Skip to main content
Log in

Computational fluid dynamics modeling of gas-solid fluidized bed reactor: Influence of numerical and operating parameters

  • Review Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

In this paper, the most influential parameters (numerical and operating parameters) affecting the performance of fluidized bed reactors are studied. The investigated parameters are constitutive and numerical parameters, minimum fluidization velocity, operating pressure, temperature, gas distributor, and particle size distribution (PSD). Furthermore, the recent methods for solving population balance equations coupled with computational fluid dynamic (CFD-PBM) are discussed. The direct quadrature method of moments (DQMOM) was found to be the most efficient method for CFD-PBM coupled simulations. It must be pointed out that due to the computational cost there is limitation on the application of CFD in practical reactor with detailed mass/heat transfer and reaction mechanisms, especially under industrial operating condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C D :

Drag coefficient

C μ,C 1ε,C 2ε :

Coefficients in turbulence model

d s :

Diameter of particle (m)

D :

Reactor diameter (m)

e 1s :

Coefficient of restitution

g 0,ss :

Radial distribution coefficient

g :

Gravitational acceleration (m/s2)

G :

Particle growth rate (m/s)

G 0 :

Particle growth rate constant (model development)

G k,m :

Production of turbulent kinetic energy (m2/s2)

Ī :

Unit tensor

\({k_{{\theta _{\rm{s}}}}}\) :

Diffusion coefficient for granular energy

m k :

kth moment of the PSD

\({{\dot m}_{pq}}\) :

Mass transfer from the pth to qth phase (kg/s)

n(V,t):

Number density function

N :

Specific number of moments

p friction :

Frictional pressure (Pa)

p s :

Solid pressure (Pa)

P :

Pressure (Pa)

Re :

Reynolds number

t :

Time (s)

u :

Velocity (m/s)

\({{\vec u}_q}\) :

Velocity of phase q (m/s)

U mb :

Minimum bubbling velocity (m/s)

U mf :

Minimum fluidization velocity (m/s)

β :

Momentum exchange coefficient

β gs :

Momentum exchange coefficient between phases

\({\gamma _{{\theta _{\rm{s}}}}}\) :

Collisional dissipation energy (m2/s2)

δ :

Deformation (m)

ϵ :

Turbulent dissipation rate (m2/s3)

ε :

Volume fraction

η :

Damping coefficient

θ s :

Granular temperature (K)

λ :

Mean free path of the fluid (m)

μ :

Viscosity of gas (Pa·s)

μ s,col :

Collisional part of viscosity (Pa·s)

μ s,fr :

Frictional viscosity (Pa·s)

μ s,kin :

Kinetic part of viscosity (Pa·s)

υ :

Kinematics viscosity (m2/s)

ρ :

Density (kg/m3)

ρ g :

Gas density (kg/m3)

ρ m :

Density of system (kg/m3)

ρ s :

Particle density (kg/m3)

Σ :

Friction coefficient

\({\overline{\overline \tau } _q}\) :

qth phase (solid and gas) stress-strain tensor

gs :

Energy exchange between the lth fluid or solid phase and the sth solid phase

CFD:

Computational fluid dynamic

DPM:

Discrete phase model

DQMOM:

Direct quadrature method of moment

EMMS:

Energy-minimization multi-scale

FBR:

Fluidized bed reactor

FCC:

Fluid catalyst cracking

KTGF:

Kinetic theory of granular flow

LDPE:

Low density polyethylene

LLDPE:

Linear low density polyethylene

MFM:

Multi-fluid model

PBM:

Population balance model

PMLM:

Polymeric multilayer model

PSD:

Particle size distribution

QMOM:

Quadrature method of moment

SMM:

Standard method of moment

SQMOM:

Sectional quadrature method of moment

UDF:

User-defined function

References

  • Abbasi, M. R., Shamiri, A., Hussain, M. A. 2016. Dynamic modeling and Molecular Weight Distribution of ethylene copolymerization in an industrial gas-phase Fluidized-Bed Reactor. Advanced Powder Technology, 27: 1526–1538.

    Article  Google Scholar 

  • Abbasi, M. R., Shamiri, A., Hussain, M. A. 2019. A review on modeling and control of olefin polymerization in fluidized-bed reactors. Reviews in Chemical Engineering, 35: 311–333.

    Article  Google Scholar 

  • Agarwal, G., Lattimer, B., Ekkad, S., Vandsburger, U. 2011. Influence of multiple gas inlet jets on fluidized bed hydrodynamics using Particle Image Velocimetry and Digital Image Analysis. Powder Technology, 214: 122–134.

    Article  Google Scholar 

  • Agarwal, G., Lattimer, B., Ekkad, S., Vandsburger, U. 2012. Experimental study on solid circulation in a multiple jet fluidized bed. AIChE Journal, 58: 3003–3015.

    Article  Google Scholar 

  • Ahmadzadeh, A., Arastoopour, H., Teymour, F., Strumendo, M. 2008. Population balance equations’ application in rotating fluidized bed polymerization reactor. Chemical Engineering Research and Design, 86: 329–343.

    Article  Google Scholar 

  • Ahuja, G. N., Patwardhan, A. W. 2008. CFD and experimental studies of solids hold-up distribution and circulation patterns in gas–solid fluidized beds. Chemical Engineering Journal, 143: 147–160.

    Article  Google Scholar 

  • Akbari, V., Borhani, T. N. G., Godini, H. R., Hamid, M. K. A. 2014. Model-based analysis of the impact of the distributor on the hydrodynamic performance of industrial polydisperse gas phase fluidized bed polymerization reactors. Powder Technology, 267: 398–411.

    Article  Google Scholar 

  • Akbari, V., Borhani, T. N. G., Shamiri, A., Aramesh, R., Hussain, M. A., Hamid, M. K. A. 2015a. 2D CFD-PBM simulation of hydrodynamic and particle growth in an industrial gas phase fluidized bed polymerization reactor. Chemical Engineering Research and Design, 104: 53–67.

    Article  Google Scholar 

  • Akbari, V., Borhani, T. N. G., Aramesh, R., Hamid, M. K. A., Shamiri, A., Hussain, M. A. 2015b. Evaluation of hydrodynamic behavior of the perforated gas distributor of industrial gas phase polymerization reactor using CFD-PBM coupled model. Computers & Chemical Engineering, 82: 344–361.

    Article  Google Scholar 

  • Akbari, V., Borhani, T. N. G., Shamiri, A., Hamid, M. K. A. 2015c. A CFD-PBM coupled model of hydrodynamics and mixing/segregation in an industrial gas-phase polymerization reactor. Chemical Engineering Research and Design, 96: 103–120.

    Article  Google Scholar 

  • Akhtar, M. A., Tadé, M. O., Pareek, V. K. 2006. Two-fluid Eulerian simulation of bubble column reactors with distributors. Journal of Chemical Engineering of Japan, 39: 831–841.

    Article  Google Scholar 

  • Akhtar, M. A., Tadé, M., Pareek, V. K. 2007. Simulations of bubble column reactors using a volume of fluid approach: Effect of air distributor. The Canadian Journal of Chemical Engineering, 85: 290–301.

    Article  Google Scholar 

  • Almuttahar, A., Taghipour, F. 2008. Computational fluid dynamics of high density circulating fluidized bed riser: Study of modeling parameters. Powder Technology, 185: 11–23.

    Article  Google Scholar 

  • Alopaeus, V., Laakkonen, M., Aittamaa, J. 2007. Solution of population balances with growth and nucleation by high order moment-conserving method of classes. Chemical Engineering Science, 62: 2277–2289.

    Article  Google Scholar 

  • Anderson, T. B., Jackson, R. 1967. Fluid mechanical description of fluidized beds. Equations of motion. Industrial & Engineering Chemistry Fundamentals, 6: 527–539.

    Article  Google Scholar 

  • Aramesh, R., Akbari, V., Shamiri, A., Hussain, M. A., Aghamohammadi, N. 2016. Hydrodynamics and particle mixing/segregation measurements in an industrial gas phase olefin polymerization reactor using image processing technique and CFD-PBM model. Measurement, 83: 106–122.

    Article  Google Scholar 

  • Arastoopour, H., Pakdel, P., Adewumi, M. 1990. Hydrodynamic analysis of dilute gas—Solids flow in a vertical pipe. Powder Technology, 62: 163–170.

    Article  Google Scholar 

  • Ashrafi, O., Mostoufi, N., Sotudeh-Gharebagh, R. 2012. Two phase steady-state particle size distribution in a gas-phase fluidized bed ethylene polymerization reactor. Chemical Engineering Science, 73: 1–7.

    Article  Google Scholar 

  • Ashrafi, O., Nazari-Pouya, H., Mostoufi, N., Sotudeh-Gharebagh, R. 2008. Particle size distribution in gas-phase polyethylene reactors. Advanced Powder Technology, 19: 321–334.

    Article  Google Scholar 

  • Attarakih, M. 2013. Integral formulation of the population balance equation: Application to particulate systems with particle growth. Computers & Chemical Engineering, 48: 1–13.

    Article  Google Scholar 

  • Attarakih, M. M., Drumm, C., Bart, H. J. 2009. Solution of the population balance equation using the sectional quadrature method of moments (SQMOM). Chemical Engineering Science, 64: 742–752.

    Article  Google Scholar 

  • Babu, S., Shah, B., Talwalkar, A. 1978. Fluidization correlations for coal gasification materials-minimum fluidization velocity and fluidized bed expansion ratio. AIChE Symposium Series, 74(176): 176–186.

    Google Scholar 

  • Baeyens, J., Geldart, D. 1986. Solids mixing. In: Gas Fluidization Technology. UK: John Wiley & Sons Ltd., 97–122.

    Google Scholar 

  • Bahadori, F., Rahimi, R. 2007. Simulations of gas distributors in the design of shallow bubble column reactors. Chemical Engineering & Technology, 30: 443–447.

    Article  Google Scholar 

  • Bai, W., Keller, N. K. G., Heindel, T. J., Fox, R. O. 2013. Numerical study of mixing and segregation in a biomass fluidized bed. Powder Technology, 237: 355–366.

    Article  Google Scholar 

  • Bannari, R., Kerdouss, F., Selma, B., Bannari, A., Proulx, P. 2008. Three-dimensional mathematical modeling of dispersed two-phase flow using class method of population balance in bubble columns. Computers & Chemical Engineering, 32: 3224–3237.

    Article  Google Scholar 

  • Beetstra, R., Nijenhuis, J., Ellis, N., van Ommen, J. R. 2009. The influence of the particle size distribution on fluidized bed hydrodynamics using high-throughput experimentation. AIChE Journal, 55: 2013–2023.

    Article  Google Scholar 

  • Beetstra, R., van der Hoef, M. A., Kuipers, J. A. M. 2007. Numerical study of segregation using a new drag force correlation for polydisperse systems derived from lattice-Boltzmann simulations. Chemical Engineering Science, 62: 246–255.

    Article  Google Scholar 

  • Behjat, Y., Shahhosseini, S., Hashemabadi, S. H. 2008. CFD modeling of hydrodynamic and heat transfer in fluidized bed reactors. International Communications in Heat and Mass Transfer, 35: 357–368.

    Article  Google Scholar 

  • Behjat, Y., Shahhosseini, S., Marvast, M. A. 2011a. CFD analysis of hydrodynamic, heat transfer and reaction of three phase riser reactor. Chemical Engineering Research and Design, 89: 978–989.

    Article  Google Scholar 

  • Behjat, Y., Shahhosseini, S., Marvast, M. A. 2011b. Simulation study of droplet vaporization effects on gas–solid fluidized bed. Journal of the Taiwan Institute of Chemical Engineers, 42: 419–427.

    Article  Google Scholar 

  • Bellan, S., Kodama, T., Seok Cho, H., Kim, J. S. 2022. Hydrogen production by solar fluidized bed reactor using ceria: Euler–Lagrange modelling of gas–solid flow to optimize the internally circulating fluidized bed. Journal of Thermal Science and Technology, 17: 22–76.

    Article  Google Scholar 

  • Bellan, S., Matsubara, K., Cho, H. S., Gokon, N., Kodama, T. 2018. A CFD-DEM study of hydrodynamics with heat transfer in a gas–solid fluidized bed reactor for solar thermal applications. International Journal of Heat and Mass Transfer, 116: 377–392.

    Article  Google Scholar 

  • Benzarti, S., Mhiri, H., Bournot, H., Occelli, R. 2014. Numerical simulation of turbulent fluidized bed with Geldart B particles. Advanced Powder Technology, 25: 1737–1747.

    Article  Google Scholar 

  • Bhowmik, P. K., Schlegel, J. P. 2023. Multicomponent gas mixture parametric CFD study of condensation heat transfer in small modular reactor system safety. Experimental and Computational Multiphase Flow, 5: 15–28.

    Article  Google Scholar 

  • Bisognin, P. C., Câmara Bastos, J. C. S., Meier, H. F., Padoin, N., Soares, C. 2020. Influence of different parameters on the tube-to-bed heat transfer coefficient in a gas–solid fluidized bed heat exchanger. Chemical Engineering and Processing - Process Intensification, 147: 107693.

    Article  Google Scholar 

  • Boemer, A., Qi, H., Renz, U. 1997. Eulerian simulation of bubble formation at a jet in a two-dimensional fluidized bed. International Journal of Multiphase Flow, 23: 927–944.

    Article  Google Scholar 

  • Bonniol, F., Sierra, C., Occelli, R., Tadrist, L. 2009. Similarity in dense gas–solid fluidized bed, influence of the distributor and the air-plenum. Powder Technology, 189: 14–24.

    Article  Google Scholar 

  • Botterill, J. S. M., Teoman, Y., Yüregir, K. R. 1982. The effect of operating temperature on the velocity of minimum fluidization, bed voidage and general behaviour. Powder Technology, 31: 101–110.

    Article  Google Scholar 

  • Briens, C., Dawe, M., Berruti, F. 2009. Effect of a draft tube on gas-liquid jet boundaries in a gas–solid fluidized bed. Chemical Engineering and Processing - Process Intensification, 48: 871–877.

    Article  Google Scholar 

  • Brink, H. G., Saayman, J., Nicol, W. 2011. Two dimensional fluidised bed reactor: Performance of a novel multi-vortex distributor. Chemical Engineering Journal, 175: 484–493.

    Article  Google Scholar 

  • Bruhns, S., Werther, J. 2005. An investigation of the mechanism of liquid injection into fluidized beds. AIChE Journal, 51: 766–775.

    Article  Google Scholar 

  • Buffo, A., Vanni, M., Marchisio, D. L., Fox, R. O. 2013. Multivariate Quadrature-Based Moments Methods for turbulent polydisperse gas-liquid systems. International Journal of Multiphase Flow, 50: 41–57.

    Article  Google Scholar 

  • Caicedo, G. R., Marqués, J. J. P., Ruiz, M. G., Soler, J. G. 2003. A study on the behaviour of bubbles of a 2D gas–solid fluidized bed using digital image analysis. Chemical Engineering and Processing - Process Intensification, 42: 9–14.

    Article  Google Scholar 

  • Campos, F. B., Lage, P. L. C. 2003. A numerical method for solving the transient multidimensional population balance equation using an Euler-Lagrange formulation. Chemical Engineering Science, 58: 2725–2744.

    Article  Google Scholar 

  • Chalermsinsuwan, B., Thummakul, T., Gidaspow, D., Piumsomboon, P. 2014. Characterization of fluidization regime in circulating fluidized bed reactor with high solid particle concentration using computational fluid dynamics. Korean Journal of Chemical Engineering, 31: 350–363.

    Article  Google Scholar 

  • Chang, J., Wang, G., Gao, J., Zhang, K., Chen, H., Yang, Y. 2012. CFD modeling of particle-particle heat transfer in dense gas–solid fluidized beds of binary mixture. Powder Technology, 217: 50–60.

    Article  Google Scholar 

  • Chang, J., Yang, S., Zhang, K. 2011. A particle-to-particle heat transfer model for dense gas–solid fluidized bed of binary mixture. Chemical Engineering Research and Design, 89: 894–903.

    Article  Google Scholar 

  • Chao, Z., Wang, Y., Jakobsen, J. P., Fernandino, M., Jakobsen, H. A. 2011. Derivation and validation of a binary multi-fluid Eulerian model for fluidized beds. Chemical Engineering Science, 66: 3605–3616.

    Article  Google Scholar 

  • Chao, Z., Wang, Y., Jakobsen, J. P., Fernandino, M., Jakobsen, H. A. 2012. Multi-fluid modeling of density segregation in a dense binary fluidized bed. Particuology, 10: 62–71.

    Article  Google Scholar 

  • Chen, X. Z., Shi, D. P., Gao, X., Luo, Z. H. 2011. A fundamental CFD study of the gas–solid flow field in fluidized bed polymerization reactors. Powder Technology, 205: 276–288.

    Article  Google Scholar 

  • Chew, J. W., Hays, R., Findlay, J. G., Reddy Karri, S. B., Knowlton, T. M., Cocco, R. A., Hrenya, C. M. 2011. Species segregation of binary mixtures and a continuous size distribution of Group B particles in riser flow. Chemical Engineering Science, 66: 4595–4604.

    Article  Google Scholar 

  • Chiesa, M., Mathiesen, V., Melheim, J. A., Halvorsen, B. 2005. Numerical simulation of particulate flow by the Eulerian-Lagrangian and the Eulerian-Eulerian approach with application to a fluidized bed. Computers & Chemical Engineering, 29: 291–304.

    Article  Google Scholar 

  • Chyang, C. S., Lieu, K., Hong, S. S. 2008. The effect of distributor design on gas dispersion in a bubbling fluidized bed. Journal of the Chinese Institute of Chemical Engineers, 39: 685–692.

    Article  Google Scholar 

  • Claudotte, L., Rimbert, N., Gardin, P., Simonnet, M., Lehmann, J., Oesterlé, B. 2010. A multi-QMOM framework to describe multi-component agglomerates in liquid steel. AIChE Journal, 56: 2347–2355.

    Article  Google Scholar 

  • Cooper, S., Coronella, C. J. 2005. CFD simulations of particle mixing in a binary fluidized bed. Powder Technology, 151: 27–36.

    Article  Google Scholar 

  • Cornelissen, J. T., Taghipour, F., Escudié, R., Ellis, N., Grace, J. R. 2007. CFD modelling of a liquid-solid fluidized bed. Chemical Engineering Science, 62: 6334–6348.

    Article  Google Scholar 

  • Coroneo, M., Mazzei, L., Lettieri, P., Paglianti, A., Montante, G. 2011. CFD prediction of segregating fluidized bidisperse mixtures of particles differing in size and density in gas–solid fluidized beds. Chemical Engineering Science, 66: 2317–2327.

    Article  Google Scholar 

  • Cruz, E., Steward, F. R., Pugsley, T. 2006. New closure models for CFD modeling of high-density circulating fluidized beds. Powder Technology, 169: 115–122.

    Article  Google Scholar 

  • Cui, H., Grace, J. R. 2007. Fluidization of biomass particles: A review of experimental multiphase flow aspects. Chemical Engineering Science, 62: 45–55.

    Article  Google Scholar 

  • Cui, H., Sauriol, P., Chaouki, J. 2003. High temperature fluidized bed reactor: Measurements, hydrodynamics and simulation. Chemical Engineering Science, 58: 1071–1077.

    Article  Google Scholar 

  • Dahl, S. R., Hrenya, C. M. 2005. Size segregation in gas–solid fluidized beds with continuous size distributions. Chemical Engineering Science, 60: 6658–6673.

    Article  Google Scholar 

  • Daleffe, R. V., Ferreira, M. C., Freire, J. T. 2007. Analysis of the effect of particle size distributions on the fluid dynamic behavior and segregation patterns of fluidized, vibrated and vibrofluidized beds. Asia-Pacific Journal of Chemical Engineering, 2: 3–11.

    Article  Google Scholar 

  • de Souza Braun, M. P., Mineto, A. T., Navarro, H. A., Cabezas-Gómez, L., da Silva, R. C. 2010. The effect of numerical diffusion and the influence of computational grid over gas–solid two-phase flow in a bubbling fluidized bed. Mathematical and Computer Modelling, 52: 1390–1402.

    Article  MathSciNet  Google Scholar 

  • Dehnavi, M. A., Shahhosseini, S., Hashemabadi, S. H., Ghafelebashi, S. M. 2008. CFD based evaluation of polymer particles heat transfer coefficient in gas phase polymerization reactors. International Communications in Heat and Mass Transfer, 35: 1375–1379.

    Article  Google Scholar 

  • Dehnavi, M. A., Shahhosseini, S., Hashemabadi, S. H., Ghafelebashi, S. M. 2010. CFD simulation of hydrodynamics and heat transfer in gas phase ethylene polymerization reactors. International Communications in Heat and Mass Transfer, 37: 437–442.

    Article  Google Scholar 

  • Depypere, F., Pieters, J. G., Dewettinck, K. 2004. CFD analysis of air distribution in fluidised bed equipment. Powder Technology, 145: 176–189.

    Article  Google Scholar 

  • Dhotre, M. T., Joshi, J. B. 2007. Design of a gas distributor: Three-dimensional CFD simulation of a coupled system consisting of a gas chamber and a bubble column. Chemical Engineering Journal, 125: 149–163.

    Article  Google Scholar 

  • Diemer, R. B., Olson, J. H. 2002a. A moment methodology for coagulation and breakage problems: Part 1—Analytical solution of the steady-state population balance. Chemical Engineering Science, 57: 2193–2209.

    Article  Google Scholar 

  • Diemer, R. B., Olson, J. H. 2002b. A moment methodology for coagulation and breakage problems: Part 2—Moment models and distribution reconstruction. Chemical Engineering Science, 57: 2211–2228.

    Article  Google Scholar 

  • Diemer, R. B., Olson, J. H. 2002c. A moment methodology for coagulation and breakage problems: Part 3—Generalized daughter distribution functions. Chemical Engineering Science, 57: 4187–4198.

    Article  Google Scholar 

  • Dompazis, G., Roussos, A., Kanellopoulos, V., Kiparissides, C. 2005. Dynamic evolution of the particle size distribution in multistage olefin polymerization reactors. Computer Aided Chemical Engineering, 20: 427–432.

    Article  Google Scholar 

  • Dong, S., Cao, C., Si, C., Guo, Q. 2009. Effect of perforated ratios of distributor on the fluidization characteristics in a gas–solid fluidized bed. Industrial & Engineering Chemistry Research, 48: 517–527.

    Article  Google Scholar 

  • Dutta, A., Constales, D., Heynderickx, G. J. 2012. Applying the direct quadrature method of moments to improve multiphase FCC riser reactor simulation. Chemical Engineering Science, 83: 93–109.

    Article  Google Scholar 

  • Esmaili, E., Mahinpey, N. 2011. Adjustment of drag coefficient correlations in three dimensional CFD simulation of gas–solid bubbling fluidized bed. Advances in Engineering Software, 42: 375–386.

    Article  Google Scholar 

  • Fan, C., Bi, X. T., Grace, J. R., Goto, A. 2012. Grid zone performance of a fluidized bed through analysis of local solids holdup signals. Powder Technology, 219: 37–44.

    Article  Google Scholar 

  • Fan, L. T., Hiraoka, S., Shin, S. H. 1984. Analysis of pressure fluctuations in a gas–solid fluidized bed. AIChE Journal, 30: 346–349.

    Article  Google Scholar 

  • Fan, R. 2006. Computational fluid dynamics simulation of fluidized bed polymerization reactors. Ph.D. Dissertation. Ames, USA: Iowa State University.

    Book  Google Scholar 

  • Fan, R., Fox, R. O. 2008. Segregation in polydisperse fluidized beds: Validation of a multi-fluid model. Chemical Engineering Science, 63: 272–285.

    Article  Google Scholar 

  • Fan, R., Marchisio, D. L., Fox, R. O. 2004. Application of the direct quadrature method of moments to polydisperse gas–solid fluidized beds. Powder Technology, 139: 7–20.

    Article  Google Scholar 

  • Farzaneh, M., Sasic, S., Almstedt, A. E., Johnsson, F., Pallarès, D. 2013. A study of fuel particle movement in fluidized beds. Industrial & Engineering Chemistry Research, 52: 5791–5805.

    Article  Google Scholar 

  • Felice, R. D. 1994. The voidage function for fluid-particle interaction systems. International Journal of Multiphase Flow, 20: 153–159.

    Article  Google Scholar 

  • Feng, Y. Q., Xu, B. H., Zhang, S. J., Yu, A. B., Zulli, P. 2004. Discrete particle simulation of gas fluidization of particle mixtures. AIChE Journal, 50: 1713–1728.

    Article  Google Scholar 

  • Feng, Y. Q., Yu, A. B. 2006. Discrete particle simulation of size segregation of particle mixtures in a gas fluidized bed. China Particuology, 4: 122–126.

    Article  Google Scholar 

  • Feng, Y. Q., Yu, A. B. 2007. Microdynamic modelling and analysis of the mixing and segregation of binary mixtures of particles in gas fluidization. Chemical Engineering Science, 62: 256–268.

    Article  Google Scholar 

  • Formisani, B., Cristofaro, G. D., Girimonte, R. 2001. A fundamental approach to the phenomenology of fluidization of size segregating binary mixtures of solids. Chemical Engineering Science, 56: 109–119.

    Article  Google Scholar 

  • Formisani, B., Girimonte, R., Longo, T. 2008. The fluidization pattern of density-segregating binary mixtures. Chemical Engineering Research and Design, 86: 344–348.

    Article  Google Scholar 

  • Formisani, B., Girimonte, R., Mancuso, L. 1998. Analysis of the fluidization process of particle beds at high temperature. Chemical Engineering Science, 53: 951–961.

    Article  Google Scholar 

  • Formisani, B., Girimonte, R., Pataro, G. 2002. The influence of operating temperature on the dense phase properties of bubbling fluidized beds of solids. Powder Technology, 125: 28–38.

    Article  Google Scholar 

  • Fox, R. O. 2006. Bivariate direct quadrature method of moments for coagulation and sintering of particle populations. Journal of Aerosol Science, 37: 1562–1580.

    Article  Google Scholar 

  • Francia, V., Wu, K., Coppens, M. O. 2021. Dynamically structured fluidization: Oscillating the gas flow and other opportunities to intensify gas–solid fluidized bed operation. Chemical Engineering and Processing - Process Intensification, 159: 108143.

    Article  Google Scholar 

  • Fridland, M. 1963. The effect of pressure on productivity and on entrainment of particles in fluidized bed equipment. International Chemical Engineering, 3: 519–522.

    Google Scholar 

  • Gan, J., Zhao, H., Berrouk, A. S., Yang, C., Shan, H. 2012. Impact of the drag law formulation on the predicted binary-particle segregation patterns in a gas–solid fluidized bed. Powder Technology, 218: 69–75.

    Article  Google Scholar 

  • Gao, J., Chang, J., Lu, C., Xu, C. 2008. Experimental and computational studies on flow behavior of gas–solid fluidized bed with disparately sized binary particles. Particuology, 6: 59–71.

    Article  Google Scholar 

  • Gao, J., Lan, X., Fan, Y., Chang, J., Wang, G., Lu, C., Xu, C. 2009a. CFD modeling and validation of the turbulent fluidized bed of FCC particles. AIChE Journal, 55: 1680–1694.

    Article  Google Scholar 

  • Gao, J., Lan, X., Fan, Y., Chang, J., Wang, G., Lu, C., Xu, C. 2009b. Hydrodynamics of gas–solid fluidized bed of disparately sized binary particles. Chemical Engineering Science, 64: 4302–4316.

    Article  Google Scholar 

  • Gao, X., Shi, D. P., Chen, X. Z., Luo, Z. H. 2010. Three-dimensional CFD model of the temperature field for a pilot-plant tubular loop polymerization reactor. Powder Technology, 203: 574–590.

    Article  Google Scholar 

  • Garncarek, Z., Przybylski, L., Botterill, J. S. M., Broadbent, C. J. 1997. A quantitative assessment of the effect of distributor type on particle circulation. Powder Technology, 91: 209–216.

