Skip to main content

Nonselective Cation Channels in Cardiac and Smooth Muscle Cells

  • Chapter
Nonselective Cation Channels

Part of the book series: EXS ((EXS,volume 66))

Summary

In cardiac and smooth muscle cells, nonselective cation channels can be activated by hormones and neurotransmitters, by cell stretch, and by changes in membrane potential. Activation of nonselective cation channels can depolarize the cell membrane, induce Ca2+ influx through voltage-gated Ca2+ channels and contraction. Activation of nonselective cation channels may trigger contraction even when membrane depolarization is absent or when voltage-gated Ca2+ channels are blocked, provided the Ca2+ permeability of these channels is sufficiently high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amédée T, Benham CD, Bolton TB, Byrne NG, Large WA (1990). Potassium, chloride and nonselective cation conductances opened by noradrenaline in rabbit ear artery cells. J. Physiol. (London) 423:551–568.

    Google Scholar 

  • Bayliss WM (1902). On the local reaction of the arterial wall to changes in arterial pressure. J. Physiol. (London) 28:220–231.

    Google Scholar 

  • Benham CD (1989). ATP-activated channels gate calcium entry in single smooth muscle cells dissociated from rabbit ear artery. J. Physiol. (London) 419:689–701.

    Google Scholar 

  • Benham CD (1990). ATP-gated channels in vascular smooth muscle cells. Ann. N.Y. Acad. Sci. 603:275–286.

    Article  Google Scholar 

  • Benham CD, Bolton TB, Byrne NG, Large WA (1987). Action of externally applied adenosine triphosphate on single smooth muscle cells dispersed from rabbit ear artery. J. Physiol. (London) 387:473–488.

    Google Scholar 

  • Benham CD, Bolton TB, Lang RJ (1985). Acetylcholine activates an inward current in single mammalian smooth muscle cells. Nature 316:345–347.

    Article  Google Scholar 

  • Benham CD, Tsien RW (1987). A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328:275–278.

    Article  Google Scholar 

  • Bolton TB (1979). Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59:606–718.

    Google Scholar 

  • Biilbring E, Kuriyama H (1963). Effects of changes in ionic environment on the action of acetylcholine and adrenaline on the smooth muscle cells of the guinea-pig taenia coli. J. Physiol. (London) 166:59–74.

    Google Scholar 

  • Burnstock G (1990). Purinergic mechanisms, an overview. Ann. N.Y. Acad. Sci. 603:1–18.

    Article  Google Scholar 

  • Byrne NG, Large WA (1988). Membrane ionic mechanisms activated by noradrenaline in cells isolated from the rabbit portal vein. J. Physiol. (London) 404:557–573.

    Google Scholar 

  • Chen C, Wagoner PK (1991). Endothelin induces a nonselective cation current in vascular smooth muscle cells. Circ. Res. 69:447–454.

    Google Scholar 

  • Colquhoun D, Neher E, Reuter H, Stevens CF (1981). Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294:752–754.

    Article  Google Scholar 

  • Davis MJ, Donovitz JA, Hood JD (1992). Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am. J. Physiol. Cell. Physiol. 262:C1083–C1088.

    Google Scholar 

  • DiFrancesco D (1981). The contribution of the ‘pacemaker’ current (if) to generation of spontaneous activity in rabbit sino-atrial node myocytes. J. Physiol. (London) 434:23–40.

    Google Scholar 

  • DiFrancesco D (1982). Block and activation of the pace-maker channel in calf purkinje fibres: effects of potassium, caesium and rubidium. J. Physiol. (London) 329:485–507.

    Google Scholar 

  • DiFrancesco D, Tromba C (1989). Channel activity related to pacemaking. In: Isolated Adult Cardiomyocytes (Vol II). Piper HM, Isenberg G, editors. Boca Raton, Florida: CRC, pp 97–115.

    Google Scholar 

  • Ehara T, Noma A, Ono K (1988). Calcium-activated non-selective cation channel in ventricular cells isolated from adult guinea-pig hearts. J. Physiol. (London) 403:117–133.

    Google Scholar 

  • Friel DD, Bean BP (1988). Two ATP-activated conductances in bullfrog atrial cells. J. Gen. Physiol. 91:1–27.

    Article  Google Scholar 

  • Glitsch HG, Pusch H, Verdonck F (1986). The contribution of Na and K ions to the pacemaker current in sheep cardiac Purkinje fibres. Pflügers Arch. 406:464–471.

    Article  Google Scholar 

  • Guharay F, Sachs F (1984). Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. (London) 352:685–701.

    Google Scholar 

  • Hagiwara N, Irisawa H (1989). Modulation by intracellular Ca2+ of the hyperpolarization-activated inward current in rabbit single sino-atrial node cells. J. Physiol. (London) 409:121–141.

    Google Scholar 

  • Harder DR (1984). Pressure-dependent membrane depolarization in cat middle cerebral artery. Circ. Res. 55:197–202.

    Google Scholar 

  • Hisada T, Ordway RW, Kirber MT, Singer JJ, Walsh JV, Jr. (1991). Hyperpolarization-acti-vated cationic channels in smooth muscle cells are stretch sensitive. Pflügers Arch. 417:493–499.

    Article  Google Scholar 

  • Honoré E, Martin C, Mironneau C, Mironneau J (1989). An ATP-sensitive conductance in cultured smooth muscle cells from pregnant rat myometrium. Am. J. Physiol. 257:C297-C305.

    Google Scholar 

  • Inoue R (1991). Effect of external Cd2+ and other divalent cations on carbachol-activated non-selective cation channels in guinea-pig ileum. J. Physiol. (London) 442:447–463.

    Google Scholar 

  • Inoue R, Brading AF (1991). Human, pig and guinea-pig bladder smooth muscle cells generate similar inward currents in response to purinoceptor activation. Br. J. Pharmacol. 103:1840–1841.

    Google Scholar 

  • Inoue R, Isenberg G (1990). Effect of membrane potential on acetylcholine-induced inward current in guinea-pig ileum. J. Physiol. (London) 424:57–71.

    Google Scholar 

  • Inoue R, Isenberg G (1990). Intracellular calcium ions modulate acetylcholine-induced inward current in guinea-pig ileum. J. Physiol. (London) 424:73–92.

    Google Scholar 

  • Inoue R, Isenberg G (1990). Acetylcholine activates nonselective cation channels in guinea pig ileum through a G protein. Am. J. Physiol. Cell. Physiol. 258:C1173-C1178.

    Google Scholar 

  • Inoue R, Kitamura K, Kuriyama H (1987). Acetylcholine activates single sodium channels in smooth muscle cells. Pflügers Arch. 410:69–74.

    Article  Google Scholar 

  • Irisawa I, Hagiwara N (1991). Pacemaker mechanism in the isolated rabbit sinoatrial node cells. Presence and role of a background current. In: The Proceedings of the 18th International Symposium of Cardiovascular Electrophysiology, February 19, 1991, Seoul, Korea, pp 57–64.

    Google Scholar 

  • Isenberg G (1976). Cardiac purkinje fibres. Caesium as a tool to block inward rectifying potassium currents. Pflügers Arch. 365:99–106.

    Article  Google Scholar 

  • Isenberg G (1977). Cardiac purkinje fibres. [Ca2+]; controls the potassium permeability via the conductance components gK1 and gK2. Pflügers Arch. 371:77–85.

    Article  Google Scholar 

  • Kirber MT, Walsh Jr JV, Singer JJ (1988). Stretch-activated ion channels in smooth muscle: a mechanism for the initiation of stretch-induced contraction. Pflügers Arch. 412:339–345.

    Article  Google Scholar 

  • Knot HJ, De Ree MM, Gähwiler BH, Rüegg UT (1991). Modulation of electrical activity and of intracellular calcium oscillations of smooth muscle cells by calcium antagonists, agonists, and vasopressin. J. Cardiovasc. Pharmacol. 18(Suppl. 10):S7-S14.

    Google Scholar 

  • Komori S, Bolton TB (1990). Role of G-proteins in muscarinic receptor inward and outward currents in rabbit jejunal smooth muscle. J. Physiol. (London) 427:395–419.

    Google Scholar 

  • Komori S, Kawai M, Takewaki T, Ohashi H (1992). GTP-binding protein involvement in membrane currents evoked by carbachol and histamine in guinea-pig ileal muscle. J. Physiol. (London) 540:105–126.

    Google Scholar 

  • Noble D (1979). The Initiation of the Heartbeat, 2nd edn. Oxford: Clarendon Press.

    Google Scholar 

  • Ohya Y, Sperelakis N (1989). Fast Na+ and slow Ca2+ channels in single uterine muscle cells from pregnant rats. Am. J. Physiol. 257:C408–C412.

    Google Scholar 

  • Pacaud P, Bolton TB (1991). Relation between muscarinic receptor cationic current and internal calcium in guinea-pig jejunal smooth muscle cells. J. Physiol. (London) 441:477–499.

    Google Scholar 

  • Pearson JD, Gordon JL (1989). P2 purinoceptors in the blood vessel wall. Biochem. Pharmacol. 38:4157–4163.

