Skip to main content

A Systematic Review of Lead Exposure on Mental Health

  • Chapter
  • First Online:
Lead Toxicity Mitigation: Sustainable Nexus Approaches

Abstract

Lead is the most potent and persistent toxic metal found naturally in the earth’s crust. Humans are exposed to lead particles through inhalation, ingestion, or skin contact, through several sources that influence food, drinking water, soil, and air. If this heavy metal enters the body, interferes with the organ systems. US Centers for Disease Control and Prevention (CDC) recently declared that no level of lead can be considered “safe”. The outcomes associated with lead exposure have become more apparent and are an ever-increasing concern across the globe, as a plethora of disorders are caused by its contact. Not only adults but young children and fetuses are also vulnerable to its toxic effects leading to neurodevelopment and kidney-related disorders. This chapter provides insight into the clinical manifestation of lead exposure especially the impact on the mental health (neurodevelopment) of the fetus, children, and adults, the mechanism of lead-induced neurotoxicity, available biomarkers, challenges, mitigation, preventive measures, and therapy for lead exposure. Future recommendations to undertake necessary steps to protect the population from environmental toxicity have also conversed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aaseth J, Skaug MA, Cao Y, Andersen O (2015) Chelation in metal intoxication—principles and paradigms. J Trace Elements Med Biol 31:260–266

    Article  CAS  Google Scholar 

  • Abd-Wahil MS, Jaafar MH, Md-Isa Z (2022) Assessment of urinary lead (Pb) and essential trace elements in autism spectrum disorder: a case-control study among preschool children in Malaysia. Biol Trace Element Res 200(1):97–121. https://doi.org/10.1007/s12011-021-02654-w

    Article  CAS  Google Scholar 

  • ATSDR (2010) Case studies in environmental medicine (CSEM) lead toxicity

    Google Scholar 

  • Barbosa F, Tanus-Santos JE, Gerlach RF, Parsons PJ (2005) A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect 113(12):1669–1674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bellinger DC (2008) Very low lead exposures and children’s neurodevelopment. Curr Opin Pediat 20(2):172–177

    Article  Google Scholar 

  • Bellinger D (2018) Tetraethyl lead, paints, pipes, and other lead exposure routes: the impact on human health

    Google Scholar 

  • Berlin A, Yodaiken R, Logan D (1982) International seminar on the assessment of toxic agents at the workplace roles of ambient and biological monitoring, Luxembourg, 8–12 December, 1980. Int Arch Occup Environ Health 50(2):1258

    Article  Google Scholar 

  • Betts KS (2012) CDC updates guidelines for children’s lead exposure. Environ Health Perspect 120(7):a268. https://doi.org/10.1289/ehp.120-a268

    Article  PubMed  PubMed Central  Google Scholar 

  • Brubaker CJ, Schmithorst VJ, Haynes EN, Dietrich KN, Egelhoff JC, Lindquist DM et al (2009) Altered myelination and axonal integrity in adults with childhood lead exposure: a diffusion tensor imaging study. Neurotoxicology 30(6):867–875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP (2003a) Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. N Engl J Med 348(16):1517–1526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canfield RL, Kreher DA, Cornwell C, Henderson CR (2003b) Low-level lead exposure, executive functioning, and learning in early childhood. Child Neuropsychol 9(1):35–53

    Article  PubMed  Google Scholar 

  • Canfield RL, Gendle MH, Cory-Slechta DA (2004) Impaired neuropsychological functioning in lead-exposed children. Develop Neuropsychol 26(1):513–540

    Article  Google Scholar 

  • Canfield R, Jusko T, Kordas K (2005) Environmental lead exposure and children’s cognitive function. Rivista Italiana Di Pediatria Ital J Pediat 31(6):293

    CAS  Google Scholar 

  • Cardenas-Iniguez C, Burnor E, Herting MM (2022) Neurotoxicants, the developing brain, and mental health. Biol Psych Global Open Sci 2:223–232

    Article  Google Scholar 

  • Carrington C, Devleesschauwer B, Gibb HJ, Bolger PM (2019) Global burden of intellectual disability resulting from dietary exposure to lead, 2015. Environ Res 172:420–429

    Article  PubMed  CAS  Google Scholar 

  • Cassleman KL, Dorrance KA, Todd AC (2020) Neuropsychiatric implications of chronic lead exposure. Milit Med 185(5–6):e914–e918

    Article  Google Scholar 

  • Cecil KM, Dietrich KN, Altaye M, Egelhoff JC, Lindquist DM, Brubaker CJ, Lanphear BP (2011) Proton magnetic resonance spectroscopy in adults with childhood lead exposure. Environ Health Perspect 119(3):403–408

    Article  PubMed  CAS  Google Scholar 

  • Chiodo LM, Jacobson SW, Jacobson JL (2004) Neurodevelopmental effects of postnatal lead exposure at very low levels. Neurotoxicol Teratol 26(3):359–371

    Article  PubMed  CAS  Google Scholar 

  • Chouhdari A, Farnaghi F, Hassanian-Moghaddam H, Zamani N, Sabeti S, Shahrabi-Farahani H (2020) Blood lead levels in opium-poisoned children: one cross-sectional study in Iran. Addict Health 12(3):159–166

    PubMed  PubMed Central  Google Scholar 

  • Collin MS, Kumar Venkataraman S, Vijayakumar N, Kanimozhi V, Arbaaz SM, Stacey RS et al (2022) Bioaccumulation of lead (Pb) and its effects on human: a review. J Hazard Mater Adv 7:100094

    Article  CAS  Google Scholar 

  • Coon S, Stark A, Peterson E, Gloi A, Kortsha G, Pounds J et al (2006) Whole-body lifetime occupational lead exposure and risk of Parkinson’s disease. Environ Health Perspect 114(12):1872–1876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeSilva P (1981) Determination of lead in plasma and studies on its relationship to lead in erythrocytes. Occup Environ Med 38(3):209–217

    Article  CAS  Google Scholar 

  • Després C, Beuter A, Richer F, Poitras K, Veilleux A, Ayotte P et al (2005) Neuromotor functions in Inuit preschool children exposed to Pb, PCBs, and Hg. Neurotoxicol Teratol 27(2):245–257

    Article  PubMed  Google Scholar 

  • Dietrich KN, Berger OG, Succop PA, Hammond PB, Bornschein RL (1993) The developmental consequences of low to moderate prenatal and postnatal lead exposure: intellectual attainment in the Cincinnati Lead Study Cohort following school entry. Neurotoxicol Teratol 15(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Ezzati M, Lopez AD, Rodgers AA, Murray CJ (2004) Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. World Health Organization, New York

    Google Scholar 

  • Fenga C, Gangemi S, Alibrandi A, Costa C, Micali E (2016) Relationship between lead exposure and mild cognitive impairment. J Prevent Med Hyg 57(4):E205

    CAS  Google Scholar 

  • Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garí M, Grzesiak M, Krekora M, Kaczmarek P, Jankowska A, Król A et al (2022) Prenatal exposure to neurotoxic metals and micronutrients and neurodevelopmental outcomes in early school age children from Poland. Environ Res 204:112049. https://doi.org/10.1016/j.envres.2021.112049

    Article  PubMed  CAS  Google Scholar 

  • Goldstein G (1993) Evidence that lead acts as a calcium substitute in second messenger metabolism. Neurotoxicology 14(2–3):97–101

    PubMed  CAS  Google Scholar 

  • Guilarte TR, McGlothan JL (1998) Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure. Brain Res 790(1–2):98–107

    Article  PubMed  CAS  Google Scholar 

  • Gundacker C, Hengstschläger M (2012) The role of the placenta in fetal exposure to heavy metals. Wien Med Wochenschr 162(9–10):201–206

    Article  PubMed  Google Scholar 

  • Hao P, Han SH, Liu HY, Chandni V, Cai XQ, Zhang YH (2013) Relationship of inflammation and endothelial dysfunction with risks to cardiovascular disease among people in Inner Mongolia of China. Biomed Environ Sci 26(10):792–800

    Google Scholar 

  • Heidari S, Mostafaei S, Razazian N, Rajati M, Saeedi A, Rajati F (2022) The effect of lead exposure on IQ test scores in children under 12 years: a systematic review and meta-analysis of case-control studies. Syst Rev 11(1):106. https://doi.org/10.1186/s13643-022-01963-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Avila M, Smith D, Meneses F, Sanin LH, Hu H (1998) The influence of bone and blood lead on plasma lead levels in environmentally exposed adults. Environ Health Perspect 106(8):473–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu H, Rabinowitz M, Smith D (1998) Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect 106(1):1–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu H, Téllez-Rojo MM, Bellinger D, Smith D, Ettinger AS, Lamadrid-Figueroa H et al (2006) Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ Health Perspect 114(11):1730–1735. https://doi.org/10.1289/ehp.9067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang L (2007) Environmental stressors and violence: lead and polychlorinated biphenyls. Rev Environ Health 22(4):313–328

    Article  PubMed  Google Scholar 

  • Ishitsuka K, Yamamoto-Hanada K, Yang L, Mezawa H, Konishi M, Saito-Abe M et al (2020) Association between blood lead exposure and mental health in pregnant women: results from the Japan environment and children’s study. Neurotoxicology 79:191–199. https://doi.org/10.1016/j.neuro.2020.06.003

    Article  PubMed  CAS  Google Scholar 

  • Iwai-Shimada M, Kameo S, Nakai K, Yaginuma-Sakurai K, Tatsuta N, Kurokawa N et al (2019) Exposure profile of mercury, lead, cadmium, arsenic, antimony, copper, selenium and zinc in maternal blood, cord blood and placenta: the Tohoku Study of Child Development in Japan. Environ Health Prevent Med 24:1–11

    Article  CAS  Google Scholar 

  • Jedrychowski W, Perera FP, Jankowski J, Mrozek-Budzyn D, Mroz E, Flak E et al (2009) Very low prenatal exposure to lead and mental development of children in infancy and early childhood. Neuroepidemiology 32(4):270–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadawathagedara M, Muckle G, Quénel P, Michineau L, Le Bot B, Hoen B et al (2023) Infant neurodevelopment and behavior in Guadeloupe after lead exposure and Zika maternal infection during pregnancy. Neurotoxicology 94:135–146. https://doi.org/10.1016/j.neuro.2022.11.007

    Article  PubMed  CAS  Google Scholar 

  • Klotz K, Göen T (2017) Human biomonitoring of lead exposure. Met Ions Life Sci 17:99–121

    CAS  Google Scholar 

  • Kosnett MJ, Wedeen RP, Rothenberg SJ, Hipkins KL, Materna BL, Schwartz BS et al (2007) Recommendations for medical management of adult lead exposure. Environ Health Perspect 115(3):463–471

    Article  PubMed  CAS  Google Scholar 

  • Kumar A (2009) Lead loadings in household dust in Delhi, India. Indoor Air 19(5):414–420

    Article  PubMed  CAS  Google Scholar 

  • Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045

    Article  PubMed  CAS  Google Scholar 

  • Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC et al (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113(7):894–899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lidsky T, Schneider J (2006) Adverse effects of childhood lead poisoning: the clinical neuropsychological perspective. Environ Res 100(2):284–293

    Article  PubMed  CAS  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Li L, Wang Y, Yan C, Liu X (2013) Impact of low blood lead concentrations on IQ and school performance in Chinese children. PLoS ONE 8(5):e65230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu JA, Chen Y, Gao D, Jing J, Hu Q (2014) Prenatal and postnatal lead exposure and cognitive development of infants followed over the first three years of life: a prospective birth study in the Pearl River Delta region, China. Neurotoxicology 44:326–334

    Article  PubMed  CAS  Google Scholar 

  • Lu A-X, Wang S-S, Xu X, Wu M-Q, Liu J-X, Xu M et al (2023) Sex-specific associations between cord blood lead and neurodevelopment in early life: the mother-child cohort (Shanghai, China). Ecotoxicol Environ Saf 249:114337. https://doi.org/10.1016/j.ecoenv.2022.114337

    Article  PubMed  CAS  Google Scholar 

  • Lustberg M, Silbergeld E (2002) Blood lead levels and mortality. Arch Intern Med 162(21):2443–2449

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Yan L, Guo T, Yang S, Guo C, Liu Y et al (2019) Association of typical toxic heavy metals with Schizophrenia. Int J Environ Res Public Health 16(21):4200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malavika L, Goyal T, Mitra P, Saikiran G, Sharma S, Sharma P (2022) Risk factors for lead toxicity and its effect on neurobehavior in Indian children. Indian J Clin Biochem 37(3):294–302. https://doi.org/10.1007/s12291-021-00995-w

    Article  PubMed  CAS  Google Scholar 

  • Mansouri B, Błaszczyk M, Binkowski LJ, Sayadi MH, Azadi NA, Amirabadizadeh AR, Mehrpour O (2020) Urinary metal levels with relation to age, occupation, and smoking habits of male inhabitants of eastern Iran. Biol Trace Element Res 195(1):63–70. https://doi.org/10.1007/s12011-019-01848-7

    Article  CAS  Google Scholar 

  • Martínez-Lazcano JC, López-Quiroz A, Alcantar-Almaraz R, Montes S, Sánchez-Mendoza A, Alcaraz-Zubeldia M et al (2018) A hypothesis of the interaction of the nitrergic and serotonergic systems in aggressive behavior induced by exposure to lead. Front Behav Neurosci 12:202

    Article  PubMed  PubMed Central  Google Scholar 

  • McFarlane AC, Searle AK, Van Hooff M, Baghurst PA, Sawyer MG, Galletly C et al (2013) Prospective associations between childhood low-level lead exposure and adult mental health problems: the Port Pirie cohort study. Neurotoxicology 39:11–17

    Article  PubMed  CAS  Google Scholar 

  • Metrics IFH Evaluation (2017) GBD compare data visualization. In: IHME. University of Washington, Seattle, WA

    Google Scholar 

  • Meyer PA, Brown MJ, Falk H (2008) Global approach to reducing lead exposure and poisoning. Mutat Res Rev Mutat Res 659(1–2):166–175

    Article  CAS  Google Scholar 

  • Min MO, Singer LT, Kirchner HL, Minnes S, Short E, Hussain Z, Nelson S (2009) Cognitive development and low-level lead exposure in poly-drug exposed children. Neurotoxicol Teratol 31(4):225–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murata K, Iwata T, Dakeishi M, Karita K (2009) Lead toxicity: does the critical level of lead resulting in adverse effects differ between adults and children? J Occup Health 51(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Neal AP, Stansfield KH, Worley PF, Thompson RE, Guilarte TR (2010) Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: potential role of NMDA receptor–dependent BDNF signaling. Toxicol Sci 116(1):249–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neeti K, Prakash T (2013) Effects of heavy metal poisoning during pregnancy. Int Res J Environ Sci 2(1):88–92

    Google Scholar 

  • Nowak B, Chmielnicka J (2000) Relationship of lead and cadmium to essential elements in hair, teeth, and nails of environmentally exposed people. Ecotoxicol Environ Saf 46(3):265–274

    Article  PubMed  CAS  Google Scholar 

  • Obeng-Gyasi E (2019a) Lead exposure and cardiovascular disease among young and middle-aged adults. Med Sci 7(11):103

    CAS  Google Scholar 

  • Obeng-Gyasi E (2019b) Sources of lead exposure in various countries. Rev Environ Health 34(1):25–34

    Article  PubMed  CAS  Google Scholar 

  • Organization WH (2019) Preventing disease through healthy environments: exposure to lead—a major public health concern (9240037632)

    Google Scholar 

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  • Remy S, Hambach R, Van Sprundel M, Teughels C, Nawrot TS, Buekers J et al (2019) Intelligence gain and social cost savings attributable to environmental lead exposure reduction strategies since the year 2000 in Flanders, Belgium. Environ Health 18:1–9

    Article  Google Scholar 

  • Reuben A, Schaefer JD, Moffitt TE, Broadbent J, Harrington H, Houts RM et al (2019) Association of childhood lead exposure with adult personality traits and lifelong mental health. JAMA Psych 76(4):418–425. https://doi.org/10.1001/jamapsychiatry.2018.4192

    Article  Google Scholar 

  • Rísová V (2019) The pathway of lead through the mother’s body to the child. Interdiscip Toxicol 12(1):1–6

    Article  PubMed  Google Scholar 

  • Rocha A, Trujillo KA (2019) Neurotoxicity of low-level lead exposure: history, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology 73:58–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Carrillo A, Mustieles V, D’Cruz SC, Legoff L, Gil F, Olmedo P et al (2022) Exploring the relationship between metal exposure, BDNF, and behavior in adolescent males. Int J Hyg Environ Health 239:113877. https://doi.org/10.1016/j.ijheh.2021.113877

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Bellinger D, Hu H, Schwartz J, Ettinger AS, Wright RO et al (2009) Lead exposure and behavior among young children in Chennai, India. Environ Health Perspect 117(10):1607–1611. https://doi.org/10.1289/ehp.0900625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruan D-Y, Chen J-T, Zhao C, Xu Y-Z, Wang M, Zhao W-F (1998) Impairment of long-term potentiation and paired-pulse facilitation in rat hippocampal dentate gyrus following developmental lead exposure in vivo. Brain Res 806(2):196–201

    Article  PubMed  CAS  Google Scholar 

  • Rygiel CA, Dolinoy DC, Bakulski KM, Aung MT, Perng W, Jones TR et al (2021) DNA methylation at birth potentially mediates the association between prenatal lead (Pb) exposure and infant neurodevelopmental outcomes. Environ Epigenet 7(1):5. https://doi.org/10.1093/eep/dvab005

    Article  CAS  Google Scholar 

  • Santa Maria MP, Hill BD, Kline J (2019) Lead (Pb) neurotoxicology and cognition. Appl Neuropsychol Child 8(3):272–293

    Article  PubMed  Google Scholar 

  • Schneider J, Kidd S, Anderson D (2013) Influence of developmental lead exposure on expression of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus. Toxicol Lett 217(1):75–81

    Article  PubMed  CAS  Google Scholar 

  • Schuhmacher M, Domingo J, Llobet J, Corbella J (1991) Lead in children’s hair, as related to exposure in Tarragona Province, Spain. Sci Total Environ 104(3):167–173

    Article  PubMed  CAS  Google Scholar 

  • Simons T (1986) Cellular interactions between lead and calcium. Br Med Bull 42(4):431–434

    Article  PubMed  CAS  Google Scholar 

  • Singh L, Anand M, Singh S, Taneja A (2020) Environmental toxic metals in placenta and their effects on preterm delivery-current opinion. Drug Chem Toxicol 43(5):531–538

    Article  PubMed  CAS  Google Scholar 

  • Takagi Y, Matsuda S, Imai S, Ohmori Y, Masuda T, Vinson J et al (1988) Survey of trace elements in human nails: an international comparison. Bull Environ Contam Toxicol 41(5):1258

    Google Scholar 

  • Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S et al (2021) Lead exposure is associated with functional and microstructural changes in the healthy human brain. Commun Biol 4(1):912. https://doi.org/10.1038/s42003-021-02435-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomason ME, Hect JL, Rauh VA, Trentacosta C, Wheelock MD, Eggebrecht AT et al (2019) Prenatal lead exposure impacts cross-hemispheric and long-range connectivity in the human fetal brain. Neuroimage 191:186–192

    Article  PubMed  CAS  Google Scholar 

  • Tlotleng N, Naicker N, Mathee A, Todd AC, Nkomo P, Norris SA (2022) Association between bone lead concentration and aggression in youth from a sub-cohort of the Birth to Twenty Cohort. Int J Environ Res Public Health 19(4):2200

    Article  PubMed  PubMed Central  Google Scholar 

  • Vigeh M, Yokoyama K, Matsukawa T, Shinohara A, Ohtani K (2014) Low level prenatal blood lead adversely affects early childhood mental development. J Child Neurol 29(10):1305–1311

    Article  PubMed  Google Scholar 

  • Wang T, Guan R-L, Liu M-C, Shen X-F, Chen JY, Zhao M-G, Luo W-J (2016) Lead exposure impairs hippocampus related learning and memory by altering synaptic plasticity and morphology during juvenile period. Mol Neurobiol 53:3740–3752

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Bao J, Wang T, Moryani HT, Kang W, Zheng J et al (2021) Hazardous heavy metals accumulation and health risk assessment of different vegetable species in contaminated soils from a typical mining city, central China. Int J Environ Res Public Health 18(5):2617

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver VM, Jaar BG, Schwartz BS, Todd AC, Ahn K-D, Lee S-S et al (2005) Associations among lead dose biomarkers, uric acid, and renal function in Korean lead workers. Environ Health Perspect 113(1):36–42

    Article  PubMed  CAS  Google Scholar 

  • Weisskopf MG, Weuve J, Nie H, Saint-Hilaire M-H, Sudarsky L, Simon DK et al (2010) Association of cumulative lead exposure with Parkinson’s disease. Environ Health Perspect 118(11):1609–1613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen Q, Verheijen M, Wittens MMJ, Czuryło J, Engelborghs S, Hauser D et al (2022) Lead-exposure associated miRNAs in humans and Alzheimer’s disease as potential biomarkers of the disease and disease processes. Sci Rep 12(1):15966. https://doi.org/10.1038/s41598-022-20305-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winter AS, Sampson RJ (2017) From lead exposure in early childhood to adolescent health: a chicago birth cohort. Am J Public Health 107(9):1496–1501. https://doi.org/10.2105/AJPH.2017.303903

    Article  PubMed  PubMed Central  Google Scholar 

  • Yıldız S, Pirinççioğlu AG, Arıca E (2023) Evaluation of heavy metal (lead, mercury, cadmium, and manganese) levels in blood, plasma, and urine of adolescents with aggressive behavior. Cureus 15(1):157

    Google Scholar 

  • Zhao Z-H, Zheng G, Wang T, Du K-J, Han X, Luo W-J et al (2018) Low-level gestational lead exposure alters dendritic spine plasticity in the hippocampus and reduces learning and memory in rats. Sci Rep 8(1):3533. https://doi.org/10.1038/s41598-018-21521-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasbir Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arora, J., Singal, A., Jacob, J., Garg, S., Aeri, R. (2024). A Systematic Review of Lead Exposure on Mental Health. In: Kumar, N., Jha, A.K. (eds) Lead Toxicity Mitigation: Sustainable Nexus Approaches. Environmental Contamination Remediation and Management. Springer, Cham. https://doi.org/10.1007/978-3-031-46146-0_4

Download citation

Publish with us

Policies and ethics