    Article  Google Scholar 

  • Gauthier, D., Zerguerras, S., Flamant, G. 1999. Influence of the particle size distribution of powders on the velocities of minimum and complete fluidization. Chemical Engineering Journal, 74: 181–196.

    Article  Google Scholar 

  • Gera, D., Syamlal, M., O’Brien, T. J. 2004. Hydrodynamics of particle segregation in fluidized beds. International Journal of Multiphase Flow, 30: 419–428.

    Article  Google Scholar 

  • Gernon, T. M., Gilbertson, M. A. 2012. Segregation of particles in a tapered fluidized bed. Powder Technology, 231: 88–101.

    Article  Google Scholar 

  • Ghaly, A., MacDonald, K. 2012. Mixing patterns and residence time determination in a bubbling fluidized bed system. American Journal of Engineering and Applied Sciences, 5: 170–183.

    Article  Google Scholar 

  • Gibilaro, L. G., Felice, R. D., Waldram, S. P., Foscolo, P. U. 1985. Generalized friction factor and drag coefficient correlations for fluid-particle interactions. Chemical Engineering Science, 40: 1817–1823.

    Article  Google Scholar 

  • Gidaspow, D., Bezburuah, R., Ding, J. 1991. Hydrodynamics of circulating fluidized beds: Kinetic theory approach. No. CONF-920502-1. Illinois Inst. of Tech., Chicago, IL (USA). Dept. of Chemical Engineering. Information on https://www.osti.gov/servlets/purl/5896246

    Google Scholar 

  • Girimonte, R., Formisani, B. 2009. The minimum bubbling velocity of fluidized beds operating at high temperature. Powder Technology, 189: 74–81.

    Article  Google Scholar 

  • Godlieb, W., Deen, N. N., Kuipers, J. 2007. Discrete particle simulations of high pressure fluidization. Cell, 1: 1.

    Google Scholar 

  • Gómez, L. C., Milioli, F. E. 2003. Numerical study on the influence of various physical parameters over the gas–solid two-phase flow in the 2D riser of a circulating fluidized bed. Powder Technology, 132: 216–225.

    Article  Google Scholar 

  • Gómez-Barea, A., Leckner, B. 2010. Modeling of biomass gasification in fluidized bed. Progress in Energy and Combustion Science, 36: 444–509.

    Article  Google Scholar 

  • Grosch, R., Briesen, H., Marquardt, W., Wulkow, M. 2007. Generalization and numerical investigation of QMOM. AIChE Journal, 53: 207–227.

    Article  Google Scholar 

  • Guenther, C., Syamlal, M. 2001. The effect of numerical diffusion on simulation of isolated bubbles in a gas–solid fluidized bed. Powder Technology, 116: 142–154.

    Article  Google Scholar 

  • Guo, Q., Werther, J., Aue-Klett, C., Hartge, E. U. 2005. Flow maldistribution at bubble cap distributor in a plant-scale circulating fluidized bed riser. AIChE Journal, 51: 1359–1366.

    Article  Google Scholar 

  • Gupta, S. K., Agarwal, V. K., Singh, S. N., Seshadri, V., Mills, D., Singh, J., Prakash, C. 2009. Prediction of minimum fluidization velocity for fine tailings materials. Powder Technology, 196: 263–271.

    Article  Google Scholar 

  • Harshe, Y. M., Utikar, R. P., Ranade, V. V. 2004. A computational model for predicting particle size distribution and performance of fluidized bed polypropylene reactor. Chemical Engineering Science, 59: 5145–5156.

    Article  Google Scholar 

  • Hatzantonis, H., Goulas, A., Kiparissides, C. 1998. A comprehensive model for the prediction of particle-size distribution in catalyzed olefin polymerization fluidized-bed reactors. Chemical Engineering Science, 53: 3251–3267.

    Article  Google Scholar 

  • Hatzantonis, H., Kiparissides, C. 1998. The effect of the mean particle size on the dynamic behaviour of catalyzed olefin polymerization fluidized bed reactors. Computers & Chemical Engineering, 22: S127–S134.

    Article  Google Scholar 

  • He, J., Yao, Y., Huang, G., Duan, C. 2017. Intensification of the density stability in the air dense medium gas–solid fluidized bed based on a binary dense media. Chemical Engineering and Processing - Process Intensification, 122: 58–67.

    Article  Google Scholar 

  • Herzog, N., Schreiber, M., Egbers, C., Krautz, H. J. 2012. A comparative study of different CFD-codes for numerical simulation of gas–solid fluidized bed hydrodynamics. Computers & Chemical Engineering, 39: 41–46.

    Article  Google Scholar 

  • Hilal, N., Ghannam, M. T., Anabtawi, M. Z. 2001. Effect of bed diameter, distributor and inserts on minimum fluidization velocity. Chemical Engineering & Technology, 24: 161.

    Article  Google Scholar 

  • Hill, R. J., Koch, D. L., Ladd, A. J. C. 2001. Moderate-Reynolds-number flows in ordered and random arrays of spheres. Journal of Fluid Mechanics, 448: 243–278.

    Article  MathSciNet  Google Scholar 

  • Hilligardt, K., Werther, J. 1987. Influence of temperature and properties of solids on the size and growth of bubbles in gas fluidized beds. Chemical Engineering & Technology, 10: 272–280.

    Article  Google Scholar 

  • Hirsch, C. 2007. Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  • Ho, Y. K., Shamiri, A., Mjalli, F. S., Hussain, M. A. 2012. Control of industrial gas phase propylene polymerization in fluidized bed reactors. Journal of Process Control, 22: 947–958.

    Article  Google Scholar 

  • Hoomans, B. P. B., Kuipers, J. A. M., van Swaaij, W. P. M. 2000. Granular dynamics simulation of segregation phenomena in bubbling gas-fluidised beds. Powder Technology, 109: 41–48.

    Article  Google Scholar 

  • Hosseini, S. H., Ahmadi, G., Rahimi, R., Zivdar, M., Esfahany, M. N. 2010. CFD studies of solids hold-up distribution and circulation patterns in gas–solid fluidized beds. Powder Technology, 200: 202–215.

    Article  Google Scholar 

  • Hulburt, H. M., Katz, S. 1964. Some problems in particle technology. Chemical Engineering Science, 19: 555–574.

    Article  Google Scholar 

  • Hulme, I., Clavelle, E., van der Lee, L., Kantzas, A. 2005. CFD modeling and validation of bubble properties for a bubbling fluidized bed. Industrial & Engineering Chemistry Research, 44: 4254–4266.

    Article  Google Scholar 

  • Hutton, K., Mitchell, N., Frawley, P. J. 2012. Particle size distribution reconstruction: The moment surface method. Powder Technology, 222: 8–14.

    Article  Google Scholar 

  • Ishii, M. 1975. Thermo-fluid Dynamic Theory of Two-phase Flow. Paris: Eyrolles.

    Google Scholar 

  • Jang, H. T., Park, T. S., Cha, W. S. 2010. Mixing-segregation phenomena of binary system in a fluidized bed. Journal of Industrial and Engineering Chemistry, 16: 390–394.

    Article  Google Scholar 

  • Jangam, S. V., Mujumdar, A. S., Thorat, B. N. 2009. Design of an efficient gas distribution system for a fluidized bed dryer. Drying Technology, 27: 1217–1228.

    Article  Google Scholar 

  • Jena, H. M., Roy, G. K., Biswal, K. C. 2008. Studies on pressure drop and minimum fluidization velocity of gas–solid fluidization of homogeneous well-mixed ternary mixtures in un-promoted and promoted square bed. Chemical Engineering Journal, 145: 16–24.

    Article  Google Scholar 

  • Jiradilok, V., Gidaspow, D., Breault, R. W. 2007. Computation of gas and solid dispersion coefficients in turbulent risers and bubbling beds. Chemical Engineering Science, 62: 3397–3409.

    Article  Google Scholar 

  • Joseph, G. G., Leboreiro, J., Hrenya, C. M., Stevens, A. R. 2007. Experimental segregation profiles in bubbling gas-fluidized beds. AIChE Journal, 53: 2804–2813.

    Article  Google Scholar 

  • Kaneko, Y., Shiojima, T., Horio, M. 1999. DEM simulation of fluidized beds for gas-phase olefin polymerization. Chemical Engineering Science, 54: 5809–5821.

    Article  Google Scholar 

  • Khan, M. J. H., Hussain, M. A., Mansourpour, Z., Mostoufi, N., Ghasem, N. M., Abdullah, E. C. 2014. CFD simulation of fluidized bed reactors for polyolefin production—A review. Journal of Industrial and Engineering Chemistry, 20: 3919–3946.

    Article  Google Scholar 

  • Kim, J. Y., Choi, K. Y. 2001. Modeling of particle segregation phenomena in a gas phase fluidized bed olefin polymerization reactor. Chemical Engineering Science, 56: 4069–4083.

    Article  Google Scholar 

  • Kumar, A., Hodgson, P., Fabijanic, D., Gao, W. 2012. Numerical solution of gas–solid flow in fluidised bed at sub-atmospheric pressures. Advanced Powder Technology, 23: 485–492.

    Article  Google Scholar 

  • Kumar, A., Hodgson, P., Gao, W., Das, S., Fabijanic, D. 2014. Investigating the effect of segregation of particles and pressure gradient on the quality of fluidisation at sub-atmospheric pressures. Powder Technology, 254: 137–149.

    Article  Google Scholar 

  • Kumar, S., Ramkrishna, D. 1996. On the solution of population balance equations by discretization—I. A fixed pivot technique. Chemical Engineering Science, 51: 1311–1332.

    Article  Google Scholar 

  • Lau, R., Lee, P. H. V., Chen, T. 2012. Mass transfer studies in shallow bubble column reactors. Chemical Engineering and Processing: Process Intensification, 62: 18–25.

    Article  Google Scholar 

  • Lau, R., Sim, W. S. B., Mo, R. 2009. Effect of gas distributor on hydrodynamics in shallow bubble column reactors. The Canadian Journal of Chemical Engineering, 87: 847–854.

    Article  Google Scholar 

  • Leach, A., Chaplin, G., Briens, C., Berruti, F. 2009. Comparison of the performance of liquid-gas injection nozzles in a gas–solid fluidized bed. Chemical Engineering and Processing: Process Intensification, 48: 780–788.

    Article  Google Scholar 

  • Lettieri, P., Newton, D., Yates, J. G. 2001. High temperature effects on the dense phase properties of gas fluidized beds. Powder Technology, 120: 34–40.

    Article  Google Scholar 

  • Li, C., Wang, W., Guo, X., Duan, J. 2020. Fluidization characteristics of wide-size-distribution particles in a gas–solid fluidized bed reactor. International Journal of Chemical Reactor Engineering, 18(12): 20200100.

    Article  Google Scholar 

  • Li, G., Yang, X., Dai, G. 2009. CFD simulation of effects of the configuration of gas distributors on gas-liquid flow and mixing in a bubble column. Chemical Engineering Science, 64: 5104–5116.

    Article  Google Scholar 

  • Li, J., Kuipers, J. A. M. 2002. Effect of pressure on gas–solid flow behavior in dense gas-fluidized beds: A discrete particle simulation study. Powder Technology, 127: 173–184.

    Article  Google Scholar 

  • Li, S., Marshall, J. S., Liu, G., Yao, Q. 2011a. Adhesive particulate flow: The discrete-element method and its application in energy and environmental engineering. Progress in Energy and Combustion Science, 37: 633–668.

    Article  Google Scholar 

  • Li, T., Garg, R., Galvin, J., Pannala, S. 2012. Open-source MFIX-DEM software for gas–solids flows: Part II—Validation studies. Powder Technology, 220: 138–150.

    Article  Google Scholar 

  • Li, Z., Kind, M., Gruenewald, G. 2011b. Modeling the growth kinetics of fluidized-bed spray granulation. Chemical Engineering & Technology, 34: 1067–1075.

    Article  Google Scholar 

  • Liao, Y., Lucas, D. 2009. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chemical Engineering Science, 64: 3389–3406.

    Article  Google Scholar 

  • Liao, Y., Lucas, D. 2010. A literature review on mechanisms and models for the coalescence process of fluid particles. Chemical Engineering Science, 65: 2851–2864.

    Article  Google Scholar 

  • Lin, J., Han, M., Wang, T., Zhang, T., Wang, J., Jin, Y. 2004. Influence of the gas distributor on the local hydrodynamic behavior of an external loop airlift reactor. Chemical Engineering Journal, 102: 51–59.

    Article  Google Scholar 

  • Lin, Y. C., Chyang, C. S. 2003. Radial gas mixing in a fluidized bed using response surface methodology. Powder Technology, 131: 48–55.

    Article  Google Scholar 

  • Liu, J., Grace, J. R., Bi, X. 2003. Novel multifunctional optical-fiber probe: I. Development and validation. AIChE Journal, 49: 1405–1420.

    Article  Google Scholar 

  • Liu, X., Wang, S., Yang, S., Wang, H. 2021. Investigation of cluster property in the riser of circulating fluidized bed with a wide particle size distribution. Powder Technology, 390: 273–291.

    Article  Google Scholar 

  • Lu, H., He, Y., Gidaspow, D. 2003a. Hydrodynamic modelling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow. Chemical Engineering Science, 58: 1197–1205.

    Article  Google Scholar 

  • Lu, H., He, Y., Gidaspow, D., Yang, L., Qin, Y. 2003b. Size segregation of binary mixture of solids in bubbling fluidized beds. Powder Technology, 134: 86–97.

    Article  Google Scholar 

  • Lu, H., Zhao, Y., Ding, J., Gidaspow, D., Li, W. 2007. Investigation of mixing/segregation of mixture particles in gas–solid fluidized beds. Chemical Engineering Science, 62: 301–317.

    Article  Google Scholar 

  • Ma, J., Chen, X., Liu, D. 2013. Minimum fluidization velocity of particles with wide size distribution at high temperatures. Powder Technology, 235: 271–278.

    Article  Google Scholar 

  • Mansourpour, Z., Karimi, S., Zarghami, R., Mostoufi, N., Sotudeh-Gharebagh, R. 2010. Insights in hydrodynamics of bubbling fluidized beds at elevated pressure by DEM-CFD approach. Particuology, 8: 407–414.

    Article  Google Scholar 

  • Marchisio, D. L., Barresi, A. A., Garbero, M. 2002. Nucleation, growth, and agglomeration in Barium sulfate turbulent precipitation. AIChE Journal, 48: 2039–2050.

    Article  Google Scholar 

  • Marchisio, D. L., Fox, R. O. 2005. Solution of population balance equations using the direct quadrature method of moments. Journal of Aerosol Science, 36: 43–73.

    Article  Google Scholar 

  • Marchisio, D. L., Pikturna, J. T., Fox, R. O., Vigil, R. D., Barresi, A. A. 2003a. Quadrature method of moments for population-balance equations. AIChE Journal, 49: 1266–1276.

    Article  Google Scholar 

  • Marchisio, D. L., Vigil, R. D., Fox, R. O. 2003b. Quadrature method of moments for aggregation-breakage processes. Journal of Colloid and Interface Science, 258: 322–334.

    Article  Google Scholar 

  • Marshall, C. L., Rajniak, P., Matsoukas, T. 2011. Numerical simulations of two-component granulation: Comparison of three methods. Chemical Engineering Research and Design, 89: 545–552.

    Article  Google Scholar 

  • Marzocchella, A., Salatino, P., Pastena, V. D., Lirer, L. 2000. Transient fluidization and segregation of binary mixtures of particles. AIChE Journal, 46: 2175–2182.

    Article  Google Scholar 

  • Mazzei, L. 2011. Limitations of quadrature-based moment methods for modeling inhomogeneous polydisperse fluidized powders. Chemical Engineering Science, 66: 3628–3640.

    Article  Google Scholar 

  • Mazzei, L. 2013. Segregation dynamics of dense polydisperse fluidized suspensions modeled using a novel formulation of the direct quadrature method of moments. Chemical Engineering Science, 101: 565–576.

    Article  Google Scholar 

  • Mazzei, L., Casillo, A., Lettieri, P., Salatino, P. 2010a. CFD simulations of segregating fluidized bidisperse mixtures of particles differing in size. Chemical Engineering Journal, 156: 432–445.

    Article  Google Scholar 

  • Mazzei, L., Marchisio, D. L., Lettieri, P. 2010b. Direct quadrature method of moments for the mixing of inert polydisperse fluidized powders and the role of numerical diffusion. Industrial & Engineering Chemistry Research, 49: 5141–5152.

    Article  Google Scholar 

  • Mazzei, L., Marchisio, D. L., Lettieri, P. 2012. New quadrature-based moment method for the mixing of inert polydisperse fluidized powders in commercial CFD codes. AIChE Journal, 58: 3054–3069.

    Article  Google Scholar 

  • McGraw, R. 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Science and Technology, 27: 255–265.

    Article  Google Scholar 

  • Mckeen, T., Pugsley, T. 2003. Simulation and experimental validation of a freely bubbling bed of FCC catalyst. Powder Technology, 129: 139–152.

    Article  Google Scholar 

  • McKenna, T. F., Cokljat, D., Wild, P. 1998. CFD modelling of heat transfer during gas phase olefin polymerisation. Computers & Chemical Engineering, 22: S285–S292.

    Article  Google Scholar 

  • Miller, A., Gidaspow, D. 1992. Dense, vertical gas–solid flow in a pipe. AIChE Journal, 38: 1801–1815.

    Article  Google Scholar 

  • Mohammadkhah, A., Mostoufi, N. 2009. Effect of geometry of the plenum chamber on gas distribution in a fluidized bed. Industrial & Engineering Chemistry Research, 48: 7624–7630.

    Article  Google Scholar 

  • Montoya, G., Sanyal, J., Braun, M., Azhar, M. 2019. On the assessment, implementation, validation, and verification of drag and lift forces in gas-liquid applications for the CFD codes FLUENT and CFX. Experimental and Computational Multiphase Flow, 1: 255–270.

    Article  Google Scholar 

  • Müller, C. R., Holland, D. J., Sederman, A. J., Mantle, M. D., Gladden, L. F., Davidson, J. F. 2008. Magnetic resonance imaging of fluidized beds. Powder Technology, 183: 53–62.

    Article  Google Scholar 

  • Nemtsov, D. A., Zabaniotou, A. 2008. Mathematical modelling and simulation approaches of agricultural residues air gasification in a bubbling fluidized bed reactor. Chemical Engineering Journal, 143: 10–31.

    Article  Google Scholar 

  • Norouzi, H. R., Mostoufi, N., Mansourpour, Z., Sotudeh-Gharebagh, R., Chaouki, J. 2011. Characterization of solids mixing patterns in bubbling fluidized beds. Chemical Engineering Research and Design, 89: 817–826.

    Article  Google Scholar 

  • Norouzi, H. R., Mostoufi, N., Sotudeh-Gharebagh, R. 2012. Effect of fines on segregation of binary mixtures in gas–solid fluidized beds. Powder Technology, 225: 7–20.

    Article  Google Scholar 

  • Olaofe, O. O., Buist, K. A., Deen, N. G., van der Hoef, M. A., Kuipers, J. A. M. 2013. Segregation dynamics in dense polydisperse gas-fluidized beds. Powder Technology, 246: 695–706.

    Article  Google Scholar 

  • Olivieri, G., Marzocchella, A., Salatino, P. 2004. Segregation of fluidized binary mixtures of granular solids. AIChE Journal, 50: 3095–3106.

    Article  Google Scholar 

  • Olowson, P. A., Almstedt, A. E. 1991. Influence of pressure on the minimum fluidization velocity. Chemical Engineering Science, 46: 637–640.

    Article  Google Scholar 

  • Owoyemi, O., Mazzei, L., Lettieri, P. 2007. CFD modeling of binary-fluidized suspensions and investigation of role of particle-particle drag on mixing and segregation. AIChE Journal, 53: 1924–1940.

    Article  Google Scholar 

  • Pain, C. C., Mansoorzadeh, S., Gomes, J. L. M., de Oliveira, C. R. E. 2002. A numerical investigation of bubbling gas–solid fluidized bed dynamics in 2-D geometries. Powder Technology, 128: 56–77.

    Article  Google Scholar 

  • Paiva, J. M., Pinho, C., Figueiredo, R. 2004. The influence of the distributor plate on the bottom zone of a fluidized bed approaching the transition from bubbling to turbulent fluidization. Chemical Engineering Research and Design, 82: 25–33.

    Article  Google Scholar 

  • Paiva, J. M., Pinho, C., Figueiredo, R. 2008. Influence of the distributor plate and operating conditions on the fluidization quality of a gas fluidized bed. Chemical Engineering Communications, 196: 342–361.

    Article  Google Scholar 

  • Passalacqua, A., Fox, R. O., Garg, R., Subramaniam, S. 2010. A fully coupled quadrature-based moment method for dilute to moderately dilute fluid-particle flows. Chemical Engineering Science, 65: 2267–2283.

    Article  Google Scholar 

  • Patel, A. K., Waje, S. S., Thorat, B. N., Mujumdar, A. S. 2008. Tomographic diagnosis of gas maldistribution in gas–solid fluidized beds. Powder Technology, 185: 239–250.

    Article  Google Scholar 

  • Peng, B., Xu, J., Zhu, J., Zhang, C. 2011a. Numerical and experimental studies on the flow multiplicity phenomenon for gas–solids two-phase flows in CFB risers. Powder Technology, 214: 177–187.

    Article  Google Scholar 

  • Peng, B., Zhang, C., Zhu, J. 2011b. Numerical study of the effect of the gas and solids distributors on the uniformity of the radial solids concentration distribution in CFB risers. Powder Technology, 212: 89–102.

    Article  Google Scholar 

  • Peng, B., Zhang, C., Zhu, J. 2012. Improvement of the uniformity of radial solids concentration profiles in circulating fluidized-bed risers. Chemical Engineering & Technology, 35: 627–634.

    Article  Google Scholar 

  • Peng, B., Zhu, J., Zhang, C. 2010. Numerical study on the effect of the air jets at the inlet distributor in the gas–solids circulating fluidized-bed risers. Industrial & Engineering Chemistry Research, 49: 5310–5322.

    Article  Google Scholar 

  • Portoghese, F., Ferrante, L., Berruti, F., Briens, C., Chan, E. 2010. Effect of the injection-nozzle geometry on the interaction between a gas-liquid jet and a gas–solid fluidized bed. Chemical Engineering and Processing - Process Intensification, 49: 605–615.

    Article  Google Scholar 

  • Prieur Du Plessis, J. 1994. Analytical quantification of coefficients in the Ergun equation for fluid friction in a packed bed. Transport in Porous Media, 16: 189–207.

    Article  Google Scholar 

  • Ramkrishna, D. 2000. Population balances: Theory and applications to particulate systems in engineering. San Diego, USA: Academic Press.

    Google Scholar 

  • Rampure, M. R., Mahajani, S. M., Ranade, V. V. 2009. CFD simulation of bubble columns: Modeling of nonuniform gas distribution at sparger. Industrial & Engineering Chemistry Research, 48: 8186–8192.

    Article  Google Scholar 

  • Ranade, V. V. 2002. Computational Flow Modeling for Chemical Reactor Engineering (Vol. 5). Academic Press.

  • Rao, T. R., Bheemarasetti, J. V. R. 2001. Minimum fluidization velocities of mixtures of biomass and sands. Energy, 26: 633–644.

    Article  Google Scholar 

  • Reddy, R. K., Joshi, J. B. 2010. CFD modeling of pressure drop and drag coefficient in fixed beds: Wall effects. Particuology, 8: 37–43.

    Article  Google Scholar 

  • Rees, A. C., Davidson, J. F., Dennis, J. S., S Fennell, P., Gladden, L. F., Hayhurst, A. N., Mantle, M. D., Müller, C. R., Sederman, A. J. 2006. The nature of the flow just above the perforated plate distributor of a gas-fluidised bed, as imaged using magnetic resonance. Chemical Engineering Science, 61: 6002–6015.

    Article  Google Scholar 

  • Reina, J., Velo, E., Puigjaner, L. 2000. Predicting the minimum fluidization velocity of polydisperse mixtures of scrap-wood particles. Powder Technology, 111: 245–251.

    Article  Google Scholar 

  • Rice, R. W., Brainovich, J. F. 1986. Mixing/segregation in two- and three-dimensional fluidized beds: Binary systems of equidensity spherical particles. AIChE Journal, 32: 7–16.

    Article  Google Scholar 

  • Richardson, J., Zaki, W. 1954. Fluidization and sedimentation: Part 1. Transactions of the Institution of Chemical Engineers, 32: 38–58.

    Google Scholar 

  • Rigopoulos, S. 2010. Population balance modelling of polydispersed particles in reactive flows. Progress in Energy and Combustion Science, 36: 412–443.

    Article  Google Scholar 

  • Sahoo, P., Sahoo, A. 2014. Hydrodynamic studies on fluidization of Red mud: CFD simulation. Advanced Powder Technology, 25: 1699–1708.

    Article  Google Scholar 

  • Şal, S., Gül, Ö. F., Özdemir, M. 2013. The effect of sparger geometry on gas holdup and regime transition points in a bubble column equipped with perforated plate spargers. Chemical Engineering and Processing - Process Intensification, 70: 259–266.

    Article  Google Scholar 

  • Sánchez-Delgado, S., Almendros-Ibáñez, J. A., García-Hernando, N., Santana, D. 2011. On the minimum fluidization velocity in 2D fluidized beds. Powder Technology, 207: 145–153.

    Article  Google Scholar 

  • Sarkar, S., Kriebitzsch, S. H. L., van der Hoef, M. A., Kuipers, J. A. M. 2009. Gas-solid interaction force from direct numerical simulation (DNS) of binary systems with extreme diameter ratios. Particuology, 7: 233–237.

    Article  Google Scholar 

  • Sasic, S., Leckner, B., Johnsson, F. 2005. Parametric modelling of time series of pressure fluctuations in gas–solid fluidized beds. Chemical Engineering Science, 60: 5069–5077.

    Article  Google Scholar 

  • Sathiyamoorthy, D., Horio, M. 2003. On the influence of aspect ratio and distributor in gas fluidized beds. Chemical Engineering Journal, 93: 151–161.

    Article  Google Scholar 

  • Sau, D. C., Mohanty, S., Biswal, K. C. 2008. Correlations for critical fluidization velocity and maximum bed pressure drop for heterogeneous binary mixture of irregular particles in gas–solid tapered fluidized beds. Chemical Engineering and Processing - Process Intensification, 47: 2386–2390.

    Article  Google Scholar 

  • Sau, D. C., Mohanty, S., Biswal, K. C. 2010. Experimental studies and empirical models for the prediction of bed expansion in gas–solid tapered fluidized beds. Chemical Engineering and Processing - Process Intensification, 49: 418–424.

    Article  Google Scholar 

  • Schneiderbauer, S., Pirker, S. 2014. Filtered and heterogeneity-based subgrid modifications for gas–solid drag and solid stresses in bubbling fluidized beds. AIChE Journal, 60: 839–854.

    Article  Google Scholar 

  • Schneiderbauer, S., Puttinger, S., Pirker, S. 2013. Comparative analysis of subgrid drag modifications for dense gas-particle flows in bubbling fluidized beds. AIChE Journal, 59: 4077–4099.

    Article  Google Scholar 

  • Ścią, M., Bandrowski, J. 1995. High-pressure segregation of solids with a wide particle size distribution when fluidized with a gas. The Chemical Engineering Journal and the Biochemical Engineering Journal, 60: 89–95.

    Article  Google Scholar 

  • Selma, B., Bannari, R., Proulx, P. 2010. Simulation of bubbly flows: Comparison between direct quadrature method of moments (DQMOM) and method of classes (CM). Chemical Engineering Science, 65: 1925–1941.

    Article  Google Scholar 

  • Shamiri, A., Hussain, M. A., Mjalli, F. S., Mostoufi, N. 2010. Kinetic modeling of propylene homopolymerization in a gas-phase fluidized-bed reactor. Chemical Engineering Journal, 161: 240–249.

    Article  Google Scholar 

  • Shamiri, A., Hussain, M. A., Mjalli, F. S., Mostoufi, N. 2012. Improved single phase modeling of propylene polymerization in a fluidized bed reactor. Computers & Chemical Engineering, 36: 35–47.

    Article  Google Scholar 

  • Shamiri, A., Hussain, M. A., Mjalli, F. S., Mostoufi, N., Hajimolana, S. 2013. Dynamics and predictive control of gas phase propylene polymerization in fluidized bed reactors. Chinese Journal of Chemical Engineering, 21: 1015–1029.

    Article  Google Scholar 

  • Shamiri, A., Hussain, M. A., Mjalli, F. S., Shafeeyan, M. S., Mostoufi, N. 2014. Experimental and modeling analysis of propylene polymerization in a pilot-scale fluidized bed reactor. Industrial & Engineering Chemistry Research, 53: 8694–8705.

    Article  Google Scholar 

  • Shamiri, A., Wong, S. W., Zanil, M. F., Hussain, M. A., Mostoufi, N. 2015. Modified two-phase model with hybrid control for gas phase propylene copolymerization in fluidized bed reactors. Chemical Engineering Journal, 264: 706–719.

    Article  Google Scholar 

  • Sharma, A. M., Kumar, A., Patil, K. N., Huhnke, R. L. 2013. Fluidization characteristics of a mixture of gasifier solid residues, switchgrass and inert material. Powder Technology, 235: 661–668.

    Article  Google Scholar 

  • Shoushtari, N. A., Hosseini, S. A., Soleimani, R. 2013. Investigation of segregation of large particles in a pressurized fluidized bed with a high velocity gas: A discrete particle simulation. Powder Technology, 246: 398–412.

    Article  Google Scholar 

  • Shu, Z., Peng, G., Wang, J., Zhang, N., Li, S., Lin, W. 2014. Comparative CFD analysis of heterogeneous gas–solid flow in a countercurrent downer reactor. Industrial & Engineering Chemistry Research, 53: 3378–3384.

    Article  Google Scholar 

  • Sidorenko, I., Rhodes, M. J. 2004. Influence of pressure on fluidization properties. Powder Technology, 141: 137–154.

    Article  Google Scholar 

  • Silva, L. F. L. R., Rodrigues, R. C., Mitre, J. F., Lage, P. L. C. 2010. Comparison of the accuracy and performance of quadrature-based methods for population balance problems with simultaneous breakage and aggregation. Computers & Chemical Engineering, 34: 286–297.

    Article  Google Scholar 

  • Silva, L., Lage, P. 2011. Development and implementation of a polydispersed multiphase flow model in OpenFOAM. Computers & Chemical Engineering, 35: 2653–2666.

    Article  Google Scholar 

  • Sobrino, C., Ellis, N., de Vega, M. 2009. Distributor effects near the bottom region of turbulent fluidized beds. Powder Technology, 189: 25–33.

    Article  Google Scholar 

  • Su, J., Gu, Z., Li, Y., Feng, S., Xu, X. Y. 2008. An adaptive direct quadrature method of moment for population balance equations. AIChE Journal, 54: 2872–2887.

    Article  Google Scholar 

  • Su, J., Gu, Z., Li, Y., Feng, S., Yun Xu, X. 2007. Solution of population balance equation using quadrature method of moments with an adjustable factor. Chemical Engineering Science, 62: 5897–5911.

    Article  Google Scholar 

  • Subramani, H. J., Mothivel Balaiyya, M. B., Miranda, L. R. 2007. Minimum fluidization velocity at elevated temperatures for Geldart’s group-B powders. Experimental Thermal and Fluid Science, 32: 166–173.

    Article  Google Scholar 

  • Sun, J., Wang, J., Yang, Y. 2012a. CFD investigation of particle fluctuation characteristics of bidisperse mixture in a gas–solid fluidized bed. Chemical Engineering Science, 82: 285–298.

    Article  Google Scholar 

  • Sun, J., Zhou, Y., Ren, C., Wang, J., Yang, Y. 2011. CFD simulation and experiments of dynamic parameters in gas–solid fluidized bed. Chemical Engineering Science, 66: 4972–4982.

    Article  Google Scholar 

  • Sun, L., Xu, W., Liu, G., Sun, D., Lu, H., Tang, Y., Li, D. 2012b. Prediction of flow behavior of particles in a tapered bubbling fluidized bed using a second-order moment-frictional stresses model. Chemical Engineering Science, 84: 170–181.

    Article  Google Scholar 

  • Syamlal, M., O’Brien, T. J. 1988. Simulation of granular layer inversion in liquid fluidized beds. International Journal of Multiphase Flow, 14: 473–481.

    Article  Google Scholar 

  • Syamlal, M., Rogers, W., O’Brien, T. J. 1993. MFIX documentation: Theory guide. Technical Note, No. DOE/METC-94/1004. Morgantown, USA: USDOE Morgantown Energy Technology Center.

    Book  Google Scholar 

  • Tagliaferri, C., Mazzei, L., Lettieri, P., Marzocchella, A., Olivieri, G., Salatino, P. 2013. CFD simulation of bubbling fluidized bidisperse mixtures: Effect of integration methods and restitution coefficient. Chemical Engineering Science, 102: 324–334.

    Article  Google Scholar 

  • Thorat, B. N., Joshi, J. B. 2004. Regime transition in bubble columns: Experimental and predictions. Exerimentalp Thermal and Fluid Science, 28: 423–430.

    Article  Google Scholar 

  • Tiwari, S., Drumm, C., Attarakih, M., Kuhnert, J., Bart, H. J. 2008. Coupling of the CFD and the droplet population balance equation with the finite pointset method. In: Meshfree Methods for Partial Differential Equations IV. Berlin, Heidelberg: Springer, 315–334.

    Chapter  Google Scholar 

  • Torfeh, S., Kouhikamali, R. 2020. Numerical study of different gas–solid flow regimes effects on hydrodynamics and heat transfer performance of a fluidized bed reactor. Heat Transfer—Asian Research, 49: 213–235.

    Article  Google Scholar 

  • Upadhyay, R. R., Ezekoye, O. A. 2006. Treatment of size-dependent aerosol transport processes using quadrature based moment methods. Journal of Aerosol Science, 37: 799–819.

    Article  Google Scholar 

  • Vaidheeswaran, A., Li, C., Ashfaq, H., Wu, X., Rowan, S., Rogers, W. A. 2022. Validation experiments on bubbling fluidization of Group B glass particles. Experimental and Computational Multiphase Flow, 4: 264–273.

    Article  Google Scholar 

  • van Sint Annaland, M., Bokkers, G. A., Goldschmidt, M. J. V., Olaofe, O. O., van der Hoef, M. A., Kuipers, J. A. M. 2009. Development of a multi-fluid model for poly-disperse dense gas–solid fluidised beds, Part II: Segregation in binary particle mixtures. Chemical Engineering Science, 64: 4237–4246.

    Article  Google Scholar 

  • van Wachem, B. G. M., Schouten, J. C., van den Bleek, C. M., Krishna, R., Sinclair, J. L. 2001a. CFD modeling of gas-fluidized beds with a bimodal particle mixture. AIChE Journal, 47: 1292–1302.

    Article  Google Scholar 

  • van Wachem, B. G. M., Schouten, J. C., van den Bleek, C. M., Krishna, R., Sinclair, J. L. 2001b. Comparative analysis of CFD models of dense gas–solid systems. AIChE Journal, 47: 1035–1051.

    Article  Google Scholar 

  • Wan, Z., Yang, S., Wang, H. 2021. MP-PIC investigation of the multi-scale gas–solid flow in the bubbling fluidized bed. Experimental and Computational Multiphase Flow, 3: 289–302.

    Article  Google Scholar 

  • Wang, J., van der Hoef, M. A., Kuipers, J. A. M. 2009. Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: A tentative answer. Chemical Engineering Science, 64: 622–625.

    Article  Google Scholar 

  • Wang, J., van der Hoef, M. A., Kuipers, J. A. M. 2010a. CFD study of the minimum bubbling velocity of Geldart A particles in gas-fluidized beds. Chemical Engineering Science, 65: 3772–3785.

    Article  Google Scholar 

  • Wang, J., van der Hoef, M. A., Kuipers, J. A. M. 2010b. Coarse grid simulation of bed expansion characteristics of industrial-scale gas–solid bubbling fluidized beds. Chemical Engineering Science, 65: 2125–2131.

    Article  Google Scholar 

  • Wang, S., Liu, H., Zhang, L., Yao, X. 1995. A new method to deagglomeration of PbTiO3 ultrafine powders. Ferroelectrics Letters Section, 19: 95–100.

    Article  Google Scholar 

  • Wang, X. Y., Jiang, F., Xu, X., Fan, B. G., Lei, J., Xiao, Y. H. 2010c. Experiment and CFD simulation of gas–solid flow in the riser of dense fluidized bed at high gas velocity. Powder Technology, 199: 203–212.

    Article  Google Scholar 

  • Wang, Y., Cheng, Y., Jin, Y., Bi, H. T. 2007. On impacts of solid properties and operating conditions on the performance of gas–solid fluidization systems. Powder Technology, 172: 167–176.

    Article  Google Scholar 

  • Wang, Y., Yuan, F. 2014. The basic study of methanol to gasoline in a pilot-scale fluidized bed reactor. Journal of Industrial and Engineering Chemistry, 20: 1016–1021.

    Article  Google Scholar 

  • Weimer, A. W., Quarderer, G. J. 1985. On dense phase voidage and bubble size in high pressure fluidized beds of fine powders. AIChE Journal, 31: 1019–1028.

    Article  Google Scholar 

  • Wen, C. Y., Yu, Y. H. 1966a. Mechanics of Fluidization. CEP Symposium Series, 62: 100–111.

    Google Scholar 

  • Wen, C. Y., Yu, Y. H. 1966b. A generalized method for predicting the minimum fluidization velocity. AIChE Journal, 12: 610–612.

    Article  Google Scholar 

  • Wirsum, M., Fett, F., Iwanowa, N., Lukjanow, G. 2001. Particle mixing in bubbling fluidized beds of binary particle systems. Powder Technology, 120: 63–69.

    Article  Google Scholar 

  • Wormsbecker, M., Pugsley, T., Ommen, J. R. V., Nijenhuis, J., Mudde, R. 2009. Effect of distributor design on the bottom zone hydrodynamics in a fluidized bed dryer using 1-D X-ray densitometry imaging. Industrial & Engineering Chemistry Research, 48: 7004–7015.

    Article  Google Scholar 

  • Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2021. Parameter analysis and wall effect of radiative heat transfer for CFD-DEM simulation in nuclear packed pebble bed. Experimental and Computational Multiphase Flow, 3: 250–257.

    Article  Google Scholar 

  • Wu, S. Y., Baeyens, J. 1998. Segregation by size difference in gas fluidized beds. Powder Technology, 98: 139–150.

    Article  Google Scholar 

  • Xie, J., Zhong, W., Jin, B., Shao, Y., Huang, Y. 2013. Eulerian-Lagrangian method for three-dimensional simulation of fluidized bed coal gasification. Advanced Powder Technology, 24: 382–392.

    Article  Google Scholar 

  • Xing, C., Wang, T., Wang, J. 2013. Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column. Chemical Engineering Science, 95: 313–322.

    Article  Google Scholar 

  • Xu, C., Zhu, J. X. 2006. Effects of gas type and temperature on fine particle fluidization. China Particuology, 4: 114–121.

    Article  Google Scholar 

  • Yan, A., Huang, W., Zhu, J. J. 2008. The influence of distributor structure on the solids distribution and flow development in circulating fluidized beds. The Canadian Journal of Chemical Engineering, 86: 1023–1031.

    Article  Google Scholar 

  • Yan, W. C., Li, J., Luo, Z. H. 2012a. A CFD-PBM coupled model with polymerization kinetics for multizone circulating polymerization reactors. Powder Technology, 231: 77–87.

    Article  Google Scholar 

  • Yan, W. C., Luo, Z. H., Guo, A. Y. 2011. Coupling of CFD with PBM for a pilot-plant tubular loop polymerization reactor. Chemical Engineering Science, 66: 5148–5163.

    Article  Google Scholar 

  • Yan, W. C., Luo, Z. H., Lu, Y. H., Chen, X. D. 2012b. A CFD-PBM-PMLM integrated model for the gas–solid flow fields in fluidized bed polymerization reactors. AIChE Journal, 58: 1717–1732.

    Article  Google Scholar 

  • Yang, M., del Pozo, D. F., Torfs, E., Rehman, U., Yu, D., Nopens, I. 2021a. Numerical simulation on the effects of bubble size and internal structure on flow behavior in a DAF tank: A comparative study of CFD and CFD-PBM approach. Chemical Engineering Journal Advances, 7: 100131.

    Article  Google Scholar 

  • Yang, N., Wang, W., Ge, W., Li, J. 2003. CFD simulation of concurrent-up gas–solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chemical Engineering Journal, 96: 71–80.

    Article  Google Scholar 

  • Yang, S., Wang, H., Wei, Y., Hu, J., Chew, J. W. 2019a. Particle-scale modeling of biomass gasification in the three-dimensional bubbling fluidized bed. Energy Conversion and Management, 196: 1–17.

    Article  Google Scholar 

  • Yang, S., Wang, S., Luo, K., Fan, J., Chew, J. W. 2019b. Numerical investigation of the cluster property and flux distribution in three-dimensional full-loop circulating fluidized bed with multiple parallel cyclones. Powder Technology, 342: 253–266.

    Article  Google Scholar 

  • Yang, S., Wang, S., Wang, H. 2021b. Impact of polydispersity on the flow dynamics in the riser of a circulating fluidized bed. Powder Technology, 381: 489–502.

    Article  Google Scholar 

  • Yang, S., Zhou, T., Wei, Y., Hu, J., Wang, H. 2019c. Influence of size-induced segregation on the biomass gasification in bubbling fluidized bed with continuous lognormal particle size distribution. Energy Conversion and Management, 198: 111848.

    Article  Google Scholar 

  • Yang, W. C., Chitester, D. C., Kornosky, R. M., Keairns, D. L. 1985. A generalized methodology for estimating minimum fluidization velocity at elevated pressure and temperature. AIChE Journal, 31: 1086–1092.

    Article  Google Scholar 

  • Yao, Y., He, Y. J., Luo, Z. H., Shi, L. 2014. 3D CFD-PBM modeling of the gas–solid flow field in a polydisperse polymerization FBR: The effect of drag model. Advanced Powder Technology, 25: 1474–1482.

    Article  Google Scholar 

  • Yates, J. G. 1996. Effects of temperature and pressure on gas–solid fluidization. Chemical Engineering Science, 51: 167–205.

    Article  Google Scholar 

  • Ye, M., van der Hoef, M. A., Kuipers, J. A. M. 2005. The effects of particle and gas properties on the fluidization of Geldart A particles. Chemical Engineering Science, 60: 4567–4580.

    Article  Google Scholar 

  • Yiannoulakis, H., Yiagopoulos, A., Kiparissides, C. 2001. Recent developments in the particle size distribution modeling of fluidized-bed olefin polymerization reactors. Chemical Engineering Science, 56: 917–925.

    Article  Google Scholar 

  • You, J., Wang, D., Zhu, C. 2009. Entrance effects on gas–solid riser flow structure. Industrial & Engineering Chemistry Research, 48: 310–319.

    Article  Google Scholar 

  • Yutani, N., Ho, T. C., Fan, L. T., Walawender, W. P., Song, J. C. 1983. Statistical study of the grid zone behavior in a shallow gas–solid fluidized bed using a mini-capacitance probe. Chemical Engineering Science, 38: 575–582.

    Article  Google Scholar 

  • Zhang, G., Ouyang, F. 1985. Heat transfer between the fluidized bed and the distributor plate. Industrial & Engineering Chemistry Process Design and Development, 24: 430–433.

    Article  Google Scholar 

  • Zhang, J., Li, Y., Fan, L. S. 2000. Numerical studies of bubble and particle dynamics in a three-phase fluidized bed at elevated pressures. Powder Technology, 112: 46–56.

    Article  Google Scholar 

  • Zhang, Y., Reese, J. M. 2003. The drag force in two-fluid models of gas–solid flows. Chemical Engineering Science, 58: 1641–1644.

    Article  Google Scholar 

  • Zhang, Y., Zhong, W., Jin, B., Xiao, R. 2013. Mixing and segregation behavior in a spout-fluid bed: Effect of the particle density. Industrial & Engineering Chemistry Research, 52: 5489–5497.

    Article  Google Scholar 

  • Zhao, L., Li, J., Pan, Y. 2008. Investigations on drying of salt granules and the air distributing system of fluidized bed. Drying Technology, 26: 1369–1372.

    Article  Google Scholar 

  • Zhong, H., Gao, J., Xu, C., Lan, X. 2012. CFD modeling the hydrodynamics of binary particle mixtures in bubbling fluidized beds: Effect of wall boundary condition. Powder Technology, 230: 232–240.

    Article  Google Scholar 

  • Zhong, W., Jin, B., Zhang, Y., Wang, X., Xiao, R. 2008. Fluidization of biomass particles in a gas–solid fluidized bed. Energy & Fuels, 22: 4170–4176.

    Article  Google Scholar 

  • Zhong, W., Yu, A., Zhou, G., Xie, J., Zhang, H. 2016. CFD simulation of dense particulate reaction system: Approaches, recent advances and applications. Chemical Engineering Science, 140: 16–43.

    Article  Google Scholar 

  • Zhou, T., Li, H. 2000. Force balance modelling for agglomerating fluidization of cohesive particles. Powder Technology, 111: 60–65.

    Article  Google Scholar 

  • Zhou, Y., Li, H., Zhu, M., Hu, X., Yuan, H., Jiang, S., Han, L. 2020. Effects of liquid content and surface tension on fluidization characteristics in a liquid-containing gas–solid fluidized bed: A CFD-DEM study. Chemical Engineering and Processing - Process Intensification, 153: 107928.

    Article  Google Scholar 

  • Zhu, H. P., Zhou, Z. Y., Yang, R. Y., Yu, A. B. 2007. Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science, 62: 3378–3396.

    Article  Google Scholar 

  • Zimmermann, S., Taghipour, F. 2005. CFD modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors. Industrial & Engineering Chemistry Research, 44: 9818–9827.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shamiri.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, V., Borhani, T.N.G., Shamiri, A. et al. Computational fluid dynamics modeling of gas-solid fluidized bed reactor: Influence of numerical and operating parameters. Exp. Comput. Multiph. Flow 6, 85–125 (2024). https://doi.org/10.1007/s42757-023-0158-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-023-0158-x

Keywords

Navigation