Deen, T. Solberg and B.H. Hjertager (2003). Flow generated by an aerated rushton impeller: two-phase PIV experiments and numerical simulations. The Canadian Journal of Chemical Engineering, 80(4):638–652.

    Google Scholar 

  • J. Derksen and H.E.A. van den Akker (1999). Large eddy simulations on the flow driven by a Rushton turbine. AIChE Journal 45:209–221.

    Article  Google Scholar 

  • J. Ding and D. Gidaspow (1990). A Bubbling fluidization model using kinetics theory of granular flow. AIChE Journal 36:523–538.

    Article  Google Scholar 

  • D.A. Drew, (1983). Mathematical modelling of two-phase flow. Annual Review of Fluid Mechanics, 15:261–291.

    Article  Google Scholar 

  • D.A. Drew and S.L. Passman (1999). Theory of multicomponent fluids. Springer-Verlag. New York.

    Google Scholar 

  • H. Enwald, E. Peirano and A.-E. Almstedt (1996) Eulerian two-fluid flow theory applied to fluidization. International Journal of Multiphase Flow, 22(1):21–66.

    Article  MATH  Google Scholar 

  • S.O. Enfors, S. George and G. Larson (1992). KTH, Private communications

    Google Scholar 

  • S. Ergun, (1952). FLuid flow through packed bed columns. Chemical Engineering Progress, 48(2), 89–98.

    Google Scholar 

  • J. Gao, C. Xu, S. Lin, G. Yang and Y. Guo (1999). Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors. AIChE Journal, 45(5):1095–1113.

    Article  Google Scholar 

  • D. Geldart. ed. (1986). Gas fluidization technology, J. Wiley, Chichester.

    Google Scholar 

  • L.G. Gibilaro, R. di Felice and S.P. Waldram (1985). tGeneralized friction factor coefficient correlations for fluid-particle interactions. Chemical Engineering Science, 40(10):1817–18223.

    Article  Google Scholar 

  • D. Gidaspow (1994): Multiphase flow and fluidization, Academic Press, London.

    MATH  Google Scholar 

  • D. Gidaspow, L. Huilin, E. Manger (1996). Kinetic theory of multiphase flow and fluidization. Validation and extension to binaries, In: Proceedings of XIXth International Congress of theoretical and applied mechanics.

    Google Scholar 

  • C. Guenther, T. O’Brien and M. Syamlal (2001). A numerical model of silane pyrolysis in a gas-solids fluidized bed. Proceedings of the International Conference on Multiphase Flow 2001, New Orleans.

    Google Scholar 

  • K.G. Hansen, C.H. Ibsen, T. Solberg and B. H. Hjertager (2003). Eulerian/Eulerian CFD simulation of a cold flowing FCC riser. International Journal of Chemical Reactor Engineering, 1:A31.

    Article  Google Scholar 

  • K.G. Hansen, T. Solberg and B.H. Hjertager (2004). A three-dimensional sumulation of gas/particle flow and ozone decomposition the riser of a circulating fluidized bed. Chemical Engineering Science, 59(22-23):5217–5224.

    Article  Google Scholar 

  • T. Hibiki, and M. Ishii (2002). Distribution parameter and drift velocity of drift-flux model i nbubbly flow. International Journal of Heat and Mass Transfer, 45:707–721.

    Article  MATH  Google Scholar 

  • B.H. Hjertager (1986). Three-dimensional modeling of flow, heat transfer and combustion, in: Handbook of Heat and Mass Transfer, Gulf Publishing, Houston, 1303–1350.

    Google Scholar 

  • C.H. Ibsen, T. Solberg and B.H. Hjertager (2001). Evaluation of a three-dimensional numerical model of a scaled circulating fluidized bed. Industrial_& Engineering Chemistry Research, 40(23):5081–5086.

    Article  Google Scholar 

  • M. Ishii (1975) Thermo fluid dynamic theory of two-phase flow. Eyrolles, Paris.

    MATH  Google Scholar 

  • M. Ishii and N. Zuber (2002). Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 45:707–721.

    MATH  Google Scholar 

  • I. Kataoka and A. Serizawa (1989). Basic equations of turbulence in gas-liquid two-phase flow. International Journal of Multiphase Flow, 15(5):843–855.

    Article  MATH  Google Scholar 

  • S.M. Kresta and P.E. Wood (1991). Prediction of three-dimensional turbulent flow in stirred tanks. AIChE Journal, 37:448–460

    Article  Google Scholar 

  • H.A. Jakobsen (1993). On the modelling and stimulation of bubble column reactors using a two-fluid Model, Dr. ing. Thesis, Norwegian Institute of Technology, Trondheim, Norway.

    Google Scholar 

  • J.T. Jenkins and F. Mancini (1987). Balance laws and constitutive relations for plane flows of a dense mixture of smooth, nearly elastic, circular disks. Journal of Applied Mechanics, 54:27–34.

    Article  MATH  Google Scholar 

  • J.T. Jenkins and S. B. Savage (1983) a critical assessment of the use of k-ɛ turbulence models for simulation of the turbulent liquid flow induced by a Rushton-turbine in baffled stirred-tank reactors. Chemical Engineering Science, 54:3921–3941.

    Google Scholar 

  • S.T. Johansen and F. Boysan (1988). Fluid dynamics in bubble stirred ladles. Part II. Mathematical modeling, Metallurgical Transactions B, 19B:755–764.

    Article  Google Scholar 

  • D.D. Joseph, T. S. Lundgren, R. Jackson and D. A. Saville (1990). Ensemble average and mixture theory quations for incompressible fluid-particle suspension. International Journal of Multiphase Flow, 16(1):35–42.

    Article  MATH  Google Scholar 

  • D.L. Koch and R. Hill (2001). Inertial effects in suspension and porous-media flows. Annual Review of Fluid Mechanics, 619–647.

    Google Scholar 

  • R.T. Lahey, M. Lopez de Bertodano and O.C. Jones (1993). Phase distribution in complex geometry ducts, Nuclear Engineering Design, 141:177–701.

    Article  Google Scholar 

  • A. Lapin, C. Maul, K. Junghans and A. Lubbert (2001). Industrial-scale bubble column reactors: gas-liquid flow and chemical reaction. Chemical Engineering Science, 56:239–246.

    Article  Google Scholar 

  • M. Lopez de Bertodano (1998). Two fluid model for two-phase turbulent jets. Nuclear Engineering and Design, 179:65–74.

    Article  Google Scholar 

  • M. Lopez de Bertodano, R. T. Lahey and O. C. Jones (1994). Development of a k—ε model for bubbly two-phase flow. Journal of Fluids Engineering, 116:128–134.

    Article  Google Scholar 

  • J.Y. Luo, A.D. Gosman, R.I. Issa, J.C. Middleton and M.K. Fitzgerald (1993). Full flow field computation of mixing in baffled stirred vessels. Transactions of IChemE, 71A:342–344.

    Google Scholar 

  • J.Y. Luo, R.I. Issa, and A.D. Gosman (1994). Prediction of impeller induced flows in mixing vessels using multiple frames of reference. IChemE Symposium Series, 136:549–556.

    Google Scholar 

  • C.K.K. Lun, S.B. Savage, D.J. Jeffrey and N. Chepurniy (1984) Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flow field. Journal of Fluid Mechanics, 140:223–256.

    Article  MATH  Google Scholar 

  • E. Manger (1996). Modelling and simulation of gas/solids flow in curvilinear coordinates, PhD thesis, Telemark Institute of Technology, 1996:64

    Google Scholar 

  • M. Manninen, and V. Taivassalo (1996). On the mixture model for multiphase flow. VTT publications, 288.

    Google Scholar 

  • V. Mathiesen, T. Solberg, E. Manger and B.H. Hjertager (1996). Modelling and predictions of multiphase flow in a pilot scale circulating fluidized bed, 5th International conference on circulating fluidized beds, May 28–31, Beijing, China.

    Google Scholar 

  • V. Mathiesen, T. Solberg and B. H. Hjertager (2000a). An experimental and computational study of multiphase flow behavior in a circulating fluidized bed. International Journal of Multiphase flow, 26:387–419.

    Article  MATH  Google Scholar 

  • V. Mathiesen, T. Solberg and B.H. Hjertager (2000b). Prediction of gas/particle flow with an Eulerian model including a realistic particle size distribution. Powder Technology, 112:34–45.

    Article  Google Scholar 

  • D. Migdal and V.D. Agosta (1967). A source flow model for continuum gas-particle flow, Applied Mechanics, Vol. 35, pp 860–865.

    Google Scholar 

  • M. Milelli (2002). A numerical analysis of confined turbulent bubble plumes. PhD thesis, dissertation eth n. 14799, Swiss Federal Institute of Technology (ETH).

    Google Scholar 

  • F.J. Moraga, A.E. Larreteguy, D.A. Drew and R.T. Lahey (2003). Assessment of turbulent dispersion models for bubbly flows in the low stokes number limit. Int. Journal of Multiphase Flow, 29:655–673.

    Article  MATH  Google Scholar 

  • B.D. Nichols, C.W. Hirt and R.S. Hotshkiss (1980). A solution algorithm for transient fluid flow with multiple free boundaries, LASL Report LA-8355.

    Google Scholar 

  • M.S. Nigam (2003). Numerical simulation of buoyant mixture flows. International Journal. of Multiphase Flow, 29:983–1015.

    Article  MathSciNet  MATH  Google Scholar 

  • R.I. Nigmatulin (1979). Spatial averaging in the mechanics of heterogeneous and dispersed systems. International Journal of Multiphase Flow, 5:353–385.

    Article  MATH  Google Scholar 

  • S. Ouyang, J. Lin and O.E. Potter (1993). Ozone decomposition in a 0.254 m diameter circulating fluidized bed reactor. Powder Technology, 75:73–78.

    Article  Google Scholar 

  • S.V. Patankar (1980). Numerical heat transfer and fluid flow, McGraw-Hill.

    Google Scholar 

  • S.V. Patankar and Spalding D.B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15:1787–1800.

    Article  MATH  Google Scholar 

  • V.V. Ranade (1997). An efficient computational model for simulating flow in stirred vessels: a case of Rushton turbine. Chemical Engineering Science, 52:4473–4484.

    Article  Google Scholar 

  • V.V. Ranade, Y. Tayalia and H. Krishnan (2002). CFD predictions of flow near impeller blades in baffled stirred vessels: assessment of computational snapshot approach. Chemical Engineering Communications 189(7):895–922.

    Article  Google Scholar 

  • V.V. Ranade and J.B. Joshi (1990a). Flow generated by a disc turbine. part I.—experimental. Chemical Engineering Research Design, 68A:19–33.

    Google Scholar 

  • V.V. Ranade and J.B. Joshi (1990b). Flow generated by a disc turbine. part II.—mathematical modelling and comparison with experimental data. Chemical Engineering Research Design, 68A:34–50.

    Google Scholar 

  • J. Revstedt, L. Fuchs and C. Trägårdh (1998). Large eddy simulations of the turbulent flow in a stirred reactor. Chemical Engineering Science, 53:4041–4053.

    Article  Google Scholar 

  • P.N. Rowe (1961). Drag forces in a hydraulic model of a fluidized bed, part ii. Transaction of IChemE, 39:175–180.

    Google Scholar 

  • Y. Sato and K. Sekoguchi (1975). Liquid velocity distribution in two-phase bubble flow. International Journal of Multiphase Flow. 2:79–95.

    Article  MATH  Google Scholar 

  • D.B. Spalding (1977). The calculation of free-convection phenomena in gas-liquid mixtures, ICHMT seminar 1976, in: Turbulent Bouyant Convection, Hemisphere, 569–586

    Google Scholar 

  • D.B. Spalding (1980). Numerical computation of multi-phase fluid flow and heat transfer, in Recent Advances in Numerical Methods in Fluids, Pineridge Press, 139–168.

    Google Scholar 

  • D.B. Spalding (1985). Computer simulation of two-phase flows with special reference to nuclear reactor systems, in Computational Techniques in Heat Transfer, Ed.: R. W. Lewis, K. Morgan, J.A. Johnson, W.R. Smith, Pineridge Press, 1–44.

    Google Scholar 

  • A. Samuelsberg and B.H. Hjertager (1995). Simulation of two-phase gas/particle flow and ozone decomposition in a 0.25 I.D. riser. In: Advances in Multiphase Flow, 679–688.

    Google Scholar 

  • A. Samuelsberg and B.H. Hjertager (1996). Computational fluid dynamic simulation of an oxy-chlorination reaction in a full-scale fluidized bed reactor, 5th International conference on circulating fluidized beds, May 28–31, Beijing, China.

    Google Scholar 

  • J. Smagorinsky (1963). General circulation experiments with the primitive equations: I. the basic equations. Monthly Weather Review, 91:99–164.

    Article  Google Scholar 

  • M. Syamlal and T.J. O’Brien (1988). Simulation of granular layer inversion in liquid fluidized beds. International Journal of Multiphase Flow, 14(4):473–481.

    Article  Google Scholar 

  • M. Syamlal and T. O’Brien (2003). Fluid dynamic simulation of O3 decomposition in a bubbling fluidized bed. AIChE Journal, 49(11):2793–2801.

    Article  Google Scholar 

  • A. Sokolichin and G. Eigenberger (1999). Applicability of the standard k—ε turbulence model to the dynamic simulation of bubble columns: Part i. detailed numerical simulations. Chemical Engineering Science, 54:2273–2284.

    Article  Google Scholar 

  • A. Sokolichin, G. Eigenberger and A. Lapin (2004). Simulation of buoyancy driven bubbly flow: established simplification and open questions. Fluid Mechanics and Transport Phenomena, 50(1):24–45.

    Google Scholar 

  • K.N. Theologos, I.D. Nikou, A.I. Lygeros and N.C. Markatos (1996). Simulation and design of fluid-catalytic cracking riser-type reactors, Computers and Chemical Engineering, 20(supplement):S757–S763.

    Article  Google Scholar 

  • A. Tomiyama (2004). Drag, lift and virtual mass forces acting on a single bubble. In: 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, 22–24 September 2004, Pisa, Italy.

    Google Scholar 

  • A. Tomiyama, G. P. Celata, S. Hosokawa and S. Yoshida (2002). Terminal velocity of single bubbles in surface tension force dominant regime. International Journal of Multiphase Flow, 28:1497–1519.

    Article  MATH  Google Scholar 

  • C. Trägårdh (1988). A hydrodynamic model for the simulation of an aerated agitated fed-batch fermenter, in Bioreactor Fluid Dynamics, Elsevier Applied Science Publ., 117–134.

    Google Scholar 

  • E.I. V. van den Hengel, N. G. Deen, and J. A. M. Kuipers (2005). Application of coalescence and breakup models in a discrete bubble model for bubble columns, Industrial Engineering Chemistry Research, 44(14):5233–5245.

    Article  Google Scholar 

  • M.A. van der Hoef, M. Van Sint Annaland and J. A.M. Kuipers (2004). Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy, Chemical Engineering Science, 59(22–23):5157–5165.

    Google Scholar 

  • C.Y. Wen and Y.H. Yu (1966). Mechanics of fluidization. Chemical Engineering Progress Symposium Series, 62:100–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 CISM, Udine

About this chapter

Cite this chapter

Hjertager, B.H. (2007). Multi-fluid CFD Analysis of Chemical Reactors. In: Marchisio, D.L., Fox, R.O. (eds) Multiphase Reacting Flows: Modelling and Simulation. CISM International Centre for Mechanical Sciences, vol 492. Springer, Vienna. https://doi.org/10.1007/978-3-211-72464-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-72464-4_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-72463-7

  • Online ISBN: 978-3-211-72464-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics