Skip to main content

Scope of Natural Dyes and Biomordants in Textile Industry for Cleaner Production

  • Chapter
  • First Online:
Novel Sustainable Process Alternatives for the Textiles and Fashion Industry

Abstract

Nowadays, it is obvious to everyone that the majority of synthetic dyes pose significant danger to human health since toxic elements are released during their production, use, and ultimate release into the environment. As a result, it has been argued that using natural dyes to color textiles would be a more environmentally beneficial and green alternative. In this regard, scientists have discovered and used several sources of plants, animals, and insects for dyeing fabrics to promote cleaner production. Numerous researchers are interested in natural dyes because they often have multiple benefits, including coloring, antimicrobial, UV absorption, and anti-allergic qualities. Therefore, one of the most important goals of researchers in recent decades has been the introduction of new environment friendly color compounds, investigation on their extraction, dyeing potential, and color fastness, as well as some other advantageous characteristics of these dyes. The majority of natural dyes are less fitting to bind to textile fibers. This makes the necessity of large amount of metal mordants to fix the dye on fabric. But, for the sake of the environment, natural dyes and eco-friendly mordants must be used. Biomordants offer acceptable dyeing and solidity properties and are a sustainable and environmentally responsible alternative to metal mordants. Plants having high tannin content or hyper-accumulative metal plants are sources of biomordants. This book chapter deals with classification of natural dyes and their extraction processes, dyeing application to fibers, biomordants and their use in textile industry, and advantages and disadvantages of natural dyes and biomordants. The work presented may help to promote cleaner production in textile industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, I., Joshi, R., Pardasani, P., & Pardasani, R. T. (2011). Recent advances in 1,4-benzoquinone chemistry. Journal of the Brazilian Chemical Society, 22(3), 385–421. https://doi.org/10.1590/S0103-50532011000300002

    Article  CAS  Google Scholar 

  2. Adeel, S., Kiran, S., Ahmad, T., Habib, N., Tariq, K., & Hussaan, M. (2020). Bio-mordants in conjunction with sustainable radiation tools for modification of dyeing of natural fibers. In Frontiers of textile materials (pp. 355–367). Wiley. https://doi.org/10.1002/9781119620396.ch14

    Chapter  Google Scholar 

  3. Adeel, S., Zuber, M., Fazal-ur-Rehman, & Zia, K. M. (2018). Microwave-assisted extraction and dyeing of chemical and bio-mordanted cotton fabric using harmal seeds as a source of natural dye. Environmental Science and Pollution Research, 25(11), 11100–11110. https://doi.org/10.1007/s11356-018-1301-2

    Article  CAS  Google Scholar 

  4. Arain, R. A., Ahmad, F., khatri, Z., & Peerzada, M. H. (2021). Microwave assisted henna organic dyeing of polyester fabric: A green, economical and energy proficient substitute. Natural Product Research, 35(2), 327–330. https://doi.org/10.1080/14786419.2019.1619721

    Article  CAS  Google Scholar 

  5. Cardon, D. (2007). Natural dyes. Sources, tradition, technology and science (p. 268). Archetype Publications.

    Google Scholar 

  6. Dalby, G. (1993). A return to nature? JSDC, 109(9).

    Google Scholar 

  7. Das, M., & Mishra, C. (2019). Jackfruit leaf as an adsorbent of malachite green: Recovery and reuse of the dye. SN Applied Sciences, 1. https://doi.org/10.1007/s42452-019-0459-7

  8. Das, B. C., Reji, N., & Philip, R. (2021). Optical limiting behavior of the natural dye extract from Indigofera Tinctoria leaves. Optical Materials, 114, 110925.

    Article  Google Scholar 

  9. Deveoğlu, O., & Karadağ, R. (2019). Doğal Boya Kaynağı – Flavonoidler Üzerine Derleme. International Journal of Advances in Engineering and Pure Sciences. https://doi.org/10.7240/jeps.476514

  10. Dulo, B., Phan, K., Githaiga, J., Raes, K., & de Meester, S. (2021). Natural quinone dyes: A review on structure, extraction techniques, analysis and application potential. Waste and Biomass Valorization, 12(12), 6339–6374. https://doi.org/10.1007/s12649-021-01443-9

    Article  CAS  Google Scholar 

  11. Elnagar, K., Abou Elmaaty, T., & Raouf, S. (2014). Dyeing of polyester and polyamide synthetic fabrics with natural dyes using ecofriendly technique. Journal of Textiles, 2014, 1–8. https://doi.org/10.1155/2014/363079

    Article  Google Scholar 

  12. Gaboriaud-Kolar, N., Nam, S., & Skaltsounis, A.-L. (2014). A colorful history: The evolution of indigoids (pp. 69–145). https://doi.org/10.1007/978-3-319-04900-7_2

    Book  Google Scholar 

  13. Garcia-Macias, P., & John, P. (2004). Formation of natural indigo derived from Woad (Isatis tinctoria L.) in relation to product purity. Journal of Agricultural and Food Chemistry, 52(26), 7891–7896. https://doi.org/10.1021/jf0486803

    Article  CAS  Google Scholar 

  14. Gautam, S., & Sharma, A. (2018). Bidens pilosa: A favourable natural colourant for cotton fabric printing. Himachal Journal of Agricultural Research, 44(1&2), 75–79.

    Google Scholar 

  15. Guha, A. K. (2018). A review on cleaner production in textiles. International Journal of Textile Science, 7(4), 2325-0119. https://doi.org/10.5923/j.textile.20180704.02

  16. Guo, L., Qiang, T., Ma, Y., Wang, K., & Du, K. (2020). Optimisation of tannin extraction from Coriaria nepalensis bark as a renewable resource for use in tanning. Industrial Crops and Products, 149, 112360.

    Article  CAS  Google Scholar 

  17. Haddar, W., Baaka, N., Meksi, N., Elksibi, I., & Farouk Mhenni, M. (2014). Optimization of an ecofriendly dyeing process using the wastewater of the olive oil industry as natural dyes for acrylic fibres. Journal of Cleaner Production, 66, 546–554. https://doi.org/10.1016/J.JCLEPRO.2013.11.017

    Article  CAS  Google Scholar 

  18. Hartl, A., & Vogl, C. R. (2003). The potential use of organically grown dye plants in the organic textile industry: Experiences and results on cultivation and yields of dyer’s chamomile (Anthemis tinctoria L.), dyer’s knotweed (Polygonum tinctorium Ait.), and weld (Reseda luteola L.). Journal of Sustainable Agriculture, 23(2), 17–40.

    Article  Google Scholar 

  19. Hasan, M. ul, Adeel, S., Batool, F., Ahmad, T., Tang, R.-C., Amin, N., & Khan, S. R. (2022). Sustainable application of Cassia obovata–based chrysophanic acid as potential source of yellow natural colorant for textile dyeing. Environmental Science and Pollution Research, 29(7), 10740–10753. https://doi.org/10.1007/s11356-021-16447-0

    Article  CAS  Google Scholar 

  20. Hossain, M. A., & Samanta, A. K. (2018). Green dyeing on cotton fabric demodulated from Diospyros malabarica and Camellia sinensis with green mordanting agent. Trends in Textile & Fash Design, 2(2). LTTFD. MS. ID, 132.

    Google Scholar 

  21. İşmal, Ö. E. (2017). Greener natural dyeing pathway using a by-product of olive oil; prina and biomordants. Fibers and Polymers, 18(4), 773–785. https://doi.org/10.1007/s12221-017-6675-0

    Article  CAS  Google Scholar 

  22. İşmal, Ö. E., & Yildirim, L. (2019). Metal mordants and biomordants. In The impact and prospects of green chemistry for textile technology (pp. 57–82). https://doi.org/10.1016/B978-0-08-102491-1.00003-4

    Chapter  Google Scholar 

  23. Jahangiri, A., Ghoreishian, S. M., Akbari, A., Norouzi, M., Ghasemi, M., Ghoreishian, M., & Shafiabadi, E. (2018). Natural dyeing of wool by madder (Rubia tinctorum L.) root extract using tannin-based biomordants: Colorimetric, fastness and tensile assay. Fibers and Polymers, 19(10), 2139–2148. https://doi.org/10.1007/s12221-018-8069-3

    Article  CAS  Google Scholar 

  24. Jamee, R., & Siddique, R. (2019). Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. European Journal of Microbiology and Immunology, 9(4), 114–118.

    Article  CAS  Google Scholar 

  25. Jones, M., Slama, N., ben Ticha, M., Smiri, B., & Dhaouadi, H. (2022). Exploration of the fluorescence property of acrylic fibers dyed with the residues extract of Juglans regia barks. https://doi.org/10.3390/su141912275

  26. Ke, G. (2014). Dyeing properties of natural dye extracted from Rhizoma coptidis on acrylic fibres. Indian Journal of Fibre & Textile Research, 39, 102–106.

    CAS  Google Scholar 

  27. Klaichoi, C., Mongkholrattanasit, R., Sarikanon, C., Intajak, P., & Saleeyongpuay, W. (2012). Eco-friendly printing of cotton fabric using natural dye from acacia catechu willd. In RMUTP international conference, textiles & fashion, Bangkok Thailand (pp. 383–388).

    Google Scholar 

  28. Krifa, N., Miled, W., Behary, N., Campagne, C., Cheikhrouhou, M., & Zouari, R. (2021). Dyeing performance and antibacterial properties of air-atmospheric plasma treated polyester fabric using bio-based Haematoxylum campechianum L. dye, without mordants. Sustainable Chemistry and Pharmacy, 19, 100372.

    Article  CAS  Google Scholar 

  29. Kumagai, Y., Shinkai, Y., Miura, T., & Cho, A. K. (2012). The chemical biology of naphthoquinones and its environmental implications. Annual Review of Pharmacology and Toxicology, 52(1), 221–247. https://doi.org/10.1146/annurev-pharmtox-010611-134517

    Article  CAS  Google Scholar 

  30. Kumar Gupta, V. (2020). Fundamentals of natural dyes and its application on textile substrates. In Chemistry and technology of natural and synthetic dyes and pigments. IntechOpen. https://doi.org/10.5772/intechopen.89964

    Chapter  Google Scholar 

  31. Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290.

    Article  Google Scholar 

  32. Lokhande, H. T., & Dorugade, V. A. (1999). Dyeing nylon with natural dyes. www.bcigc.com

  33. Mathur, J. P., & Gupta, N. P. (2003). Use of natural mordant in dyeing of wool. Indian Journal of Fibre and Textile Research, 28(1), 90–93.

    CAS  Google Scholar 

  34. Mathur, P., George, R., & Mathur, A. (2020). Anthocyanin: A revolutionary pigment for textile industry. Current Trends on Biotechnology & Microbiology, 1, 7577. https://doi.org/10.32474/CTBM.2020.01.000122

    Article  Google Scholar 

  35. Mohd, M. Y., Mohammad, S. F., Yusuf, M., Shabbir, M., Mohammad, Á. F., & Mohammad, F. (2017). Natural colorants: Historical, processing and sustainable prospects. Natural Products and Bioprospecting, 7, 123–145. https://doi.org/10.1007/s13659-017-0119-9

    Article  CAS  Google Scholar 

  36. Mongkholrattanasit, R., Klaichoi, C., Rungruangkitkrai, N., & Sasivatchutikool, P. (2016). Dyeing of nylon fabric with natural dye from cassia fistula fruit: A research on effect metal mordants concentration. Materials Science Forum, 857, 487–490. https://doi.org/10.4028/www.scientific.net/MSF.857.487

    Article  Google Scholar 

  37. Motaghi, Z., & Shahidi, S. (2014). The 4th RMUTP international conference: Textiles and fashion. Development of polyester-wool fabrics dye ability using plasma sputtering. In RMUTP Research Journal: Special Issue.

    Google Scholar 

  38. Mussak, R. A. M., & Bechtold, T. (2009). Natural colorants in textile dyeing. In Handbook of natural colorants (pp. 315–337). Wiley. https://doi.org/10.1002/9780470744970.ch18

    Chapter  Google Scholar 

  39. Naqvi, H. K. (1968). Urban centres and industries in upper India, 1556–1803. Asia Publishing House.

    Google Scholar 

  40. Ohama, P., & Tumpat, N. (2014). Textile dyeing with natural dye from sappan tree (Caesalpinia sappan Linn.) extract. International Journal of Materials and Textile Engineering, 8(5), 432–434.

    Google Scholar 

  41. Patil, S. (2018). LAWSONE: Natural colorant in fashion technology & textile engineering. Current Trends in Fashion Technology & Textile Engineering, 3(5), 94–95. https://doi.org/10.19080/ctftte.2018.03.555622

    Article  Google Scholar 

  42. Pinheiro, L., Kohan, L., Duarte, L. O., Garavello, M. E. de P. E., & Baruque-Ramos, J. (2019). Biomordants and new alternatives to the sustainable natural fiber dyeings. SN Applied Sciences, 1(11), 1356. https://doi.org/10.1007/s42452-019-1384-5

  43. Poorniammal, R., Parthiban, M., Gunasekaran, S., Murugesan, R., & Thilagavathi, G. (2013). Natural dye production from Thermomyces sp fungi for textile application. Indian Journal of Fibre & Textile Research, 38, 276–279.

    CAS  Google Scholar 

  44. Popescu, V., Astanei, D. G., Burlica, R., Popescu, A., Munteanu, C., Ciolacu, F., Ursache, M., Ciobanu, L., & Cocean, A. (2019). Sustainable and cleaner microwave-assisted dyeing process for obtaining eco-friendly and fluorescent acrylic knitted fabrics. Journal of Cleaner Production, 232, 451–461. https://doi.org/10.1016/J.JCLEPRO.2019.05.281

    Article  CAS  Google Scholar 

  45. Popescu, V., Blaga, A. C., Pruneanu, M., Cristian, I. N., Pîslaru, M., Popescu, A., Rotaru, V., Crețescu, I., & Cașcaval, D. (2021). Green chemistry in the extraction of natural dyes from colored food waste, for dyeing protein textile materials. Polymers, 13(22), 3867. https://doi.org/10.3390/polym13223867

    Article  CAS  Google Scholar 

  46. Prabhu, K. H., Teli, M. D., & Waghmare, N. G. (2011). Eco-friendly dyeing using natural mordant extracted from Emblica officinalis G. Fruit on cotton and silk fabrics with antibacterial activity. Fibers and Polymers, 12(6), 753–759. https://doi.org/10.1007/s12221-011-0753-5

    Article  CAS  Google Scholar 

  47. Purwar, S. (2016). Application of natural dye on synthetic fabrics: A review. International Journal of Home Science, 2(2), 283–287. www.homesciencejournal.com

    Google Scholar 

  48. Qadariyah, L., Gala, S., Widoretno, D. R., Kunhermanti, D., Bhuana, D. S., Sumarno, & Mahfud, M. (2017, May). Jackfruit (Artocarpus heterophyllus lamk) wood waste as a textile natural dye by micowave-assisted extraction method. In AIP conference proceedings (Vol. 1840, No. 1, p. 100007). AIP Publishing LLC.

    Google Scholar 

  49. Rani, N., Jajpura, L., & Butola, B. S. (2020). Ecological dyeing of protein fabrics with Carica papaya L. leaf natural extract in the presence of bio-mordants as an alternative copartner to metal mordants. Journal of the Institution of Engineers (India): Series E, 101. https://doi.org/10.1007/s40034-020-00158-1

  50. Rehman, F. U., Adeel, S., Haddar, W., Bibi, R., Azeem, M., Mia, R., & Ahmed, B. (2022). Microwave-assisted exploration of yellow natural dyes for nylon fabric. Sustainability, 14(9), 5599. https://doi.org/10.3390/su14095599

    Article  CAS  Google Scholar 

  51. Salauddin Sk, M., Rony, M. I. A., Haque, M. A., & Shamim, A. M. (2021). Review on extraction and application of natural dyes. Textile and Leather Review, 4(4), 218–233. idd3. https://doi.org/10.31881/TLR.2021.09

  52. Samantha, A. K., Konar, A., & Datta, S. (2012). Dyeing of jute fabric with tesu extract: Part II – Thermodynamic parameters and kinetics of dyeing. Indian Journal of Fibre & Textile Research, 37, 172–177.

    Google Scholar 

  53. Sarayu, K., & Sandhya, S. (2012). Current technologies for biological treatment of textile wastewater-A review. Applied Biochemistry and Biotechnology, 167(3), 645–661. https://doi.org/10.1007/s12010-012-9716-6

    Article  CAS  Google Scholar 

  54. Saxena, S., & Raja, A. S. M. (2014). Natural dyes: Sources, chemistry, application and sustainability issues. In Roadmap to sustainable textiles and clothing (pp. 37–80). Springer.

    Chapter  Google Scholar 

  55. Septhum, C. (2007). UV-Vis spectroscopic study of natural dyes with alum as a mordant. Suranaree Journal of Science and Technology, 14(1), 91–97.

    Google Scholar 

  56. Shahid, M., Shahid-Ul-Islam, & Mohammad, F. (2013). Recent advancements in natural dye applications: A review. Journal of Cleaner Production, 53, 310–331. https://doi.org/10.1016/J.JCLEPRO.2013.03.031

    Article  CAS  Google Scholar 

  57. Shahid-ul-Islam, Rather, L. J., Shabbir, M., Sheikh, J., Bukhari, M. N., Khan, M. A., & Mohammad, F. (2019). Exploiting the potential of polyphenolic biomordants in environmentally friendly coloration of wool with natural dye from Butea monosperma flower extract. Journal of Natural Fibers, 16(4), 512–523. https://doi.org/10.1080/15440478.2018.1426080

    Article  CAS  Google Scholar 

  58. Shriner, R. L. (1943). The chemistry of natural coloring matters: The constitution, properties, and biological relations of the important natural pigments (Mayer, Fritz; translated and revised by A. H. Cook). Journal of Chemical Education, 20(8), 416. https://doi.org/10.1021/ed020p416.2

    Article  Google Scholar 

  59. Sharma, J., Sharma, S., & Soni, V. (2021). Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Regional Studies in Marine Science, 45, 101802.

    Article  Google Scholar 

  60. Shukla, P., Upreti, D. K., Nayaka, S., & Tiwari, P. (2014). Natural dyes from Himalayan lichens. Indian Journal of Traditional Knowledge, 13(1), 195–201.

    Google Scholar 

  61. Tambi, S., Mangal, A., Singh, N., & Sheikh, J. (2020). Cleaner production of dyed and functional polyester using natural dyes vis-a-vis exploration of secondary shades. Progress in Color, Colorants and Coatings, 14(2), 121–128.

    Google Scholar 

  62. Valianou, L., Stathopoulou, K., Karapanagiotis, I., Magiatis, P., Pavlidou, E., Skaltsounis, A. L., & Chryssoulakis, Y. (2009). Phytochemical analysis of young fustic (Cotinus coggygria heartwood) and identification of isolated colourants in historical textiles. Analytical and Bioanalytical Chemistry, 394, 871–882.

    Article  CAS  Google Scholar 

  63. Vankar, P. S. (2017). Structure-mordant interaction, replacement by biomordants and enzymes. In Natural dyes for textiles: Sources, chemistry and applications (pp. 89–102). https://doi.org/10.1016/B978-0-08-101274-1.00003-3

    Chapter  Google Scholar 

  64. Yusuf, M., Shahid, M., Khan, M. I., Khan, S. A., Khan, M. A., & Mohammad, F. (2015). Dyeing studies with henna and madder: A research on effect of tin (II) chloride mordant. Journal of Saudi Chemical Society, 19(1), 64–72. https://doi.org/10.1016/j.jscs.2011.12.020

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Department of Science and Technology (DST), Government of India, for supporting this work through the research grant DST/TM/WIC/WTI/2K17/82(G3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Sabumon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balachandran, B., Sabumon, P.C. (2023). Scope of Natural Dyes and Biomordants in Textile Industry for Cleaner Production. In: Muthu, S.S. (eds) Novel Sustainable Process Alternatives for the Textiles and Fashion Industry. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-35451-9_4

Download citation

Publish with us

Policies and ethics