    Article  Google Scholar 

  • Rüegg UT, Wallnöfer A, Weir S, Cauvin C (1989). Receptor-operated calcium-permeable channels in vascular smooth muscle. J. Cardiovasc. Pharmacol. 14(Suppl. 6):S49-S58.

    Google Scholar 

  • Sachs F (1986). Biophysics of mechanoreception. Membr. Bichem. 6:173–195.

    Article  Google Scholar 

  • Schneider P, Hopp HH, Isenberg G (1991). Ca2+ influx through ATP-gated channels increments [Ca2+], and inactivates I Ca in myocytes from guinea-pig urinary bladder. J. Physiol. (London) 440:479–496.

    Google Scholar 

  • Sigurdson W, Ruknudin A, Sachs F (1992). Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: Role of stretch-activated ion channels. Am. J. Physiol. Heart Circ. Physiol. 262:H1110–H1115.

    Google Scholar 

  • Sims SM (1992). Cholinergic activation of a non-selective cation current in canine gastric smooth muscle is associated with contraction. J. Physiol. (London) 449:377–398.

    Google Scholar 

  • Smernov SV, Sholos AV, Shuba MF (1992). Potential-dependent inward currents in single isolated smooth muscle cells of the rat ileum. J. Physiol. (London) 454:549–571.

    Google Scholar 

  • Suzuki H (1989). Electrical activities of vascular smooth muscles in response to acetylcholine. Asia Pacific J. Pharmacol. 4:141–150.

    Google Scholar 

  • Van Breemen C, Saida K (1989). Cellular mechanisms regulating [Ca2 +], smooth muscle. Annu. Rev. Physiol. 51:315–329.

    Article  Google Scholar 

  • Van Renterghem C, Lazdunski M (1991). A new non-voltage-dependent, epithelial-like Na+ channel in vascular smooth muscle cells. Pflügers Arch. 419:401–408.

    Article  Google Scholar 

  • Van Renterghem C, Romey G, Lazdunski M (1988a). Vasopressin modulates the spontaneous electrical activity in aortic cells (line A7r5) by acting on three different types of ionic channels. Proc. Nat. Acad. Sci. USA 85:9365–9369.

    Article  Google Scholar 

  • Van Renterghem C, Vigne P, Barhanin J, Schmid-Alliana A, Freiin C, Lazdunski M (1988b). Molecular mechanism of action of the vasoconstrictor peptide endothelin. Biochem. Bio-phys. Res. Commun. 157(3):977–985.

    Google Scholar 

  • Vigne P, Breittmayer J-P, Lazdunski M, Freiin C (1988). The regulation of the cytoplasmic free Ca2 + concentration in arotic smooth muscle cells (A7r5 line) after stimulation by vasopressin and bombesin. Eur. J. Biochem. 176:47–52.

    Article  Google Scholar 

  • Vogalis F, Sanders KM (1990). Cholinergic stimulation activates a non-selective cation current in canine pyloric circular muscle cells. J. Physiol. (London) 429:223–236.

    Google Scholar 

  • Wallnöfer A, Cauvin C, Lategan TW, Rüegg UT (1989). Differential blockade of agonist- and depolarization-induced 45Ca2+ influx in smooth muscle cells. Am. J. Physiol. 257:C607-C611.

    Google Scholar 

  • Wang Q, Large WA (1991). Noradrenaline-evoked cation conductance recorded with the nystatin whole-cell method in rabbit portal vein cells. J. Physiol. (London) 435:21–39.

    Google Scholar 

  • Wang X-B, Osugi T, Uchida S (1992). Different pathways for Ca2+ influx and intracellular release of Ca2+ mediated by muscarinic receptors in ileal longitudinal smooth muscle. Jpn. J. Pharmacol. 58:407–415.

    Article  Google Scholar 

  • Xiong Z, Kitamura K, Kuriyama H (1991). ATP activates cationic currents and modulates the calcium current through GTP-binding protein in rabbit portal vein. J. Physiol. (London) 440:143–165.

    Google Scholar 

  • Yanagihara K, Irisawa H (1980). Inward current activated during hyperpolarization in the rabbit sinoatrial node cell. Pflügers Arch. 385:11–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Isenberg, G. (1993). Nonselective Cation Channels in Cardiac and Smooth Muscle Cells. In: Siemen, D., Hescheler, J. (eds) Nonselective Cation Channels. EXS, vol 66. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7327-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7327-7_19

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7329-1

  • Online ISBN: 978-3-0348-7327-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics