Skip to main content

Predicting Alzheimer’s Disease Diagnosis Risk Over Time with Survival Machine Learning on the ADNI Cohort

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14162))

Included in the following conference series:

Abstract

The rise of Alzheimer’s Disease worldwide has prompted a search for efficient tools which can be used to predict deterioration in cognitive decline leading to dementia. In this paper, we explore the potential of survival machine learning as such a tool for building models capable of predicting not only deterioration but also the likely time to deterioration. We demonstrate good predictive ability (0.86 C-Index), lending support to its use in clinical investigation and prediction of Alzheimer’s Disease risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dementia Statistics Hub | Alzheimer’s Research UK. Dementia Statistics Hub. https://www.dementiastatistics.org/. Accessed 09 Aug 2022

  2. Rittman, T.: Neurological update: neuroimaging in dementia. J. Neurol. 267(11), 3429–3435 (2020). https://doi.org/10.1007/s00415-020-10040-0

    Article  Google Scholar 

  3. Kelly, C.J., Karthikesalingam, A., Suleyman, M., Corrado, G., King, D.: Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 17(1), 195 (2019). https://doi.org/10.1186/s12916-019-1426-2

    Article  Google Scholar 

  4. Musto, H., Stamate, D., Pu, I., Stahl, D.: A machine learning approach for predicting deterioration in alzheimer’s disease. In: 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, pp. 1443–1448 (2021). https://doi.org/10.1109/ICMLA52953.2021.00232

  5. Stamate, D., et al.: Applying deep learning to predicting dementia and mild cognitive impairment. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2020. IAICT, vol. 584, pp. 308–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49186-4_26

    Chapter  Google Scholar 

  6. ADNI | About. https://adni.loni.usc.edu/about/. Accessed 19 Feb 2023

  7. Cox, D.R.: Regression models and life-tables. J. R. Stat. Soc. Ser. B Methodol. 34(2), 187–202 (1972). https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

    Article  MathSciNet  MATH  Google Scholar 

  8. Spooner, A., et al.: A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci. Rep. 10(1), 20410 (2020). https://doi.org/10.1038/s41598-020-77220-w

    Article  Google Scholar 

  9. Stamate, D., et al.: A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood: results from the European medical information framework for Alzheimer disease biomarker discovery cohort. Alzheimers Dement. Transl. Res. Clin. Interv. 5(1), 933–938 (2019). https://doi.org/10.1016/j.trci.2019.11.001

    Article  Google Scholar 

  10. Ajnakina, O., Cadar, D., Steptoe, A.: Interplay between socioeconomic markers and polygenic predisposition on timing of dementia diagnosis. J. Am. Geriatr. Soc. 68(7), 1529–1536 (2020). https://doi.org/10.1111/jgs.16406

    Article  Google Scholar 

  11. Stamate, D., Musto, H., Ajnakina, O., Stahl, D.: Predicting risk of dementia with survival machine learning and statistical methods: results on the english longitudinal study of ageing cohort. In: Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops, Cham, pp. 436–447 (2022). https://doi.org/10.1007/978-3-031-08341-9_35

  12. Wang, M., et al.: Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models. BMC Med. Res. Methodol. 22(1), 284 (2022). https://doi.org/10.1186/s12874-022-01754-y

    Article  Google Scholar 

  13. Sheikh, F., et al.: Prevalence of mild behavioral impairment in mild cognitive impairment and subjective cognitive decline, and its association with caregiver burden. Int. Psychogeriatr. 30(2), 233–244 (2018). https://doi.org/10.1017/S104161021700151X

    Article  Google Scholar 

  14. Mirabnahrazam, G., et al.: Predicting time-to-conversion for dementia of Alzheimer’s type using multi-modal deep survival analysis. Neurobiol. Aging 121, 139–156 (2023). https://doi.org/10.1016/j.neurobiolaging.2022.10.005

    Article  Google Scholar 

  15. Longato, E., Vettoretti, M., Di Camillo, B.: A practical perspective on the concordance index for the evaluation and selection of prognostic time-to-event models. J. Biomed. Inform. 108, 103496 (2020). https://doi.org/10.1016/j.jbi.2020.103496

    Article  Google Scholar 

  16. Key ADNI tables merged into one table—adnimerge. https://adni.bitbucket.io/reference/adnimerge.html. Accessed 21 Feb 2023

  17. Apostolova, L.G., et al.: ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer’s disease. NeuroImage Clin. 4, 461–472 (2014). https://doi.org/10.1016/j.nicl.2013.12.012

    Article  Google Scholar 

  18. Steyerberg, E.W.: Clinical Prediction Models, 2nd edn. Springer, New York (2019). https://doi.org/10.1007/978-0-387-77244-8

  19. Collins, G.S., Reitsma, J.B., Altman, D.G., Moons, K.G.M.: Transparent reporting of a multivariable prediction model for individual prognosis Or diagnosis (TRIPOD): the TRIPOD statement. Br. J. Surg. 102(3), 148–158 (2015). https://doi.org/10.1002/bjs.9736

    Article  Google Scholar 

  20. Shamsutdinova, D., Stamate, D., Roberts, A., Stahl, D.: Combining cox model and tree-based algorithms to boost performance and preserve interpretability for health outcomes. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds.) Artificial Intelligence Applications and Innovations: 18th IFIP WG 12.5 International Conference, AIAI 2022, Hersonissos, Crete, Greece, June 17–20, 2022, Proceedings, Part II, pp. 170–181. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-08337-2_15

    Chapter  Google Scholar 

  21. Lee, C., Zame, W., Yoon, J., van der Schaar, M.: DeepHit: a deep learning approach to survival analysis with competing risks. In: Proceedings of AAAI Conference Artificial Intelligence, vol. 32, no. 1, Art no. 1 (2018). https://doi.org/10.1609/aaai.v32i1.11842

  22. van Houwelingen, H.C.: Validation, calibration, revision and combination of prognostic survival models. Stat. Med. 19(24), 3401–3415 (2000). https://doi.org/10.1002/1097-0258(20001230)19:24%3c3401::AID-SIM554%3e3.0.CO;2-2

    Article  Google Scholar 

  23. R: The R Foundation. https://www.r-project.org/foundation/. Accessed 08 Mar 2023

  24. Tidyverse packages. https://www.tidyverse.org/packages/. Accessed 08 Mar 2023

  25. Kuhn, M.: The caret Package. https://topepo.github.io/caret/. Accessed 08 Mar 2023

  26. Machine Learning in R - Next Generation. https://mlr3.mlr-org.com/. Accessed 08 Mar 2023

  27. Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., Kasneci, G.: Deep neural networks and tabular data: a survey. IEEE Trans. Neural Netw. Learn. Syst., 1–21 (2022). https://doi.org/10.1109/TNNLS.2022.3229161

Download references

Acknowledgements

Daniel Stahl was part funded by the NIHR Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. This study represents independent research and views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Musto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Musto, H., Stamate, D., Pu, I., Stahl, D. (2023). Predicting Alzheimer’s Disease Diagnosis Risk Over Time with Survival Machine Learning on the ADNI Cohort. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2023. Lecture Notes in Computer Science(), vol 14162. Springer, Cham. https://doi.org/10.1007/978-3-031-41456-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41456-5_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41455-8

  • Online ISBN: 978-3-031-41456-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics