Skip to main content

Comparative aspects of peptidergic signaling pathways in the nervous systems of arthropods

  • Chapter
The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach

Part of the book series: Experientia Supplementum ((EXS,volume 72))

Summary

Comparative aspects of arthropod peptidergic systems — in principle — can be studied on the level of precursor sequences (genes, preprohormones), peptide sequences (peptide families), and peptide expression patterns within the nervous system. The number of known arthropod neuropeptide precursor sequences is as yet far too small to provide a reasonably large basis for extended comparative studies. Comparative studies of peptide sequences have shown that many peptides belong to families with homologous members in both invertebrates and vertebrates. Comparative research on peptide expression has to find out whether phylogenetic necessities lead to “hard wired” neurochemical identities, i.e., a more or less fixed “Bauplan” that not only determines the lineage and morphology of a neuron but also its transmitter(s), or whether these necessities demand greater flexibility (plasticity), and hence cause great variability that would complicate comparative studies.

As will be shown here, both possibilities appear to exist. On the one hand, peptidergic neurons may exist in comparable form in different groups of arthropods. On the other hand, the neurochemical identity of cells may vary in segmented organisms when comparing serially homologous sets of nerve cells in different segments. As a further complication, identical or similar peptides may serve different functions, even in closely related species. In view of these functional aspects in particular, it appears that peptidergic signalling pathways represent rapidly evolving systems. This conclusion, although very interesting in itself, reduces the use of such systems for general comparisons. However, arthropod nervous systems represent excellent model systems for the study of homology. At least for morphological and ontogenetic aspects arthropods provide numerous opportunities to study homology on the level of the individually identified peptidergic nerve cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agricola, H. and Weiß, T (1993) Immunocytochemical characterisation of hindgut-innervat-ing neurons of the cockroach Periplaneta americana (L.). In: N. Eisner and M. Heisenberg (eds): Gen-Brain-Behaviour. Thieme Verlag, Stuttgart-New York, p. 604.

    Google Scholar 

  • Breidbach, O. and Dircksen, H. (1991) Crustacean cardioactive peptide-immunoreactive neurons in the ventral nerve cord and the brain of the meal beetle Tenebrio molitor during postembryonic development. Cell Tissue Res. 263: 129–144.

    Article  Google Scholar 

  • Brown, B.E. and Starratt, A.N. (1975) Isolation of proctolin, a myotropic peptide, from Periplaneta americana (Blatt, Blattidae). J. Insect Physiol. 21: 1879–1881.

    Article  CAS  Google Scholar 

  • Brownlee, D.J.A., Fairweather, I., Johnston, C., Smart, D., Shaw, C. and Halton, D.W. (1993) Immunocytochemical demonstration of neuropeptides in the central nervous system of the roundworm, Ascaris suum (Nematoda, Ascaroidea). Parasitology 106: 306–316.

    Article  Google Scholar 

  • Cantera, R. and Nässel, D.R. (1992) Segmental peptidergic innervation of abdominal targets in larval and adult dipteran insects revealed with an antiserum against leucokinin I. Cell Tissue Res. 269: 459–471.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, C.C., Loi, P.K, Sylwester, A.W., Lee, T.D. and Tublitz, N.J. (1992) Primary structure of a cardioactive neuropeptide from the tobacco hawkmoth, Manduca sexta. FEBS Lett. 313: 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver, P.F and Taghert, P.H (1990) Neurogenesis in the insect enteric nervous system: Generation of premigratory neurons from an epithelial placode. Development 109: 17–28.

    PubMed  CAS  Google Scholar 

  • Copenhaver, P.F and Taghert, P.H (1991) Origins of the insect enteric nervous system: Differentiation of the enteric ganglia from a neurogenic epithelium. Development 113: 1115–1132.

    PubMed  CAS  Google Scholar 

  • Darner, D., Schmutzler, C., Diekhoff, D. and Grimmelikhuizen, C.J.P. (1991) Primary structure of the precusor for the sea anemone neuropeptide Antho-RFamide (< Glu-Glu-Arg-Phe-NH2). Proc. Natl. Acad. Sci. USA 88: 2555–2559.

    Article  Google Scholar 

  • Davis, M.-T.B., Vakharia, V.N., Henry, J., Kempe, T.G. and Raina, A.K. (1992) Molecular cloning of the pheromone biosynthesis-activating neuropeptide in Helicoverpa zea. Proc. Natl. Acad. Sci. USA 89: 142–146.

    Article  PubMed  CAS  Google Scholar 

  • Davis, N.T., Homberg, U., Dircksen, H. R.B. and Hilderbrand, J.G. (1993) Crustacean cardioactive peptide-immunoreactive neurons in the hawkmoth Manduca sexta and changes in their immunoreactivity during postembyronic development. J. Comp. Neurol. 338: 612–627.

    Article  PubMed  CAS  Google Scholar 

  • Digan, M.E., Roberts, D.N., Enderlin, F.E., Woodworth, A.R. and Kramer, S.J. (1992) Characterization of the precursor for Manduca sexta diuretic hormone Mas-DH. Proc. Natl. Acad. Sci. USA 89: 11704–11078.

    Article  Google Scholar 

  • Dircksen, H. and Keller, R. (1988) Immunocytochemical localization of CCAP a novel crustacean cardioactive peptide, in the nervous system of the shore crab, Carcinus maenas L. Cell Tissue Res. 254: 347–360.

    Article  Google Scholar 

  • Dircksen, H., Müller, A. and Keller, R. (1991) Crustacean cardioactive peptide in the nervous system of the locust, Locusta migratoria: an immunocytochemical study on the ventral cord and peripheral innervation. Cell Tissue Res. 263: 439–457.

    Article  Google Scholar 

  • Dircksen, H. and Nässei, R. (1993) Immunoreactive leucokinin-like peptides and crustacean cardioactive peptide show similar, but distinct neuronal distributions in neurohaemal systems of the locust abdomen. In: N. Eisner and M. Heisenberg (eds): Gen-Brain-Behavior. Thieme Verlag, Stuttgart-New York, p. 19.

    Google Scholar 

  • Donly, B.C., Ding, Q, Tobe, S.S. and Bendena, W.G. (1993) Molecular cloning of the gene for the allatostatin family of neuropeptides from the cockroach Diploptera punctata. Proc. Natl. Acad. USA 90: 8807–8811.

    Article  CAS  Google Scholar 

  • Duve H., Rehfeld, J.F., East, P. and Thorpe, A. (1994) Localization of sulfakinin neuronal pathways in the blowfly Calliphora vomitoria. Cell Tissue Res. 275, 1: 177–186.

    Article  CAS  Google Scholar 

  • Ebberink, R.H.M., Smit, A.B. and Van Minnen, J. (1989) The insulin family: Evolution of structures and function in vertebrates and invertebrates. Reference Biol. Bull. 177: 176–182.

    CAS  Google Scholar 

  • Eckert, M., Agricola, H. and Penzlin, H. (1981) Immunocytochemical identification of proctolin-like immunoreactivity in the terminal ganglion and hingut of the cockroach Periplaneta americana. Cell Tissue Res. 217: 633–645.

    CAS  Google Scholar 

  • Fujita, T. and Kobayashi, S. (1979) Current views on the paraneurone concept. Trends Neurosci. 2, 2: 27–30.

    Article  Google Scholar 

  • Furness, J.B., Bornstein, J.C., Murphy, R., Pompolo, S. (1992) Roles of peptides in transmission in the enteric nervous system. Trends Neurosci. 15: 66–71.

    Article  PubMed  CAS  Google Scholar 

  • Furuya, K. Liao, S. Reynolds, S.E., Ota, R.B., Hackett, M. and Schooley, D.A. (1993) Isolation and identification of a cardioactive peptide from Tenebrio molitor and Spodoptera eridania. Biol. Chemi. Hoppe-Seyler 374: 12: 1065–1074.

    CAS  Google Scholar 

  • Gäde, G. (1990) The adipokinetic hormone/red pigment-concentrating hormone peptide family: Structures, interrelationships and functions. J. Insect. Physiol. 36: 1–12.

    Article  Google Scholar 

  • Geraerts, W.P.M., Smit, A.B., Li, K.W. and Hordijk, P.L. (1992) The light green cells of Lymnaea: A neuroendocrine model system for stimulus-induced expression of multiple peptide genes in a single cell type. Experientia 48: 464–473.

    Article  PubMed  CAS  Google Scholar 

  • Goldsworthy, G. and Mordue, W. (1989) Adipokinetic hormones: functions and structures. Reference Biol Bull. 177: 218–224.

    CAS  Google Scholar 

  • Grimmelikhuijzen, C.J.P., Carstensen, K., Darmer D., Moosler, A., Nothacker, H.-P., Reinscheid, R.K., Schmutzler, C., Vollert, H., McFarlane, I. and Rinehart, K.L. (1992) Coelenterate neuropeptides: Structure, action and biosynthesis. Am. Zool. 32: 1–12.

    CAS  Google Scholar 

  • Holman, G.M., Nachman, R.J. and Wright, M.S. (1990) Insect neuropeptides. Review. Ann. Rev. Entomol. 35: 201–217.

    Article  CAS  Google Scholar 

  • Holman, G.M., Nachman, R.J., Schoofs, L., Hayes, T.K., Wright, M.S. and DeLoof, A. (1991) The Leucophaea maderae hindgut preparation: A rapid and sensitive bioassay tool for the isolation of insect myotropins of other insect species. Insect Biochem. 21: 107–112.

    Article  CAS  Google Scholar 

  • Horodyski, F.M., Riddiford, L.M. and Truman, J.W. (1989) Isolation and expression of a eclosion hormone gene from the tobacco horn worm moth Manduca sexta. Proc. Natl. Acad. Sei. USA 86: 8123–8127.

    Article  CAS  Google Scholar 

  • Iwami, M, Kawakami, A., Ishizaki, H., Takahashi, S.Y., Adachi, T., Suzuki, Y., Nagasawa, H. and Suzuki, A. (1989) Cloning of a gene encoding bombyxin, an insulin-like brain secretory peptide of the silkmoth Bombyx mori with prothoracicotropic activity. Dev. Growth Differ. 31: 31–37.

    Article  CAS  Google Scholar 

  • Kamito, T., Tanaka, H., Sato, B., Nagasawa, H. and Suzuki, A. (1992) Nucleotide sequence of cDNA for the eclosion hormone of the silkworm, Bombyx mori, and the expression in a brain. Biochem. Biophys. Res. Commun. 182: 514–519.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, A., Kataoka H., Oka, T., Mizoguchi, A., Kimura-Kawakami, M., Adachi, T., Iwami, M., Nagasawa, H., Suzuki, A. and Ishizaki, H. (1990) Molecular cloning of the bombyx mori prothoracicotropic hormone. Science 247: 1333–1335.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R. (1992) Crustacean neuropeptides: Structures, functions and comparative aspects. Experientia 48: 439–448.

    Article  PubMed  CAS  Google Scholar 

  • Kimura-Kawakami, M., Iwami, M., Kawakami, A., Nagasawa, H., Suzuki, A. and Ishizaki, H. (1992) Structure and expression of bombyzin-related peptide genes of the moth Samia cynthia ricini. Gen. Comp. Endocrinol. 86: 257–268.

    Article  PubMed  CAS  Google Scholar 

  • Klein, J.M., Mangerich, S., Dekleijn, D.P.V., Keller, R. and Weidemann, W.M. (1993) Molecular cloning of crustacean putative molt-inhibiting hormone (MIH) precursor. FE BS Letters 334: 1: 139–142.

    Article  CAS  Google Scholar 

  • Kutsch, W. and Breidbach, O. (1994) Homologous structures in the nervous systems of arthropoda. Adv. Insect Physiol. 24: 1–113.

    Article  Google Scholar 

  • Lagueux, M., Lwoff, Meister, M., Goltzene, F. and Hoffman, J.A. (1990) cDNAs from neurosecretory cells of brains of Locusta migratoria (Insecta, Orthoptera) encoding a novel member of the superfamily of insulins. Eur. J. Biochem. 187: 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Lagueux, M., Kromer, E. and Girardie, J. (1992) Cloning of a Locusta cDNA encoding neuroparsin A. Insect Biochem. 22: 511–516.

    Article  CAS  Google Scholar 

  • Lehman, H.K., Murgiuc, C.M., Miller, T.A., Lee, T.D. and Hildebrand, J.G. (1993) Crustacean cardioactive peptide in the sphinx moth, Manduca sexta. Peptides 14: 4: 735–74.

    Article  CAS  Google Scholar 

  • Linck, B., Klein, J.M., Mangerich, S., Keller, R. and Weidemann, W.M. (1993) Molecular cloning of crustacean red pigment concentrating hormone precursor. Bioch. Biophys. Res. Comm. 195, 2: 807–813.

    Article  CAS  Google Scholar 

  • Mahon, A.C., Lloyd, P.E., Weiss, K.R., Kupfermann, I. and Scheller, R.H. (1985) The small cardioactive peptides A and B of Aplysia are derived from a common precursor molecule. Proc. Natl. Acad. Sci. USA 82: 3925–3929.

    Article  PubMed  CAS  Google Scholar 

  • Maule, A., Shaw, Ch., Halton, D. and Thim, L. (1993) GNFFRFamide: A novel FMR-Famide-immunoreactive peptide isolated from the sheep tapeworm, Moniexia expansa. Biochem. Biophys. Res. Comm. 193:3: 1054–1060.

    Article  PubMed  CAS  Google Scholar 

  • Miller, M.W., Beushausen, S., Cropper, E.C., Eisinger, K., Stamm, S., Vilim, F.S., Vitek, A., Zajc, A., Kupfermann, I., Brosius, J. and Weiss, K.R. (1993a) The buccalin-related neuropeptides: Isolation and characterization of an Aplysia cDNA clone encoding a family of peptide cotransmitters. J. Neurosci. 13: 8: 3346–3357.

    PubMed  CAS  Google Scholar 

  • Miller, M.W., Beushausen, S., Vitek, A., Stamm, S.A., Kupfermann, I., Brosius, J. and Weiss K.R. (1993b) The myomudulin-related neuropeptides: Characterization of gene encoding a family of peptide cotransmitters in Aplysia. J. Neurosci. 13: 8: 3358–3367.

    CAS  Google Scholar 

  • Muneoka, Y., Kobayashi, M. (1992) Comparative aspects of structure and action of mollus-can neuropeptides. Experientia 48: 448–456.

    Article  PubMed  CAS  Google Scholar 

  • Nässel, D.R. (1993) Neuropeptides in the insect brain: a review. Cell Tissue Res. 273: 1–29.

    Article  PubMed  Google Scholar 

  • Nichols, R., Schneuwly, S.A. and Dixon, J.E. (1988) Identification and charaterization of a Drosophila homologue to the vertebrate neuropeptide cholecystokinin. J. Biol. Chem. 263: 12167–12170.

    PubMed  CAS  Google Scholar 

  • Nishiitsutsuji-Uwo, J. and Endo, Y. (1981) Gut endocrine cells in insects — The ultrastructure of the endocrine cells in the cockroach midgut. Biomed. Res. 2: 30–44.

    Google Scholar 

  • O’Shea, M., Adams, M.E., Bishop, C., Witten, J. and Worden, M.A. (1985) Model peptidergic systems at the insect neuromuscular junction. Peptides 6: 417–424.

    Article  PubMed  Google Scholar 

  • Pearse, A.G.E. (1968) Common cytochemical and ultrastrucutal characteristics of cell producing polypeptide hormones (the APUD series) and their relevance to thyroid and ultimo-branchial C cells and calcitonin. Proc. Roy. Soc. Lond. B. Biol. Sci. 170: 71–80.

    Article  CAS  Google Scholar 

  • Platt, N. and Reynolds, St. E. (1990) Invertebrate neuropeptides. In: Lunt, G.G. and Olsen, R.W. (eds): Comparative Invertebrate Neurochemistry. Croom Helm, London, Sydney, 175–226.

    Google Scholar 

  • Price, D.A. and Greenberg, M.J. (1989) The hunting of the FaRPs: The distribution of FMRFamide-related peptides. Reference Biol. Bull. 177: 198–205.

    CAS  Google Scholar 

  • Rao, R.K. and Riehm, J.P. (1989) The pigment-dispersing hormone family: chemistry, structure-activity relations, and distribution. Biol. Bull. 177: 225–229.

    Article  CAS  Google Scholar 

  • Remane, A. (1956) Die Grundlagen des natürlichen Systems der vergleichenden Anatomie und der Phylogenetik. Akademische Verlagsgesellschaft, Geest and Porting, Leipzig.

    Google Scholar 

  • Sato, Y., Nakazawa, Y., Menjo, N., Imai, K., Komiya, T., Saito, H., Shin, M., Ikeda, M., Sakakibara, K., Isobe, M. and Yamashita, O. (1992) A new diapause hormone molecule of the silkworm, Bombyx mori. Proc. Japan Acad. 68, Ser. B: 75–79.

    Article  CAS  Google Scholar 

  • Schaefer, M., Picciott, M.R., Kreiner, T., Kaldany, R.P., Taussig, R. and Scheller, R.H. (1985) Aplysia neurons express a gene encoding multiple FMRF-amide neuropeptides. Cell 41: 457–467.

    Article  PubMed  CAS  Google Scholar 

  • Serieller, R.H., Jackson, J.F., McAllis, L.B., Schwartz, J.H., Kandel, E.R. and Axel, R. (1982) A family of genes that codes for ELH, a neuropeptide eliciting a stereotyped pattern of behavior in Aplysia. Cell 28; 707–719.

    Article  Google Scholar 

  • Schneider, L.E. and Taghert, P.H. (1988) Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to Phe-Met-Arg-Phe-NH2 (FMRFamide). Proc. Natl. Acad. Sci. USA 85: 1993–1997.

    Article  PubMed  CAS  Google Scholar 

  • Schoofs, L., Broeck, J.V. and DeLoof, A. (1993) The myotropic peptides of Locusta migratoria :structures, distribution, functions and receptors. Insect. Biochem. Molec. Biol. 23: 859–881.

    Article  CAS  Google Scholar 

  • Schulz-Aellen, M.F., Roulet, E., Fischer-Lougheed, J. and O’Shea, M. (1989) Synthesis of a homodimer neurohormone precursor of locust adipokinetic hormone studied by in vitro translation and cDNA cloning. Neuron 2: 1369–1373.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, A.N. (1989) Neuropeptides in the Cnidaria. Amer. Zool. 29: 1213–1225.

    CAS  Google Scholar 

  • Stangier, J. Hilbich, C. Beyreuther, K. and Keller, R. (1987) Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab, Carcinus maenas. Proc. Natl. Acad. Sci. USA 84: 575–580.

    Article  PubMed  CAS  Google Scholar 

  • Stangier, J., Hilbich, C. and Keller, R. (1989) Occurrence of crustacean cardioactive peptide (CCAP) in the nervous system of an insect, Locusta migratoria. J. Comp. Physiol. B. 159: 5–11.

    Article  CAS  Google Scholar 

  • Staufer, B., Bräunig, P. and Agricola, H. (1993) Innervation of the hindgut in the locust Locusta migratoria. In: Eisner, N. and Heisenberg, M. (eds): Gen-Brain-Behaviour. Thieme Verlag, Stuttgart-New York, p. 609.

    Google Scholar 

  • Taghert, P.H. and Schneider, L.E. (1990) Interspecific comparison of a Drosophila gene that encodes FMRFamide-related neuropeptides. J. Neurosci. 10: 1929–1942.

    PubMed  CAS  Google Scholar 

  • Tublitz, N.J. (1993) Steroid-induced transmitter plasticity in insect peptidergic neurons. Comp. Biochem. and Physiol. C 105: 147–154.

    Google Scholar 

  • Urbach, R., Agricola, H. and Breidbach, O. (1993) Perisulfakinin-immunoreactive neurons in the embryo and larva of a holometabolous insect. In: Eisner, N. and Heisenberg, M. (eds): Gen-Brain-Behaviour. Thieme Verlag, Stuttgart-New York, p. 737.

    Google Scholar 

  • Van Herp, F. (1992) Inhibiting and stimulating neuropeptides controlling reproduction in Crustacea. Invertebrate Reproduction and Develop. 22, 1–3: 21–30.

    Article  Google Scholar 

  • Van Kesteren, R.E., Smit, A.B., Dirks, R.W., De With, N.D., Geraerts, W.P.M. and Joosse, J. (1992) Evolution of the vasopressin/oxytocin superfamily: Characterization of a cDNA encoding a vasopressin-related precursor, preproconopressin from the mollusc Lymnaea stagnalis. Proc. Natl. Acad. Sci. USA 89: 4593–4597.

    Article  PubMed  Google Scholar 

  • Veenstra, J.A. (1989a) Isolation and structure of two gastrin/CCK-like neuropeptides from the American cockroach homologous to the leukosulfakinins. Neuropeptides 14: 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Veenstra, J.A. (1989b) Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett. 250: 231–234.

    Article  PubMed  CAS  Google Scholar 

  • Zitnan, D., Sauman, I. and Sehnal, F. (1993) Peptidergic innervation and endocrine cells of insect midgut. Archiv, of Insect Biochem. Physiol. 22: 113–132.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Agricola, HJ., Bräunig, P. (1995). Comparative aspects of peptidergic signaling pathways in the nervous systems of arthropods. In: Breidbach, O., Kutsch, W. (eds) The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Experientia Supplementum, vol 72. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9219-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9219-3_14

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9949-9

  • Online ISBN: 978-3-0348-9219-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics