Skip to main content

Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson’s disease: possible implications of glial cells

  • Chapter
Oxidative Stress and Neuroprotection

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 71))

Summary

Monoamine oxidases A and B (MAO A and MAO B) are the major enzymes that catalyze the oxidative deamination of monoamine neurotaransmitters such as dopamine (DA), noradrenaline, and serotonin in the central and peripheral nervous systems. MAO B is mainly localized in glial cells. MAO B also oxidizes the xenobiotic 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) to a parkinsonism-producing neurotoxin, 1-methyl-4-phenyl-pyridinium (MPP+). MAO B may be closely related to the pathogenesis of Parkinson’s disease (PD), in which neuromelanincontaining DA neurons in the substantia nigra projecting to the striatum in the brain selectively degenerate. MAO B degrades the neurotransmitter DA that is deficient in the nigro-striatal region in PD, and forms H2O2 and toxic aldehyde metabolites of DA. H2O2 produces highly toxic reactive oxygen species (ROS) by Fenton reaction that is catalyzed by iron and neuromelanin. MAO B inhibitors such as L-(−)-deprenyl (selegiline) and rasagiline are effective for the treatment of PD. Concerning the mechanism of the clinical efficacy of MAO B inhibitors in PD, the inhibition of DA degradation (a symptomatic effect) and also the prevention of the formation of neurotoxic DA metabolites, i.e., ROS and dopamine derived aldehydes have been speculated. As another mechanism of clinical efficacy, MAO B inhibitors such as selegiline are speculated to have neuroprotective effects to prevent progress of PD. The possible mechanism of neuroprotection of MAO B inhibitors may be related not only to MAO B inhibition but also to induction and activation of multiple factors for anti-oxidative stress and anti-apoptosis: i.e., catalase, superoxide dismutase 1 and 2, thioredoxin, Bcl-2, the cellular poly(ADP-ribosyl)ation, and binding to glyceraldehydes-3-phosphate dehydrogenase (GAPDH). Furthermore, it should be noted that selegiline increases production of neurotrophins such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrphic factor (GDNF), possibly from glial cells, to protect neurons from inflammatory process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abell CW, Kwan SW (2001) Molecular characterization of monoamine oxidase A and B. Prog Nucleic Acid Mol Biol 65: 129–156

    CAS  Google Scholar 

  • Andoh T, Chock PB, Chiueh CC (2002) The roles of thioredoxin in protection against oxidative stress-induced apoptosis in SH-SY5Y cells. J Biol Chem 277: 9655–9660

    Article  PubMed  CAS  Google Scholar 

  • Ando T, Chock PB, Murphy DL, Chiueh CC (2005) Role of the redox protein thioredoxin in cytoprotective mechanism evoked by (−)-deprenyl. Mol Pharmacol on line publication: 12 August 2005

    Google Scholar 

  • Arai R, Kimura H, Nagatsu I, Maeda T (1997) Preferential localization of monoamine oxidase type A in neurons of the locus coeruleus and type B activity in neurons of the dorsal raphe nucleus of the rat: a detailed enzyme histochemical study. Brain Res 745: 352–356

    Article  PubMed  CAS  Google Scholar 

  • Arai R, Horiike K, Hasegawa Y (1998) Dopamine-degrading activity of monoamine oxidase is not detected by histochemistry in neurons of the substantia nigra pars compacta. Brain Res 812: 275–278

    Article  PubMed  CAS  Google Scholar 

  • Bach AWJ, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC (1988) cDNA cloning of human liver monoamine oxidase A and B: Molecular basis of differences in enzymatic properties. Proc Nat Acad Sci USA 85: 4934–4938

    Article  PubMed  CAS  Google Scholar 

  • Berry MD, Juorio AV, Peterson IA (1994) The functional role of monoamine oxidase A and B in the mammalian central nervous system. Progr Neurobiol 42: 375–391

    Article  CAS  Google Scholar 

  • Betarbet R, Sherer TB, Mackenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3: 1301–1306

    Article  PubMed  CAS  Google Scholar 

  • Binda C, Mattevi A, Edmondson DE (2002a) Structure-function relationship in flavoenzyme-dependent amine oxidase. J Biol Chem 277: 23973–23976

    Article  PubMed  CAS  Google Scholar 

  • Binda C, Newton-Vinson P, Hubalek F, Edmondson DE, Mattevi A (2002b) Structure of human monoamine oxidase B a drug turget for the treatment of neurological disorders. Nat Struct Biol 9: 22–26

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Marton J (1985) Increased life expectancy resulting from addition of L-deprenyl to madopar® treatment in Parkinson’s disease: a longterm study. J Neural Transm 64: 113–127

    Article  PubMed  CAS  Google Scholar 

  • Bond PA, Cundall RL (1977) Properties of monoamine oxidase (MAO) in human blood platelets, plasma, lymphocytes and granulocytes. Clin Chim Acta 80: 317–326

    Article  PubMed  CAS  Google Scholar 

  • Brabeck C, Pfeiffer R, Leake A, Beneke S, Meyer R, Buerkle A (2003) L-Selegiline potentiates the cellular poly(ADP-ribosyl)ation: Response to ionized radiation. J Pharmacol Exper Ther 306: 973–979

    Article  CAS  Google Scholar 

  • Bringmann G, Brueckner R, Muenchbach M, Feineis D, God R, Wesemann W, Grote C, Herderich M, Diem S, Lesch KP, Moessner R, Storch A (2000) “TaClo”, a chloral-derived mammalian alkaloid with neurotoxic properties. In: Storch A, Collins MA (eds) Neurotoxic factors in Parkinson’s disease and related disorders. Kluwer Academic Publishing/Plenum, New York, pp 145–149

    Google Scholar 

  • Calne DB, Langston JW (1983) Aetiology of Parkinson’s disease. Lancet 2: 1457–1459

    Article  PubMed  CAS  Google Scholar 

  • Caparros-Lefebvre D, Elbaz A, The Caribbean Parkinsonism Study Group (1999) Possible relation of atypical parkinsonism in French West Indies with consumption of tropical plants: A case-control study. Lancet 354: 281–285

    Article  PubMed  CAS  Google Scholar 

  • Cesura AM, Gottowik J, Lang G, Malherbe P, Da Prada MJ (1998) Structure-function relationships of mitochondrial monoamine oxidase A and B: chimaeric enzymes and site-directed mutagenesis studies. J Neural Transm [Suppl 52]: 189–2000

    CAS  Google Scholar 

  • Chen ZY, Hotamisligil GS, Huang JK, Wen L, Ezzeddine D, Aydin-Muderrisoglu N, Powell JF, Huang H, Brealfield XO, Craig I, Hsu YPP (1991) Structure of the human gene for monoamine oxidase type A. Nucleic Acids Res 19: 4537–4541

    PubMed  CAS  Google Scholar 

  • Chen ZY, Powell JF, Hsu YPP, Breakfield XO, Craig IW (1992) Organization of the human monoamine oxidase genes and long-range physical mapping around them. Genomics 14: 75–82

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Wu HF, Shih JC (1993) The deduced amino acid sequences of human platelet and frontal cortex monoamine oxidase B are identical. J Neurochem 61: 187–190

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Shih JC (1998) Monoamine oxidase A and B: structure, function, and behavior. Adv Pharmacol 42: 292–296

    PubMed  CAS  Google Scholar 

  • Collins GGS, Sandler M, Williams ED, Youdim MBH (1970) Multiple forms of human brain mitochondrial monoamine oxidase. Nature 225: 817–820

    Article  PubMed  CAS  Google Scholar 

  • Collins MA, Neafsey EJ (2000) Beta-carboline analogues of MPP+ as environmental neurotoxins. In: Storch A, Collins MA(eds) Neurotoxic factors in Parkinson’s disease and related disorders. Kluwer Academic Publishing/Plenum, New York, pp 115–130

    Google Scholar 

  • Cookson MR (2005) The biochemistry of Parkinson’s disease. Ann Rev Biochem 74: 29–52

    Article  PubMed  CAS  Google Scholar 

  • Counsell C (1998) Effect of adding selegiline to levodopa in early, mild Parkinson’s disease: formal systematic review of data on patients in all relevant trials is required. Brit Med J 317: 1586

    PubMed  CAS  Google Scholar 

  • Davis GCB, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1: 249–254

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet: 1219–1220

    Google Scholar 

  • Dexter DT, Sian J, Jenner P, Marsden CD (1993) Implicatios of alterations in trace element levels in brain in Parkinson’s disease and other neurological disorders affecting the basal ganglia. In: Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y (eds) Parkinson’s disease: Frombasic research to treatmant. Adv Neurol Vol. 60, Raven Press, New York, pp 273–281

    Google Scholar 

  • Donnelly CH, Richelson E, Murphy DL (1976) Properties of monoamine oxidase in mouse neuroblastoma NIE-115 cells. Biochem Pharmacol 25: 1639–1643

    Article  PubMed  CAS  Google Scholar 

  • Donnelly CH, Murphy DL (1977) Substrate and inhibitor-related characteristics of human platelet monoamine oxidase. Biochem Pharmacol 26: 853–858

    Article  PubMed  CAS  Google Scholar 

  • Edmondson DE, Binda C, Mattevi A (2004) The FAD binding sites of human monoamine oxidases A and B. Neuro Toxicology 25: 63–72

    CAS  Google Scholar 

  • Egashira T, Yamanaka Y (1981) Further studies on the synthesis of A-form of MAO. Jap J Pharmacol 31: 763–770

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Wiberg A, Oreland L, Marcusson J, Winblad B (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49: 1–20

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Logan J, Wang GJ, MacGregor RR, Schlyer Christian D, Wolf AP, Pappaas N, Alexoff D, Shea C, Dorfinger E, Kruchowy L, Yoo K, Fazzini E, Patlak C (1994) Slow recovery of human brain MAO-B after deprenyl (selegiline withdrawal). Synapse 18: 86–93

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor RR (1996) Inhibition of MAO B in the brain of smokers. Nature 379: 733–735

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ, Pappas N, Shea C, MacGregor RR (1998) Visualization of monoamine oxidase in human brain. Adv Pharmacol 42: 304–307

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1992) The molecular pharmacology of L-deprenyl. Eur J Pharmacol 226: 97–108

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Reichnmann H, Riederer P (2003) Die Parkinson-Krankheit. Grundlagen, Klinik, Therapie, 3rd edn. Springer, Wien New York

    Google Scholar 

  • Gomes B, Naguwa G, Kloepfer HG, Yasunobu KT (1969) Amine oxidase XV. The sulfhydryl groups of beef liver mitochondrial amine oxidase. Arch Biochem Biophys 132: 28–33

    Article  PubMed  CAS  Google Scholar 

  • Green AR, Mitchell BD, Tordoff AF, Youdim MBH (1977) Evidence for dopamine deamination by both type A and type B monoamine oxidase in rat brain in vivo and for the degree of inhibition of enzyme necessary for increased functional activity of dopamine and 5-hydroxytryptamine. Br J Pharmacol 60: 343–349

    PubMed  CAS  Google Scholar 

  • Grimsby J, Lan NC, Neve R, Chen K, Shih JC (1990) Tissue distribution of human monoamine oxidase A and B mRNA. J Neurochem 55: 1166–1169

    Article  PubMed  CAS  Google Scholar 

  • Grimsby J, Chen K, Wang LJ, Lan NC, Shih JC (1991) Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc Nat Acad Sci USA 88: 3637–3641

    Article  PubMed  CAS  Google Scholar 

  • Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson’s disease: Is ther a causal link? Exper Neurol 193: 279–290

    Article  CAS  Google Scholar 

  • Harada M, Nagatsu T (1969) Identification of flavin in the purified beef liver mitochondrial monoamine oxidase. Experientia 25: 538–534

    Article  Google Scholar 

  • Harada M, Mizutani K, Nagatsu T (1971) Purification and properties of mitochondrial monoamine oxidase in beef brain. J Neurochem 18: 559–569

    Article  PubMed  CAS  Google Scholar 

  • Hawkins M Jr, Breakfield XO (1978) Monoamine oxidase A and B in cultured cells. J Neurochem 30: 1391–1397

    Article  PubMed  CAS  Google Scholar 

  • Hida T, Hasegawa Y, Arai R (1999) Histochemical study of dopaminedegrading monoamine oxidase activity in dopaminergic neurons of rat brain. Brain Res 842: 491–495

    Article  PubMed  CAS  Google Scholar 

  • Hirata Y, Sugimura H, Takei H, Nagatsu T (1986) The effects of pyridinium salts, structurally related compounds of 1-methyl-4-phenylpyridinium ion (MPP+), on tyrosine hydroxylation in rat striatal tissue slices. Brain Res 397: 341–344

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and alminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56: 446–451

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann NY Acad Sci 991: 214–228

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (2001) Dopamine and Parkinson’s disease: A possible personal view of the past, the present, and the future. In: Calne D, Calne SM (eds) Parkinson’s disease. Adv Neurol Vol. 86, Lippincott Williams & Wilkins, Philadelphia, pp 1–11

    Google Scholar 

  • Hsu YP, Weyler W, Chen S, Sims KB, Rinehart WB, Utterback MC, Powell JF (1988) Structural features of human monoamine oxidase A elucidated from cDNA and peptide sequences. J Neurochem 51: 1321–1324

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of parkin. Cell 105: 891–902

    Article  PubMed  CAS  Google Scholar 

  • Imamura K, Nishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106: 518–526

    Article  PubMed  CAS  Google Scholar 

  • Imamura K, Hishikawa N, Ono K, Suzuki H, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2005) Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropatholo 109: 141–150

    Article  CAS  Google Scholar 

  • Ito A, Kuwahara T, Inadome S, Sagara Y (1988) Molecular cloning of a cDNA for rat liver monoamine oxidase B. Biochem Biophys Res Commun 157: 970–976

    Article  PubMed  CAS  Google Scholar 

  • Ives NJ, Stowe RL, Marro J, Counsell C, Macleod A, Clarke CE, Gray R, Wheatley K (2004) Monoamine oxidase type B inhibitors in early Parkinson’s disease: meta-analysis of 17 randomised trials involving 3525 patients. BMJ 329: 593–559

    Article  PubMed  CAS  Google Scholar 

  • Jahung JW, Houpt TA, Wessel TC, Chen K, Shih JC (1997) Localization of monoamine oxidase A and B mRNA in the rat brain by in situ hybridization. Synapse 25: 30–36

    Article  Google Scholar 

  • Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MBH (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1171

    Article  PubMed  CAS  Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17: 1285–1287

    Article  PubMed  CAS  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608

    Article  PubMed  CAS  Google Scholar 

  • Kitahama K, Maeda T, Denney RM, Jouvet M (1994) Monoamine oxidase: distribution in the cat brain studied by enzyme-and immunohisto-chemistry: recent progress. Progr Neurobiol 42: 53–78

    Article  CAS  Google Scholar 

  • Knoll J (1980) Monoamine oxidase chemistry and pharmacologly. In: Sandler M (ed) Enzyme inhibitors as drugs. Macmillan, London, pp 151–173

    Google Scholar 

  • Knoll J, Magyar K (1972) Some puzzling pharmacological effect of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5: 393–408

    PubMed  CAS  Google Scholar 

  • Knoll J, Yoneda F, Knoll B, Ohde H, Mikulia I (1999) (−)1-(Benzofuran-2-yl)-2-propylaminopentane, [(−)BPAP], a selective enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain. Brit J Pharmacol 128: 1723–1732

    Article  CAS  Google Scholar 

  • Kochersperger LM, Parker EL, Siciliano M, Darlington GJ, Denney RM (1986) Assignment of genes for human monoamine oxidase A and B to the X chromosomes. J Neurosci Res 16: 601–616

    Article  PubMed  CAS  Google Scholar 

  • Konradi C, Svoma E, Jellinger K, Riederer P, Denney R, Thibault J (1988) Tipographic Immunocytochemical mapping of monoamine oxidase-A, monoamine oxidase-B and tyrosine hydroxylase in human post mortem brain stem. Neuroscience 26: 791–802

    Article  PubMed  CAS  Google Scholar 

  • Konradi C, Kornhuber J, Froelich L, Fritze J, Heisen H, Beckmann H, Schultz E, Riederer P (1989) Demonstration of monoamine oxidase-A and-B in the human brainstem by a histochemical technique. Neuroscience 33: 383–400

    Article  PubMed  CAS  Google Scholar 

  • Kontkanen O, Castren E (1999) Trophic effects of selegiline on cultured dopaminergic neurons. Brain Res 829: 190–192

    Article  PubMed  CAS  Google Scholar 

  • Kotake Y, Tasaki Y, Makino Y, Ohta S, Hirobe M (1995) 1-Benzyl-1,2,3,4-tetrahydroisoquinoline as a parkinsonism-inducing agent: A novel endogenous amine in mouse brain and parkinsonian CSF. J Neurochem 65: 2633–2636

    Article  PubMed  CAS  Google Scholar 

  • Kotake Y, Tasaki Y, Hirobe M, Ohta S (1998) Deprenyl decreases an endogenous parkinsonism-inducing compound, 1-benzyl-1,2,3,4-tetrahydroisoquinoline, in mice: In vivo and in vitro studies. Brain Res 787: 341–343

    Article  PubMed  CAS  Google Scholar 

  • Kosaka K (2002) Lewy body disease. Neuropathol 20[Suppl]: 73–78

    Google Scholar 

  • Kwan SW, Abell CW (1992) cDNA cloning and sequencing of rat monoamine oxidase A: comparison with the human and bovine enzymes. Comp Biochem Physiol 102B: 143–147

    CAS  Google Scholar 

  • Lan NC, Heinzmann C, Gal A, Klisak I, Orth U, Lai E, Grimsby J, Sparkes RS, Mohandas T, Shih JC (1989) Human monoamine oxidase A and B genes map to Xp11.23 and are deleted in a patient with Norrie Disease. Genomics 4: 552–559

    Article  PubMed  CAS  Google Scholar 

  • Lang AE, Lees AJ (2002) MAO-B inhibitors for the treatment of Parkinson’s disease. Mov Disord 17[Suppl 4]: S38–S44

    Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980

    Article  PubMed  CAS  Google Scholar 

  • Lees AJ on behalf of the Parkinson’s Disease Research Group of the United Kingdom (1995) Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early mild Parkinson’s disease. Brit Med J 311: 1602–1607

    PubMed  CAS  Google Scholar 

  • Leonard N, Lambert C, Depiereux E, Wouters J (2004) Modeling of human monoamine oxidase A: from low resolution threading models to accurate comparative models based on crystal structures. NeuroToxicology 25: 47–61

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Pinter JE, Breakefield XO (1982) Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci USA 79: 6385–6389

    Article  PubMed  CAS  Google Scholar 

  • Levy ER, Powell JF, Buckle VJ, Hsu YP, Breakfield XO, Graig IW (1989) Localization of human monoamine oxidase-A gene to Xp11.23–11.4 by in situ hybridization: implication for Norrie disease. Genomics 5: 368–370

    Article  PubMed  CAS  Google Scholar 

  • Luque JM, Kwan SW, Abell CW, Da Prada M, Richards GJ (1995) Cellular expression of mRNAs encoding monoamine oxidase A and B in the rat central nervous system. J Comp Neurol 363: 665–680

    Article  PubMed  CAS  Google Scholar 

  • Luque JM, Biou V, Nicholls JG (1998) Three-dimensional visualization of the distribution, growth, and regeneration of monoaminergic neurons in whole mounts of immature mammalian CNS. J Compar Neurol 390: 427–438

    Article  CAS  Google Scholar 

  • Maruyama W, Yi H, Takahashi T, Shimazu S, Ohde H, Yoneda F, Iwase K, Naoi M (2004) Neuroprotective function of R-(−)-1-(benzofuran-2-yl)-2-propylaminopentane, [R-(−)-BPAP], against apoptosis induced by N-methyl(R)salsolinol, an endogenus dopaminergic neurotoxin, in human dopaminergic neuroblastoma SH-SY5Y cells. Life Sci 75: 107–117

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K (2000) N-Methyl-beta-carbonium neurotoxins in Parkinson’s disease. In: Storch A, Collins MA (eds) Neurotoxic factors in Parkinson’s disease and related disorders. Kluwer Academic Publishing/Plenum, New York, pp 131–143

    Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s disease and Alzheimer’s disease brain. Neurology 38: 1285–1291

    PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 21: 195–218

    Article  PubMed  CAS  Google Scholar 

  • McNaught KS, Jenner P (1997) Altered glia function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenylpyridinium-and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures. J Neurochem 73: 2469–2476

    Article  Google Scholar 

  • Mena MA, de Bernardo S, Casarejos MJ, Canals S, Rodriguez-Martin E (2002) The role of astroglia on the survival of dopamine neurons. Mol Neurobiol 25: 245–263

    Article  PubMed  CAS  Google Scholar 

  • Minamiura N, Yasunobu KT (1978) Bovine liver monoamine oxidase. A modified purification procedure and preliminary evidence for two subunits and one FAD. Arch Biochem Biophys 189: 481–489

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Hoshino H, Ikebe S, Hattori N, Kobayashi T, Shimoda-Matsubayashi S, Matsumine H, Kondo T (1998) Mitochondrial dysfunction in Parkinson’s disease. Ann Neurol 44[Suppl 1]: S99–S109

    PubMed  CAS  Google Scholar 

  • Mizuta I, Ohta M, Ohta K, Nishimura M, Mizuta E, Hayashi K, Kuno S (2000) Selegiline and desmethylselegiline stimulate NGF, BDNF, and GDNF synthesis in cultured mouse astrocytes. Biochem Biophys Res Commun 279: 751–755

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Kiuchi K, Kojima K, Kondo T, Narabayashi H, Rausch D, Riederer P, Jellinger K, Nagatsu T (1988) Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in Parkinsonian brain. J Neural Transm 72: 77–81

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994a) Tumor necrosis factor-alpha (TNF-alpha) increases in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165: 208–210

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994b) Interleukin-1beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180:147–150

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (1999a) Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Lett 270: 45–48

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Nagatsu T (1999b) Neurotrophins and cytokines in Parkinson’s disease. In: Stern G (ed) Parkinson’s disease: Adv Neurol Vol. 80, Lippincott Williams & Wilkins, Philadelpha, pp 135–139

    Google Scholar 

  • Moser A, Koempf D (1992) Presence of methyl-6,7-dihydroxy-1,2,3,6-tetrarahydroisoquinoline derives of the neurotoxin isoquinoline, in parkinsonian lumbar CSF. Life Sci 50: 1885–1891

    Article  PubMed  CAS  Google Scholar 

  • Murphy DL, Donnelly CH, Richelson E (1976) Substrate and inhibition-related characteristics of monoamine oxidase in C6 rat glioma cells. J Neurochem 26: 1231–1235

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (1993) Biochemical aspects of Parkinson’s disease. In: Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y (eds) Parkinson’s disease: From basic research to treatment. Adv Neurol Vol. 60, Raven Press, New York, pp 165–174

    Google Scholar 

  • Nagatsu T (1997) Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci Res 29: 99–111

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (2002a) Parkinson’s disease: changes in apoptosis-relating factors suggesting possible gene therapy. J Neural Transm 109: 731–745

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (2002b) Amine-related neurotoxins in Parkinson’s disesase: Past, present, and future. Neurotoxicology and Teratology 24: 565–569

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (2004) Progress in monoamine oxidase (MAO) research in relation to genetic engineering. Neuro Toxicology 25: 11–20

    CAS  Google Scholar 

  • Nagatsu T, Nakano T, Kato T, Higashida H (1981) Expression of A and B types of monoamine oxidase in neuroblastoma hybrid cells. Neurochem Int 3: 137–142

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A, Riedere P (1999) Cytokines in Parkinson’s disease. Neuro Sci News 2: 88–90

    CAS  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000a) Cytokines in Parkinson’s disease. J Neural Transm [Suppl 58]: 143–151

    Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000b) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm [Suppl 60]: 277–290

    Google Scholar 

  • Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: Role for cytokines. Current Pharmaceutical Design 11: 999–1016

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Nagatsu T, Higashida H (1985) Expression of A and B types of monoamine oxidase in differentiated neuroblastoma hybrid cells. J Neurochem 44: 755–759

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Saito S, Higashida H, Kojima K, Nagatsu T (1986) Assignment of A and B types of monoamine oxidase in NCB 20 hybrid cells to those of the parental hybrid cells. J Neurochem 46: 686–694

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama Y, Dostert P, Hashizume Y, Nakahara D, Takahashi T, Ota M (1996) Dopamine-derived endogenous 1(R), 2(N)-dimethyl-1,2,3,4-tetrahydroisoquinoline, N-methyl-(R)-salsolinol, induced parkinsonism in rats: Biochemical, pathological and behavioral studies. Brain Res 709: 285–295

    Article  PubMed  CAS  Google Scholar 

  • Nicotra A, Parvez SH, Glover V, Sandler M, Parvez S, Minami M, eds (2004) Monoamine oxidases: molecular, pharmacological and neurotoxicological aspects, Elsevier, Amsterdam, pp 1–335

    Google Scholar 

  • Niwa T, Takeda N, Yoshizumi H, Tatematsu A, Yoshida M, Dostert P, Naoi M, Nagatsu T (1993) Presence of tetrahydroisoquinoline-related compounds, possible MPTP-like neurotoxins, in Parkinsonian brain. In: Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y (eds) Parkinson’s disease: From basic research to treatment. Adv Neurol Vol. 60, Raven Press, New York, pp 234–237

    Google Scholar 

  • Olanow CW, Hauser RA, Gauger L, Malapira T, Koller W, Hubble J, Bushenbark K, Lilienfeld D, Esterlitz J (1995) The effect of deprenyl and levodopa on the progression of Parkinson’s dieease. Ann Neurol 38: 771–777

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Riederer P (1996) Selegiline and neuroprotection in Parkinson’s disease. Neurology 47[Suppl 3]: 137–216

    Google Scholar 

  • Oleland L (2004) Platelet monoamine oxidase, personality and alcoholism: rise, fall and resurrection. Neuro Toxicology 25: 79–89

    Google Scholar 

  • Parkinson Study Group (2002) A controlled trial of rasagiline in early Parkinson’s disease. Arch Neurol 59: 1937–1943

    Article  Google Scholar 

  • Pintar JE, Barbosa J, Francke U, Castiglione CM Jr, Hawkins M, Breakfield XO (1981) Gene for monoamine oxidase type A assigned to the human X chromosome. J Neurosci 1: 166–175

    PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadoce A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, DiIoro G, Globe LI, Nussbaum RL (1998) Mutation in the alpha-synuclein gene idetifies in families with Parkinson’s disease. Science 276: 2045–2047

    Article  Google Scholar 

  • Powell JF, Huang RH, Breakefield XO, Craig I, Hsu YPP (1991) Structure of the human gene for monoamine oxidase type A. Nucleic Acids Res 19: 4537–4541

    PubMed  Google Scholar 

  • Riederer P, Youdim MBH, eds (1990) Amine oxidases and their impact on neurobiology. J Neural Transm [Suppl 32]: 1–491

    Google Scholar 

  • Riederer P, Lachenmayer L (2003) Selegiline’s neuroprotective capacity revisited. J Neural Transm 110: 1273–1278

    Article  PubMed  CAS  Google Scholar 

  • Sandler M, Bonham-Carter S, Hunter KR, Stern GM (1973) Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-DOPA in man. Nature 241: 439–443

    Article  PubMed  CAS  Google Scholar 

  • Saura J, Richards JG, Mahy N (1994) Age-related changes in MAO in B1/C57 mouse tissues: a quantitative radioautography study. J Neural Transm 41: 89–94

    CAS  Google Scholar 

  • Sawada M, Imamura K, Nagatsu T (2005) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm: in press

    Google Scholar 

  • Schnaitman C, Erwin VG, Greenwalt JW (1967) The submitochondrial localization of monoamine oxidase. An enzymeatic marker for the outer membrane of rat liver mitochondria. J Cell Biol 32: 719–735

    Article  PubMed  CAS  Google Scholar 

  • Semkova I, Wolz P, Schilling M, Krieglstein J (1996) Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur J Pharmacol 315: 19–30

    Article  PubMed  CAS  Google Scholar 

  • Shih JC, Chen K, Geha RM (1998) Determination of regions important for monoamine oxidase (MAO) A and B substrate and inhibitor selectivities. J Neural Transm [Suppl 52]: 1–8

    Google Scholar 

  • Shih JC, Chen JC, Ridd MJ (1999) Monoamine oxidase: from gene to behavior. Ann Rev Neurosci 22: 197–217

    Article  PubMed  CAS  Google Scholar 

  • Shih JC (2004) Cloning, after cloning, knock-out mice, and physiological functions of MAO A and B. Neuro Toxicology 25: 21–30

    CAS  Google Scholar 

  • Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa A, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet 25: 302–305

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Riederer P, Heisen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Incresed iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74: 199–205

    Article  PubMed  CAS  Google Scholar 

  • Takahata K, Minami A, Kusumoto H, Schimizu S, Yoneda F (2005a) Effects of selegiline alone or with donepezil on memory impairment in rats. Eur J Pharmacol 518: 140–144

    Article  PubMed  CAS  Google Scholar 

  • Takahata K, Shimizu S, Katsuki H, Yoneda F, Akaike A (2005b) Effects of selegiline on antioxidant systems in the nigrostriatum in rat. J Neural Transm On-line publication, 15 June 2005

    Google Scholar 

  • Tatton W, Chalmers-Redman R, Tatton N (2003) Neuroprotection by deprenyl and other propargylamines: glyceraldehydes-3-phosphate dehydrogenase rather than monoamone oxidase B. J Neural Transm 110: 509–515

    Article  PubMed  CAS  Google Scholar 

  • The Parkinson Study Group (1989) Effects of deprenyl on the progression of disability in early Parkinson’s disease. New Engl JMed 321: 1364–1371

    Article  Google Scholar 

  • The Parkinson Study Group (1993) Effects of tocophrol and deprenyl on the progression of disability in early Parkinson’s disease. New Engl J Med 328: 176–183

    Article  Google Scholar 

  • Tipton KF (1980) Monoamine oxidase. In: Jakoby WB (ed) Enzymatic basis of detoxication Vol. 1. Academic Press, New York, pp 355–370

    Google Scholar 

  • Tsugeno Y, Hirashiki I, Ogata F, Ito A (1995) Regions of the molecule responsible for substrate specificity of monoamine oxidase A and B: a chimeric enzyme analysis. J Biochem 118: 974–980

    PubMed  CAS  Google Scholar 

  • Tsugeno Y, Ito A (1997) A key amino acid responsible for substrate selectivity of monoamine oxidase A and B. J Biol Chem 272: 14033–14036

    Article  PubMed  CAS  Google Scholar 

  • Vilhardt F, Plastre O, Sawada M, Suzuki K, Wiznerowicz M, Kiyokawa E, Trono D, Krause K-H (2002) The HIV-1 Nef protein and phagocyte NADPH oxidase activation. J Biol Chem 277: 42136–42143

    Article  PubMed  CAS  Google Scholar 

  • Walker WH, Kearney EB, Seng RL, Singer TP (1971) Sequence and structure of a cysteinyl flavin peptide from monoamine oxidase. Biochem Biophys Res Commun 44: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Westlund KN, Denney RM, Rose RM, Abell CW (1988a) Localization of distinct monoamine oxidase A and monoamine oxidase B in rat brain. J Neural Transm 74: 29–42

    Article  Google Scholar 

  • Westlund KN, Denney RM, Rose RM, Abell CW (1988b) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25: 439–456

    Article  PubMed  CAS  Google Scholar 

  • Weyler W (1989) Monoamine oxidase A from human placenta and monoamine oxidase from bovine liver both have one FAD per subunit. An important revision. Biochem J 260: 726–729

    Google Scholar 

  • Weyler W, Hsu YPP, Breakefield XO (1990) Biochemistry and genetics of monoamine oxidase. Pharmac Ther 47: 391–417

    Article  CAS  Google Scholar 

  • Willonghby J, Glover V, Sandler M (1988) Histochemical localization of monoamine oxidase A and B in rat brain. J Neural Transm 74: 29–42

    Article  Google Scholar 

  • Youdim BH, Riederer P (1997) Understanding Parkinson’s disease. Sci Amer: 82–89

    Google Scholar 

  • Youdim MBH, Ben-Shachter D, Eshel G, Finberg JPM, Riederer P (1993) The neurotoxicity of iron and nitric oxide: Relevance to etiology of Parkinson’s disease. In: Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y (eds) Parkinson’s disease: From basic research to treatment. Adv Neurol Vol. 60, Raven Press, New York, 259–266

    Google Scholar 

  • Youdim MBH, Tipton KF (2002) Rat striatal monoamine oxidase-B inhibition by l-deprenyl and rasagiline: its relationship to 2-phenylethylamine-induced stereotypy and Parkinson’s disease. Parkinsonism Relat Disord 8: 247–253

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Fridkin M, Zheng H (2004) Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson’s disease and other neurodegenerative diseases. J Neural Transm 111: 1455–1471

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Maruyama W, Naoi M (2005) Neuropharmacological, neuroprotective and amyloid precursor processing properties of selective MAO-B inhibitor antiperkinsonian drug, rasagiline. Drugs of Today 41: on line publication

    Google Scholar 

  • Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong J-S, Zhang J (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19: 533–542

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Nagatsu, T., Sawada, M. (2006). Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson’s disease: possible implications of glial cells. In: Parvez, H., Riederer, P. (eds) Oxidative Stress and Neuroprotection. Journal of Neural Transmission. Supplementa, vol 71. Springer, Vienna. https://doi.org/10.1007/978-3-211-33328-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33328-0_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33327-3

  • Online ISBN: 978-3-211-33328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics