Skip to main content

Periodic AC and Periodic Noise in RF Simulation for Electronic Circuit Design

  • Conference paper
Modeling, Simulation, and Optimization of Integrated Circuits

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 146))

Abstract

This overview highlights the main steps to come to Periodic AC and Periodic Noise simulation in RF simulation. A distinction is made between forced oscillators and free oscillators. Noisy elements contribute in various ways to the overall noise effect. When dealing with free oscillators, phase noise is most important. In the case of white and coloured stochastic noise sources, the spectrum of the (stationary) autocorrelation of the phase-shifted function can be determined by summing the effects of all independent noise sources. In general one has to take the nonlinear way, in which the phase shift function changes with time, into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W. Anzill, F.X. Kartner, P. Russer: Simulation of the phase noise of oscillators in the frequency domain, Int. J. Electron. Commun. (AEÜ) 48–1 (1994), 45–50.

    Google Scholar 

  2. W. Bomhof, H.A. van der Vorst (2001): A parallelizable GMRES-type method for Acyclic matrices with applications in circuit simulation, in U. van Rienen, M. Günther, D. Hecht (Eds): Scientific computing in electrical engineering, Proc. SCEE-2000, Warnemünde, Springer, Berlin (2001), 293–300.

    Chapter  Google Scholar 

  3. A. Demir, A. Sangiovanni-Vincentelli: Analysis and Simulation of noise in nonlinear electronic circuits and systems, Kluwer Academic Publ., Boston, USA, 1998.

    Google Scholar 

  4. A. Demir, A. Mehrotra, J. Roychowdhury: Phase noise in oscillators: a unifying theory and numerical methods for characterisation, IEEE Trans. on Circuits and Systems - I: Fund. Theory and Applics. 47–5 (2000), 655–674.

    Article  Google Scholar 

  5. A. Demir: Phase noise in oscillators: DAEs and coloured noise sources, Proc. ICCAD’98, Int. Conf. on Computer Aided Design, San José, CA, USA (1998), 170–177.

    Google Scholar 

  6. A. Demir, D. Long, J. Roychowdhury: Computing phase noise eigenfunctions directly from Harmonic Balance/Shooting matrices, Proc. ICCAD 2000, Int. Conf. on Computer Aided Design, San José, CA, USA (2000), 283–288.

    Google Scholar 

  7. M. GĂĽnther, U. Feldmann, J. ter Maten: Discretization of circuit problems, to appear in Numerical Analysis of Electromagnetics, Series Handbook of Numerical Analysis, Elsevier Science.

    Google Scholar 

  8. A. Hajimiri, T.H. Lee: A general theory of phase noise in electrical oscillators, IEEE J. Solid-State Circ., 33–2 (1998), 179–194.

    Article  Google Scholar 

  9. S.H.M.J. Houben, E.J.W. ter Maten, J.M. Maubach, J.M.F. Peters: Novel time-domain methods for free-running oscillators, In: V. Porra, M. Valtonen, I. Hartimo, M. Ilmonen, 0. Simula, T. Veijola (Eds): ECCTD’01 - Proceedings of the 15TH European Conference on Circuit Theory and Design, Helsinki University of Technology (ISBN 951–22–5571–5), Finland (2001), III-393-III-396.

    Google Scholar 

  10. S.H.M.J. Houben: Time-domain simulation techniques for finding the PSS of electric oscillators, these Proceedings.

    Google Scholar 

  11. F.X. Kärtner: Untersuchung des Rauschverhaltens von Oszillatoren, PhD-Thesis TU München, 1989.

    Google Scholar 

  12. F.X. Kartner: Analysis of white and f -a noise in electrical oscillators, Int. J. Circuit Theory Appl. 18 (1990), 485–519.

    Article  Google Scholar 

  13. T.A.M. Kevenaar: Periodic Steady State Analysis using Shooting and Waveform-Newton, Int. J. Circuit Theory and Applics. 22 (1994), 51–60.

    Article  MATH  Google Scholar 

  14. R. Lamour, R. März, R. Winkler: How Floquet Theory applies to Index 1 differential algebraic equations, J. of Math. Analysis and Applics. 217 (1998), 372–394.

    Article  MATH  Google Scholar 

  15. R. Lamour: Floquet-Theory for differential-algebraic equations (DAE), ZAMM 78–3 (1998), S989–S990.

    Google Scholar 

  16. S. \( tilde L\)ampe, H.G. Brachtendorf, E.J.W. ter Maten, S.P. Onneweer, R. Laur: Robust limit cycle calculations of oscillators, In U. van Rienen, M. Gunther and D. Hecht (Eds.): Scientific computing in electrical engineering, Proc. SCEE-2000, Warnemünde/Rostock, LNCSE 18, Springer Verlag, Berlin (2001), 233–240.

    Google Scholar 

  17. E.J.W. ter Maten: Numerical methods for frequency domain analysis of electronic circuits, Surv. Math. Ind. 8 (1999), 171–185.

    MATH  Google Scholar 

  18. K. Mayaram, D.C. Lee, S. Moinian, D. Rich, J. Roychowdhury: Overview of computer-aided analysis tools for RFIC: algorithms, features,and limitations, IEEE 1997 Custom Integrated Circuit Conference, Santa Clara, CA, USA (1997), 505–512.

    Google Scholar 

  19. M. Okumura, T. Sugawara, H. Tanimoto: An efficient small signal frequency analysis method for nonlinear circuits with two frequency excitations, IEEE Trans. of Comp.-Aided Design of Integrated Circuits and Systems 9–3 (1990), 225–235.

    Article  Google Scholar 

  20. M. Okumura, H. Tanimoto, T. Itakura, T. Sugawara: Numerical noise analysis for nonlinear circuits with a periodic large signal excitation including cyclostationary noise sources, IEEE Trans. on Circuits and Systems — I: Fund. Theory and Applics. 40–9 (1993), 581–590.

    Article  Google Scholar 

  21. R. Telichevesky, K.S. Kundert, J.K. White: Efficient Steady-State Analysis based on matrix-free Krylov-Subspace methods, Proc. DAC’95, 1995.

    Google Scholar 

  22. R. Telichevesky, K. Kundert: Efficient AC and noise analysis of two-tone RF circuits, Proc. DAC’96, Las Vegas, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

ter Maten, E.J.W., Fijnvandraat, J.G., Lin, C., Peters, J.M.F. (2003). Periodic AC and Periodic Noise in RF Simulation for Electronic Circuit Design. In: Antreich, K., Bulirsch, R., Gilg, A., Rentrop, P. (eds) Modeling, Simulation, and Optimization of Integrated Circuits. ISNM International Series of Numerical Mathematics, vol 146. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8065-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8065-7_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9426-5

  • Online ISBN: 978-3-0348-8065-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics