Skip to main content

The ant’s celestial compass system: spectral and polarization channels

  • Chapter
Orientation and Communication in Arthropods

Part of the book series: EXS ((EXS,volume 84))

Summary

Ants as well as bees derive compass information not only from the direct light of the sun, but also from the scattered light in the sky. In the present account, the latter phenomenon is described for desert ants, genus Cataglyphis. Due to the scattering of sunlight by the air molecules of the earth’s atmosphere, spatial gradients of polarization, spectral composition and radiant intensity extend across the celestial hemisphere. All of these optical phenomena are exploited by the Cataglyphis navigator. Here I concentrate on the use Cataglyphis makes of the polarization and spectral skylight gradients. Either type of information is neurally processed by a separate sensory channel receiving its input from a separate part of the retina. These channels are characterized and their possible interactions are analyzed in a variety of behavioural experiments, in which ants, whose compound eyes are partially occluded by light-tight caps, are presented with spatially restricted and spectrally altered parts of the celestial hemisphere. It is discussed whether skylight patterns are used by the insect navigator simply to read a reference direction (e.g., the azimuthal position of the solar meridian) from the sky, or whether they are used to determine any particular point of the compass. Different approaches to examine these questions - behavioural and neuro-physiological analyses, computer simulations and robotics - are described, and results obtained by these approaches are reported. New ways of portraying the pattern of polarized light in the real sky are presented in Figures 2 (lower part) and 3, and Figure 22 introduces an autonomous agent navigating by polarized skylight. Conceptually, the last paragraph of this chapter provides my most general conclusions drawn from the analyses of the insect’s skylight compass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arago, D.F.J. (1811) Mémoire sur une modification remarquable qu’éprouvent les rayons lumineux dans leurs passage à travers certains corps diaphanes, et sur quelques autres nouveaux phénomènes d’optique. Mém. Cl. Sci. Math. Phys. 1:93–134.

    Google Scholar 

  • Batschelet, E. (1965) Statistical methods for the analysis of problems in animal orientation and certain biological rhythms. Am. Inst. Biol. Sciences, Washington, D.C.

    Google Scholar 

  • Batschelet, E. (1981) Circular Statistics in Biology. Academic Press, London, New York.

    Google Scholar 

  • Benhamou, S., Sauve, J.P. and Bovet, P. (1990) Spatial memory in large scale movements:efficiency and limitation of the egocentric coding process. J. Theor. Biol. 145:1–12.

    Article  Google Scholar 

  • Bernard, G.D. and Wehner, R. (1977) Functional similarities between polarization vision and color vision. Vision Res. 17:1019–1028.

    Article  PubMed  CAS  Google Scholar 

  • Boehm, G. (1940) Über maculare (Haidinger’sche) Polarisationsbüschel und über einen polarisationsoptischen Fehler des Auges. Acta Ophthalmol. 18:109–142.

    Google Scholar 

  • Brines, M.L. and Gould, J.L. (1979). Bees have rules. Science 102:571–573.

    Article  Google Scholar 

  • Brines, M.L. and Gould, J.L. (1982) Skylight polarization patterns and animal orientation. J.Exp.Biol. 96:69–91.

    Google Scholar 

  • Clarke, D. and Graininger, J.F. (1971) Polarized Light and Optical Measurement. Pergamon Press, Oxford, New York.

    Google Scholar 

  • Duelli, P. (1975) A fovea for E-vector orientation in the eye of Cataglyphis bicolor (Formicidae, Hymenoptera). J. Comp. Physiol. 102:43–56.

    Article  Google Scholar 

  • Duelli, P. and Wehner, R. (1973) The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J. Comp. Physiol. 86:37–53.

    Article  Google Scholar 

  • Edrich, W. and Heiversen, O. v. (1987) Polarized light orientation in honey bees:is time a component in sampling? Biol. Cybern. 56:89–96.

    Article  Google Scholar 

  • Edrich, W., Neumeyer, C. and Heiversen, O. v. (1979)“Anti-sun”orientation of bees with regard to a field of ultraviolet light. J. Comp. Physiol. 134:151–157.

    Article  Google Scholar 

  • Fent, K. (1985) Himmelsorientierung bei der Wüstenameise Cataglyphis bicolor:Bedeutung von Komplexaugen und Ocellen. Ph.D. Thesis, Zürich.

    Google Scholar 

  • Fent, K. (1986) Polarized skylight orientation in the desert ant Cataglyphis. J. Comp. Physiol. A 158:145–150.

    Article  Google Scholar 

  • Fent, K. and Wehner, R. (1985) Ocelli:a celestial compass in the desert and Cataglyphis. Science 228:192–194.

    Article  PubMed  CAS  Google Scholar 

  • Frisch, K.v. (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148.

    Article  PubMed  CAS  Google Scholar 

  • Frisch, K.v. (1967) The Dance Language and Orientation of Bees. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Haidinger, W. (1844) Über das direkte Erkennen des polarisierten Lichts und der Lage der Polarisationsebene. Ann. Phys., Leipzig 63:29–39.

    Article  Google Scholar 

  • Hartline, P., Kass, L. and Loop, M.S. (1978) Merging of modalities in the optic tectum:infrared and visual integration in rattlesnakes. Science 199:1225–1229.

    Article  PubMed  CAS  Google Scholar 

  • Heiversen, O.v. and Edrich, W. (1974) Der Polarisationsempfänger im Bienenauge:ein Ultra-violetrezeptor. J. Comp. Physiol. 94:33–47.

    Article  Google Scholar 

  • Homberg, U., Müller, M. and Vitzthum, H. (1996) The central complex:evidence for a role in polarized-light orientation. Proc. Int. Congr. Entomol. 20:204.

    Google Scholar 

  • Horvàth, G. and Varju, D. (1997) Polarization pattern of freshwater habitats recorded by video polarimetry in red, green and blue spectral ranges and its relevance for water detection by aquatic insects. J. Exp. Biol. 200:1155–1163.

    Google Scholar 

  • Kirschfeld, K. (1972) Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z. Naturforsch. 27c:578–579.

    Google Scholar 

  • Knudsen, E.I. and Konishi, M. (1978) A neural map of auditory space in the owl. Science 200:795–797.

    Article  PubMed  CAS  Google Scholar 

  • Konishi, M. (1986) Centrally synthesized maps of sensory space. Trends Neurosci. 9:163–168.

    Article  Google Scholar 

  • Konishi, M, Takahashi, T.T., Wagner, H., Sullivan, W.E. and Carr, C.E. (1988) Neurophysio-logical and anatomical substrates of sound localization in the owl. In: G.M. Edelmann, W.E. Gall and W.M. Gowman (eds):Auditory Function. J. Wiley and Sons, New York, pp 721–745.

    Google Scholar 

  • Labhart, T. (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J. Comp. Physiol. A 158:1–7.

    Article  Google Scholar 

  • Labhart, T. (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437.

    Article  Google Scholar 

  • Labhart, T. (1996) An opto-electronic model of a polarization-sensitive insect interneuron. Proc. Neurobiol. Conf. Göttingen 24:356.

    Google Scholar 

  • Lambrinos, D., Maris, M., Kobayashi, H., Labhart, T., Pfeifer, R. and Wehner, R. (1997) An autonomous agent navigating with a polarized light compass. Adapt. Behav. 6:175–206.

    Article  Google Scholar 

  • Lanfranconi, B. (1982) Kompassorientierung nach dem rotierenden Himmelsmuster bei der Wüstenameise Cataglyphis bicolor. Ph.D. Thesis, Zürich.

    Google Scholar 

  • Malus, E. (1809) Sur une propriété de la lumière réfléchie par les corps diaphanes. Bull. Sci. Soc.Philom. 1:266–269.

    Google Scholar 

  • Menzel, R. (1979) Spectral sensitivity and color vision in invertebrates. In. H. Autrum (ed):Handbook of Sensory Physiology, Vol. VII/6A. Springer-Verlag, Berlin, Heidelberg, New York, pp 503–580.

    Google Scholar 

  • Mote, M. and Wehner, R. (1980) Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J. Comp. Physiol. 137:63–71.

    Article  Google Scholar 

  • Murphey, R.K. (1983) Maps in the insect nervous system, their implications for synaptic connectivity and target location in the real world. In: F. Huber and H. Markl (eds):Neuro-ethology and Behavioral Physiology. Springer-Verlag, Berlin, Heidelberg, New York, pp 176–188.

    Google Scholar 

  • Oldfield, B.P. (1988) Tonotopic organization of the insect auditory pathway. Trends Neurosci. 11:267–270.

    Article  PubMed  CAS  Google Scholar 

  • Petzold, J. and Labhart, T. (1994) Modelling polarization-opponent interneurons of insects:responses to the polarization patterns in the sky. Proc. Neurobiol. Conf. Göttingen 22:466.

    Google Scholar 

  • Petzold, J., Helbling, H. and Labhart, T. (1995) Anatomy and physiology of four new types of polarization sensitive interneuron in the cricket, Gryllus campestris. Proc. Neurobiol. Conf. Göttingen 23:415.

    Google Scholar 

  • Räber, F. (1979) Retinatopographie und Sehfeldtopologie des Komplexauges von Cataglyphis bicolor (Formicidae, Hymenoptera) und einiger verwandter Formiciden-Arten. Ph.D. Thesis, Zürich.

    Google Scholar 

  • Ramskou, T. (1969) Solstenen. Primitiv Navigation I Norden for Kompasset. Rhodos, Koben-havn.

    Google Scholar 

  • Römer, H. and Rheinländer, J. (1989) Hearing in insects and its adaptation to environmental constraints. In: H.C. Lüttgau und R. Necker (eds):Biological Signal Processing. VCH Verlagsgesellschaft, Weinheim, pp 146–162.

    Google Scholar 

  • Rossel, S. (1993) Navigation by bees using polarized skylight. Comp. Biochem. Physiol. A 104:695–708.

    Article  Google Scholar 

  • Rossel, S. and Wehner, R. (1982) The bee’s map of the e-vector pattern in the sky. Proc. Natl. Acad. Sci. USA 79:4451–4455.

    Article  PubMed  CAS  Google Scholar 

  • Rossel, S. and Wehner, R. (1984a) How bees analyse the polarization patterns in the sky. Experiments and model. J. Comp. Physiol. A 154:607–615.

    Article  Google Scholar 

  • Rossel, S. and Wehner, R. (1984b) Celestial orientation in bees:the use of spectral cues. J. Comp. Physiol A 155:605–613.

    Article  Google Scholar 

  • Santschi, F. (1911) Observations et remarques critiques sur le mécanisme de l’orientation chez les fourmis. Rév. Suisse Zool. 19:305–338.

    Google Scholar 

  • Santschi, F. (1923) L’orientation sidérale des fourmis, et quelques considérations sur leurs différentes possibilités d’orientation. Mèm. Soc. Vaudoise Sci. Nat. 4:137–175.

    Google Scholar 

  • Seyfarth, E.A. and Barth, F. (1972) Compound slit sense organs on the spider leg:mechano-receptors involved in kinesthetic orientation. J. Comp. Physiol. 78:176–191.

    Article  Google Scholar 

  • Sparks, D.L. (1988) Neural cartography:sensory and motor maps in the superior colliculus. Brain Behav. Evol. 31:49–56.

    Article  PubMed  CAS  Google Scholar 

  • Stockhammer, K. (1959) Die Orientierung nach Schwingungsrichtung linear polarisierten Lichtes und ihre sinnesphysiologischen Grundlagen. Erg. Biol. 21:34–56.

    Google Scholar 

  • Strutt, J.W. (1871) On the light from the sky, its polarization and colour. Phil. Mag. 41:107–120, 274-279.

    Google Scholar 

  • Suga, N. (1990) Cortical computational maps for auditory imaging. Neural Networks 3:3–21.

    Article  Google Scholar 

  • Waterman, T.H. (1981) Polarization sensitivity. In: H. Autrum (ed.):Handbook of Sensory Physiology, Vol. VII/6B. Springer-Verlag, Berlin, Heidelberg, New York, pp 281–469.

    Google Scholar 

  • Wehner, R. (1975) Space constancy of the visual world in insects. Fortschr. Zool. 23:148–160.

    PubMed  CAS  Google Scholar 

  • Wehner, R. (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neu-jahrsbl. Naturforsch. Ges. Zürich 184:1–132.

    Google Scholar 

  • Wehner, R. (1983) Celestial and terrestrial navigation:human strategies-insect strategies. In: F. Huber and H. Markl (eds):Neuroethology and Behavioural Physiology. Springer-Verlag, Berlin, Heidelberg, New York, pp 366–381.

    Chapter  Google Scholar 

  • Wehner, R. (1991) Visuelle Navigation:Kleinstgehirn-Strategie. Verh. Dtsch. Zool. Ges. 84:89–104.

    Google Scholar 

  • Wehner, R. (1994a) The polarization-vision project:championing organismic biology. Fortschr. Zool. 39:103–143.

    Google Scholar 

  • Wehner, R. (1994b) Himmelsbild und Kompassauge—Neurobiologie eines Navigationssystems. Verh. Dtsch. Zool. Ges. 87:9–37.

    Google Scholar 

  • Wehner, R. (1996) Polarisationsmusteranalyse bei Insekten. Nova Acta Leopoldina NF 72:159–183.

    Google Scholar 

  • Wehner, R. and Rossel, S. (1985) The bee’s celestial compass—a case study in behavioural neurobiology. Fortschr. Zool. 31:11–53.

    Google Scholar 

  • Wehner, R. and Strasser, S. (1985) The POL area of the honey bee’s eye:behavioural evidence. Physiol. Entomol. 10:337–349.

    Article  Google Scholar 

  • Zeki, S. (1993) The representation of colours in the cerebral cortex. Nature 284:412–418.

    Article  Google Scholar 

  • Zollikofer, C.P.E., Wehner, R. and Fukushi, T. (1995) Optical scaling in conspecific Cataglyphis ants. J. Exp. Biol. 198:1637–1646.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Wehner, R. (1997). The ant’s celestial compass system: spectral and polarization channels. In: Lehrer, M. (eds) Orientation and Communication in Arthropods. EXS, vol 84. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8878-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8878-3_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9811-9

  • Online ISBN: 978-3-0348-8878-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics